1
|
Silberbauer LR, Rischka L, Vraka C, Hartmann AM, Godbersen GM, Philippe C, Pacher D, Nics L, Klöbl M, Unterholzner J, Stimpfl T, Wadsak W, Hahn A, Hacker M, Rujescu D, Kasper S, Lanzenberger R, Gryglewski G. ABCB1 variants and sex affect serotonin transporter occupancy in the brain. Mol Psychiatry 2022; 27:4502-4509. [PMID: 36071112 PMCID: PMC7613909 DOI: 10.1038/s41380-022-01733-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 12/14/2022]
Abstract
Strategies to personalize psychopharmacological treatment promise to improve efficacy and tolerability. We measured serotonin transporter occupancy immediately after infusion of the widely prescribed P-glycoprotein substrate citalopram and assessed to what extent variants of the ABCB1 gene affect drug target engagement in the brain in vivo. A total of 79 participants (39 female) including 31 patients with major depression and 48 healthy volunteers underwent two PET/MRI scans with the tracer [11C]DASB and placebo-controlled infusion of citalopram (8 mg) in a cross-over design. We tested the effect of six ABCB1 single nucleotide polymorphisms and found lower SERT occupancy in ABCB1 rs2235015 minor allele carriers (n = 26, MAF = 0.18) compared to major allele homozygotes (t73 = 2.73, pFWE < 0.05) as well as in men compared to women (t73 = 3.33, pFWE < 0.05). These effects were robust to correction for citalopram plasma concentration, age and diagnosis. From occupancy we derived the ratio of occupied to unoccupied SERT, because in theory this measure is equal to the product of drug affinity and concentration at target sites. A model combining genotype with basic clinical variables, predicted that, at the same dosage, occupied to unoccupied SERT ratio was -14.48 ± 5.38% lower in rs2235015 minor allele carriers, +19.10 ± 6.95% higher in women, -4.83 ± 2.70% lower per 10 kg bodyweight, and -2.68 ± 3.07% lower per 10 years of age. Our results support the exploration of clinical algorithms with adjustment of initial citalopram dosing and highlight the potential of imaging-genetics for precision pharmacotherapy in psychiatry.
Collapse
Affiliation(s)
- Leo R. Silberbauer
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Lucas Rischka
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Chrysoula Vraka
- grid.22937.3d0000 0000 9259 8492Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Annette M. Hartmann
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Godber Mathis Godbersen
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Cécile Philippe
- grid.22937.3d0000 0000 9259 8492Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Daniel Pacher
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Lukas Nics
- grid.22937.3d0000 0000 9259 8492Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Manfred Klöbl
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Jakob Unterholzner
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Thomas Stimpfl
- grid.22937.3d0000 0000 9259 8492Clinical Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- grid.22937.3d0000 0000 9259 8492Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria ,grid.499898.dCenter for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Andreas Hahn
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- grid.22937.3d0000 0000 9259 8492Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Dan Rujescu
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Siegfried Kasper
- grid.22937.3d0000 0000 9259 8492Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Gregor Gryglewski
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria. .,Child Study Center, Yale University, New Haven, CT, USA.
| |
Collapse
|
2
|
Kautzky A, James GM, Philippe C, Baldinger-Melich P, Kraus C, Kranz GS, Vanicek T, Gryglewski G, Hartmann AM, Hahn A, Wadsak W, Mitterhauser M, Rujescu D, Kasper S, Lanzenberger R. Epistasis of HTR1A and BDNF risk genes alters cortical 5-HT1A receptor binding: PET results link genotype to molecular phenotype in depression. Transl Psychiatry 2019; 9:5. [PMID: 30664620 PMCID: PMC6341100 DOI: 10.1038/s41398-018-0308-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023] Open
Abstract
Alterations of the 5-HT1A receptor and BDNF have consistently been associated with affective disorders. Two functional single nucleotide polymorphisms (SNPs), rs6295 of the serotonin 1A receptor gene (HTR1A) and rs6265 of brain-derived neurotrophic factor gene (BDNF), may impact transcriptional regulation and expression of the 5-HT1A receptor. Here we investigated interaction effects of rs6295 and rs6265 on 5-HT1A receptor binding. Forty-six healthy subjects were scanned with PET using the radioligand [carbonyl-11C]WAY-100635. Genotyping was performed for rs6265 and rs6295. Subjects showing a genotype with at least three risk alleles (G of rs6295 or A of rs6265) were compared to control genotypes. Cortical surface binding potential (BPND) was computed for 32 cortical regions of interest (ROI). Mixed model was applied to study main and interaction effects of ROI and genotype. ANOVA was used for post hoc analyses. Individuals with the risk genotypes exhibited an increase in 5-HT1A receptor binding by an average of 17% (mean BPND 3.56 ± 0.74 vs. 2.96 ± 0.88). Mixed model produced an interaction effect of ROI and genotype on BPND and differences could be demonstrated in 10 ROI post hoc. The combination of disadvantageous allelic expression of rs6295 and rs6265 may result in a 5-HT1A receptor profile comparable to affective disorders as increased 5-HT1A receptor binding is a well published phenotype of depression. Thus, epistasis between BDNF and HTR1A may contribute to the multifactorial risk for affective disorders and our results strongly advocate further research on this genetic signature in affective disorders.
Collapse
Affiliation(s)
- Alexander Kautzky
- 0000 0000 9259 8492grid.22937.3dDepartment of Psychiatry and Psychotherapy, Medical University of Vienna, Wien, Austria
| | - Gregory M. James
- 0000 0000 9259 8492grid.22937.3dDepartment of Psychiatry and Psychotherapy, Medical University of Vienna, Wien, Austria
| | - Cecile Philippe
- 0000 0000 9259 8492grid.22937.3dDivision of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Wien, Austria
| | - Pia Baldinger-Melich
- 0000 0000 9259 8492grid.22937.3dDepartment of Psychiatry and Psychotherapy, Medical University of Vienna, Wien, Austria
| | - Christoph Kraus
- 0000 0000 9259 8492grid.22937.3dDepartment of Psychiatry and Psychotherapy, Medical University of Vienna, Wien, Austria
| | - Georg S. Kranz
- 0000 0000 9259 8492grid.22937.3dDepartment of Psychiatry and Psychotherapy, Medical University of Vienna, Wien, Austria
| | - Thomas Vanicek
- 0000 0000 9259 8492grid.22937.3dDepartment of Psychiatry and Psychotherapy, Medical University of Vienna, Wien, Austria
| | - Gregor Gryglewski
- 0000 0000 9259 8492grid.22937.3dDepartment of Psychiatry and Psychotherapy, Medical University of Vienna, Wien, Austria
| | - Annette M. Hartmann
- 0000 0001 0679 2801grid.9018.0University Clinic for Psychiatry, Psychotherapy and Psychosomatic, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Andreas Hahn
- 0000 0000 9259 8492grid.22937.3dDepartment of Psychiatry and Psychotherapy, Medical University of Vienna, Wien, Austria
| | - Wolfgang Wadsak
- 0000 0000 9259 8492grid.22937.3dDivision of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Wien, Austria ,grid.499898.dCenter for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Markus Mitterhauser
- 0000 0000 9259 8492grid.22937.3dDivision of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Wien, Austria ,Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Dan Rujescu
- 0000 0001 0679 2801grid.9018.0University Clinic for Psychiatry, Psychotherapy and Psychosomatic, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Siegfried Kasper
- 0000 0000 9259 8492grid.22937.3dDepartment of Psychiatry and Psychotherapy, Medical University of Vienna, Wien, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Wien, Austria.
| |
Collapse
|
3
|
Kautzky A, James GM, Philippe C, Baldinger-Melich P, Kraus C, Kranz GS, Vanicek T, Gryglewski G, Wadsak W, Mitterhauser M, Rujescu D, Kasper S, Lanzenberger R. The influence of the rs6295 gene polymorphism on serotonin-1A receptor distribution investigated with PET in patients with major depression applying machine learning. Transl Psychiatry 2017; 7:e1150. [PMID: 28608854 PMCID: PMC5537636 DOI: 10.1038/tp.2017.108] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 04/08/2017] [Accepted: 04/20/2017] [Indexed: 12/25/2022] Open
Abstract
Major depressive disorder (MDD) is the most common neuropsychiatric disease and despite extensive research, its genetic substrate is still not sufficiently understood. The common polymorphism rs6295 of the serotonin-1A receptor gene (HTR1A) is affecting the transcriptional regulation of the 5-HT1A receptor and has been closely linked to MDD. Here, we used positron emission tomography (PET) exploiting advances in data mining and statistics by using machine learning in 62 healthy subjects and 19 patients with MDD, which were scanned with PET using the radioligand [carbonyl-11C]WAY-100635. All the subjects were genotyped for rs6295 and genotype was grouped in GG vs C allele carriers. Mixed model was applied in a ROI-based (region of interest) approach. ROI binding potential (BPND) was divided by dorsal raphe BPND as a specific measure to highlight rs6295 effects (BPDiv). Mixed model produced an interaction effect of ROI and genotype in the patients' group but no effects in healthy controls. Differences of BPDiv was demonstrated in seven ROIs; parahippocampus, hippocampus, fusiform gyrus, gyrus rectus, supplementary motor area, inferior frontal occipital gyrus and lingual gyrus. For classification of genotype, 'RandomForest' and Support Vector Machines were used, however, no model with sufficient predictive capability could be computed. Our results are in line with preclinical data, mouse model knockout studies as well as previous clinical analyses, demonstrating the two-pronged effect of the G allele on 5-HT1A BPND for, we believe, the first time. Future endeavors should address epigenetic effects and allosteric heteroreceptor complexes. Replication in larger samples of MDD patients is necessary to substantiate our findings.
Collapse
Affiliation(s)
- A Kautzky
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - G M James
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - C Philippe
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - P Baldinger-Melich
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - C Kraus
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - G S Kranz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - T Vanicek
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - G Gryglewski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - W Wadsak
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria,Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - M Mitterhauser
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria,Ludwig Boltzmann Institute for Applied Diagnostics, Vienna, Austria
| | - D Rujescu
- University Clinic for Psychiatry, Psychotherapy and Psychosomatic, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - S Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - R Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria,Department of Psychiatry and Psychotherapy, Medical University of Vienna, Währinger Gürtel 18-20, Vienna A-1090, Austria. E-mail:
| |
Collapse
|
4
|
Sigurdardottir HL, Kranz GS, Rami-Mark C, James GM, Vanicek T, Gryglewski G, Kautzky A, Hienert M, Traub-Weidinger T, Mitterhauser M, Wadsak W, Hacker M, Rujescu D, Kasper S, Lanzenberger R. Effects of norepinephrine transporter gene variants on NET binding in ADHD and healthy controls investigated by PET. Hum Brain Mapp 2015; 37:884-95. [PMID: 26678348 PMCID: PMC4949568 DOI: 10.1002/hbm.23071] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/18/2015] [Accepted: 11/18/2015] [Indexed: 01/08/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a heterogeneous disorder with a strong genetic component. The norepinephrine transporter (NET) is a key target for ADHD treatment and the NET gene has been of high interest as a possible modulator of ADHD pathophysiology. Therefore, we conducted an imaging genetics study to examine possible effects of single nucleotide polymorphisms (SNPs) within the NET gene on NET nondisplaceable binding potential (BPND ) in patients with ADHD and healthy controls (HCs). Twenty adult patients with ADHD and 20 HCs underwent (S,S)-[18F]FMeNER-D2 positron emission tomography (PET) and were genotyped on a MassARRAY MALDI-TOF platform using the Sequenom iPLEX assay. Linear mixed models analyses revealed a genotype-dependent difference in NET BPND between groups in the thalamus and cerebellum. In the thalamus, a functional promoter SNP (-3081 A/T) and a 5'-untranslated region (5'UTR) SNP (-182 T/C), showed higher binding in ADHD patients compared to HCs depending on the major allele. Furthermore, we detected an effect of genotype in HCs, with major allele carriers having lower binding. In contrast, for two 3'UTR SNPs (*269 T/C, *417 A/T), ADHD subjects had lower binding in the cerebellum compared to HCs depending on the major allele. Additionally, symptoms of hyperactivity and impulsivity correlated with NET BPND in the cerebellum depending on genotype. Symptoms correlated positively with cerebellar NET BPND for the major allele, while symptoms correlated negatively to NET BPND in minor allele carriers. Our findings support the role of genetic influence of the NE system on NET binding to be pertubated in ADHD.
Collapse
Affiliation(s)
- Helen L Sigurdardottir
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Georg S Kranz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Christina Rami-Mark
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Gregory M James
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Thomas Vanicek
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Gregor Gryglewski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Alexander Kautzky
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Marius Hienert
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Tatjana Traub-Weidinger
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Dan Rujescu
- Department of Psychiatry, University of Halle, Halle, Germany
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Yildirim BO, Derksen JJL. Mesocorticolimbic dopamine functioning in primary psychopathy: A source of within-group heterogeneity. Psychiatry Res 2015; 229:633-77. [PMID: 26277034 DOI: 10.1016/j.psychres.2015.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 04/08/2015] [Accepted: 07/05/2015] [Indexed: 01/17/2023]
Abstract
Despite similar emotional deficiencies, primary psychopathic individuals can be situated on a continuum that spans from controlled to disinhibited. The constructs on which primary psychopaths are found to diverge, such as self-control, cognitive flexibility, and executive functioning, are crucially regulated by dopamine (DA). As such, the goal of this review is to examine which specific alterations in the meso-cortico-limbic DA system and corresponding genes (e.g., TH, DAT, COMT, DRD2, DRD4) might bias development towards a more controlled or disinhibited expression of primary psychopathy. Based on empirical data, it is argued that primary psychopathy is generally related to a higher tonic and population activity of striatal DA neurons and lower levels of D2-type DA receptors in meso-cortico-limbic projections, which may boost motivational drive towards incentive-laden goals, dampen punishment sensitivity, and increase future reward-expectancy. However, increasingly higher levels of DA activity in the striatum (moderate versus pathological elevations), lower levels of DA functionality in the prefrontal cortex, and higher D1-to-D2-type receptor ratios in meso-cortico-limbic projections may lead to increasingly disinhibited and impetuous phenotypes of primary psychopathy. Finally, in order to provide a more coherent view on etiological mechanisms, we discuss interactions between DA and serotonin that are relevant for primary psychopathy.
Collapse
Affiliation(s)
- Bariş O Yildirim
- Department of Clinical Psychology, Radboud University Nijmegen, De Kluyskamp 1002, 6545 JD Nijmegen, The Netherlands.
| | - Jan J L Derksen
- Department of Clinical Psychology, Room: A.07.04B, Radboud University Nijmegen, Montessorilaan 3, 6525 HR Nijmegen, The Netherlands.
| |
Collapse
|
6
|
Baldinger P, Kraus C, Rami-Mark C, Gryglewski G, Kranz GS, Haeusler D, Hahn A, Spies M, Wadsak W, Mitterhauser M, Rujescu D, Kasper S, Lanzenberger R. Interaction between 5-HTTLPR and 5-HT1B genotype status enhances cerebral 5-HT1A receptor binding. Neuroimage 2015; 111:505-12. [PMID: 25652393 DOI: 10.1016/j.neuroimage.2015.01.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 01/18/2015] [Accepted: 01/26/2015] [Indexed: 10/24/2022] Open
Abstract
Serotonergic neurotransmission is thought to underlie a dynamic interrelation between different key structures of the serotonin system. The serotonin transporter (SERT), which is responsible for the reuptake of serotonin from the synaptic cleft into the neuron, as well as the serotonin-1A (5-HT1A) and -1B (5-HT1B) receptors, inhibitory auto-receptors in the raphe region and projection areas, respectively, are likely to determine serotonin release. Thereby, they are involved in the regulation of extracellular serotonin concentrations and the extent of serotonergic effects in respective projection areas. Complex receptor interactions can be assessed in vivo with positron emission tomography (PET) and single-nucleotide-polymorphisms, which are thought to alter protein expression levels. Due to the complexity of the serotonergic system, gene × gene interactions are likely to regulate transporter and receptor expression and therefore subsequently serotonergic transmission. In this context, we measured 51 healthy subjects (mean age 45.5 ± 12.9, 38 female) with PET using [carbonyl-(11)C]WAY-100635 to determine 5-HT1A receptor binding potential (5-HT1A BPND). Genotyping for rs6296 (HTR1B) and 5-HTTLPR (SERT gene promoter polymorphism) was performed using DNA isolated from whole blood. Voxel-wise whole-brain ANOVA revealed a positive interaction effect of genotype groups (5-HTTLPR: LL, LS+SS and HTR1B: rs6296: CC, GC+GG) on 5-HT1A BPND with peak t-values in the bilateral parahippocampal gyrus. More specifically, highest 5-HT1A BPND was identified for individuals homozygous for both the L-allele of 5-HTTLPR and the C-allele of rs6296. This finding suggests that the interaction between two major serotonergic structures involved in serotonin release, specifically the SERT and 5-HT1B receptor, results in a modification of the inhibitory serotonergic tone mediated via 5-HT1A receptors.
Collapse
Affiliation(s)
- Pia Baldinger
- Department of Psychiatry and Psychotherapy, Division of Biological Psychiatry, Medical University of Vienna, Austria
| | - Christoph Kraus
- Department of Psychiatry and Psychotherapy, Division of Biological Psychiatry, Medical University of Vienna, Austria
| | - Christina Rami-Mark
- Department of Biomedical Imaging und Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Gregor Gryglewski
- Department of Psychiatry and Psychotherapy, Division of Biological Psychiatry, Medical University of Vienna, Austria
| | - Georg S Kranz
- Department of Psychiatry and Psychotherapy, Division of Biological Psychiatry, Medical University of Vienna, Austria
| | - Daniela Haeusler
- Department of Biomedical Imaging und Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Division of Biological Psychiatry, Medical University of Vienna, Austria
| | - Marie Spies
- Department of Psychiatry and Psychotherapy, Division of Biological Psychiatry, Medical University of Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging und Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Markus Mitterhauser
- Department of Biomedical Imaging und Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Dan Rujescu
- Genetics Research Center, Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Germany; Department of Psychiatry, Medical University of Halle, Germany
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Division of Biological Psychiatry, Medical University of Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Division of Biological Psychiatry, Medical University of Vienna, Austria.
| |
Collapse
|
7
|
Baldinger P, Höflich AS, Mitterhauser M, Hahn A, Rami-Mark C, Spies M, Wadsak W, Lanzenberger R, Kasper S. Effects of Silexan on the serotonin-1A receptor and microstructure of the human brain: a randomized, placebo-controlled, double-blind, cross-over study with molecular and structural neuroimaging. Int J Neuropsychopharmacol 2015; 18:pyu063. [PMID: 25522403 PMCID: PMC4360214 DOI: 10.1093/ijnp/pyu063] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Recently, Silexan, a patented active substance comprised of an essential oil produced from Lavandula angustifolia flowers, has been authorized in Germany as a medicinal product for the treatment of states of restlessness related to anxious mood. Its efficacy has been shown in several forms of anxiety disorders. Findings from preclinical and clinical studies attribute a major role to the serotonin-1A receptor in the pathogenesis and treatment of anxiety. METHODS To elucidate the effect of Silexan on serotonin-1A receptor binding, 17 healthy men underwent 2 positron emission tomography measurements using the radioligand [carbonyl-(11)C]WAY-100635 following the daily intake of 160 mg Silexan or placebo for a minimum of 8 weeks (randomized, double-blind, cross-over design). Additionally, structural magnetic resonance imaging and voxel-based morphometry analysis was performed to determine potential effects on gray matter microstructure. RESULTS Serotonin-1A receptor binding potential was shown to be significantly reduced following the intake of Silexan compared with placebo in 2 large clusters encompassing the temporal gyrus, the fusiform gyrus and the hippocampus on one hand as well as the insula and anterior cingulate cortex on the other hand. No effects of Silexan on gray matter volume could be detected in this investigation. CONCLUSION This positron emission tomography study proposes an involvement of the serotonin-1A receptor in the anxiolytic effects of Silexan. The study was registered in the International Standard Randomized Controlled Trial Number Register as ISRCTN30885829 (http://www.controlled-trials.com/isrctn/).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy (Drs Baldinger, Höflich, Hahn, Spies, Lanzenberger and Kasper), Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine (Drs Mitterhauser, Rami-Mark and Wadsak), Medical University of Vienna, Austria.
| |
Collapse
|
8
|
Kraus C, Baldinger P, Rami-Mark C, Gryglewsky G, Kranz GS, Haeusler D, Hahn A, Wadsak W, Mitterhauser M, Rujescu D, Kasper S, Lanzenberger R. Exploring the impact of BDNF Val66Met genotype on serotonin transporter and serotonin-1A receptor binding. PLoS One 2014; 9:e106810. [PMID: 25188405 PMCID: PMC4154779 DOI: 10.1371/journal.pone.0106810] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/28/2014] [Indexed: 01/15/2023] Open
Abstract
Background The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism (rs6265) may impact on the in-vivo binding of important serotonergic structures such as the serotonin transporter (5-HTT) and the serotonin-1A (5-HT1A) receptor. Previous positron emission tomography (PET) studies on the association between Val66Met and 5-HTT and 5-HT1A binding potential (BPND) have demonstrated equivocal results. Methods We conducted an imaging genetics study investigating the effect of Val66Met genotype on 5-HTT or 5-HT1A BPND in 92 subjects. Forty-one subjects (25 healthy subjects and 16 depressive patients) underwent genotyping for Val66Met and PET imaging with the 5-HTT specific radioligand [11C]DASB. Additionally, in 51 healthy subjects Val66Met genotypes and 5-HT1A binding with the radioligand [carbonyl-11C]WAY-100635 were ascertained. Voxel-wise and region of interest-based analyses of variance were used to examine the influence of Val66Met on 5-HTT and 5-HT1A BPND. Results No significant differences of 5-HTT nor 5-HT1A BPND between BDNF Val66Met genotype groups (val/val vs. met-carrier) were detected. There was no interaction between depression and Val66Met genotype status. Conclusion In line with previous data, our work confirms an absent effect of BDNF Val66Met on two major serotonergic structures. These results could suggest that altered protein expression associated with genetic variants, might be compensated invivo by several levels of unknown feedback mechanisms. In conclusion, Val66Met genotype status is not associated with changes of in-vivo binding of 5-HTT and 5-HT1A receptors in human subjects.
Collapse
Affiliation(s)
- Christoph Kraus
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Pia Baldinger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Christina Rami-Mark
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine Medical University of Vienna, Vienna, Austria
| | - Gregor Gryglewsky
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Georg S. Kranz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Daniela Haeusler
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine Medical University of Vienna, Vienna, Austria
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine Medical University of Vienna, Vienna, Austria
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine Medical University of Vienna, Vienna, Austria
| | - Dan Rujescu
- Department of Psychiatry, Medical University of Halle, Halle, Germany
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
9
|
Deveci EO, Incebiyik A, Selek S, Camuzcuoglu A, Hilali NG, Camuzcuoglu H, Erdal ME, Vural M. Is catechol-o-methyltransferase gene polymorphism a risk factor in the development of premenstrual syndrome? Clin Exp Reprod Med 2014; 41:62-7. [PMID: 25045629 PMCID: PMC4102691 DOI: 10.5653/cerm.2014.41.2.62] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 11/23/2022] Open
Abstract
Objective The objective of this study was to investigate whether there was a correlation between catechol-o-methyltransferase (COMT) gene polymorphism, which is believed to play a role in the etiology of psychotic disorders, and premenstrual syndrome (PMS). Methods Fifty-three women with regular menstrual cycles, aged between 18 and 46 years and diagnosed with PMS according to the American Congress of Obstetrics and Gynecology criteria were included in this study as the study group, and 53 healthy women having no health problems were selected as the controls. Venous blood was collected from all patients included in the study and kept at -18℃ prior to analysis. Results There was no significant difference between the groups in terms of demographic features such as age, body mass index, number of pregnancies, parity, and number of children. No statistically significant difference was observed in terms of COMT gene polymorphism (p=0.61) between women in the PMS and the control groups. However, a significant difference was found between arthralgia, which is an indicator of PMS, and low-enzyme activity COMT gene (Met/Met) polymorphism (p=0.04). Conclusion These results suggested that there was no significant relationship between PMS and COMT gene polymorphism. Since we could not find a direct correlation between the COMT gene polymorphism and PMS, further studies including alternative neurotransmitter pathways are needed to find an effective treatment for this disease.
Collapse
Affiliation(s)
- Esma Ozturk Deveci
- Department of Gynecology and Obstetrics, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Adnan Incebiyik
- Department of Gynecology and Obstetrics, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Salih Selek
- Psychiatry Department, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Aysun Camuzcuoglu
- Department of Gynecology and Obstetrics, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Nese Gul Hilali
- Department of Gynecology and Obstetrics, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Hakan Camuzcuoglu
- Department of Gynecology and Obstetrics, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Mehmet Emin Erdal
- Medical Faculty, Department of Medical Biology and Genetics, Mersin University, Mersin, Turkey
| | - Mehmet Vural
- Department of Gynecology and Obstetrics, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| |
Collapse
|
10
|
Bosia M, Bechi M, Pirovano A, Buonocore M, Lorenzi C, Cocchi F, Bramanti P, Smeraldi E, Cavallaro R. COMT and 5-HT1A-receptor genotypes potentially affect executive functions improvement after cognitive remediation in schizophrenia. Health Psychol Behav Med 2014; 2:509-516. [PMID: 25750798 PMCID: PMC4346068 DOI: 10.1080/21642850.2014.905206] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/12/2014] [Indexed: 11/16/2022] Open
Abstract
Cognitive remediation therapy (CRT) has been proved to improve cognitive deficits in schizophrenia and to enhance functional outcomes of classical rehabilitation. However, CRT outcomes are heterogeneous and predictors of response are still unknown. Genetic variability, especially in the dopaminergic system, has been hypothesized to affect CRT. We previously reported that rs4680 of the catechol-O-methyltrasferase (COMT) influences improvements in executive functions in patients treated with CRT, but this result was not confirmed by other studies. Such inconsistent findings may depend, other than on clinical variables, also on other genes involved in cognition. Recent studies proved that serotonin 1A receptor (5-HT1A-R) regulates dopamine in the prefrontal cortex (PFC), and clinical works suggested a 5-HT1A-R role in cognition. We then analysed possible effects of COMT rs4680 and 5-HT1A-R rs6295 on CRT outcomes, taking into account also clinical and demographic factors. Eighty-six clinically stabilized schizophrenia patients treated with three months CRT were assessed with the Wisconsin Card Sorting Test, as a measure of executive functions, at enrolment and after CRT treatment, and underwent COMT and 5-HT1A-R genotyping. We found a significant main effect of COMT genotype and an interaction with 5-HT1A-R on executive function improvement after CRT. The results suggest that these two polymorphisms may have an additive effect on individual capacity to recover from cognitive deficit, probably through their role on PFC dopaminergic transmission modulation, known to be critical for modulating cognitive functions.
Collapse
Affiliation(s)
- Marta Bosia
- Clinical Neurosciences, San Raffaele Scientific Institute , Via Stamira d'Ancona 20, Milan 20127 Italy ; Center for Neurolinguistics and Theoretical Syntax, Institute for Advanced Study , Pavia , Italy
| | - Margherita Bechi
- Clinical Neurosciences, San Raffaele Scientific Institute , Via Stamira d'Ancona 20, Milan 20127 Italy
| | - Adele Pirovano
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele , Milan , Italy
| | - Mariachiara Buonocore
- Clinical Neurosciences, San Raffaele Scientific Institute , Via Stamira d'Ancona 20, Milan 20127 Italy
| | - Cristina Lorenzi
- Clinical Neurosciences, San Raffaele Scientific Institute , Via Stamira d'Ancona 20, Milan 20127 Italy
| | - Federica Cocchi
- Clinical Neurosciences, San Raffaele Scientific Institute , Via Stamira d'Ancona 20, Milan 20127 Italy
| | | | - Enrico Smeraldi
- Clinical Neurosciences, San Raffaele Scientific Institute , Via Stamira d'Ancona 20, Milan 20127 Italy ; Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele , Milan , Italy
| | - Roberto Cavallaro
- Clinical Neurosciences, San Raffaele Scientific Institute , Via Stamira d'Ancona 20, Milan 20127 Italy
| |
Collapse
|
11
|
Lan MJ, Ogden RT, Huang YY, Oquendo MA, Sullivan GM, Miller J, Milak M, Mann JJ, Parsey RV. Genetic variation in brain-derived neurotrophic factor val66met allele is associated with altered serotonin-1A receptor binding in human brain. Neuroimage 2014; 94:33-39. [PMID: 24607934 DOI: 10.1016/j.neuroimage.2014.02.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/31/2014] [Accepted: 02/24/2014] [Indexed: 10/25/2022] Open
Abstract
Brain Derived Neurotrophic Factor (BDNF) regulates brain synaptic plasticity. BDNF affects serotonin signaling, increases serotonin levels in brain tissue and prevents degeneration of serotonin neurons. These effects have hardly been studied in human brain. We examined the relationship of the functional val66met polymorphism of the BDNF gene to serotonin 1A (5-HT(1A)) receptor binding in vivo. 50 healthy volunteers (HV) and 50 acutely depressed, unmedicated patients with major depressive disorder (MDD) underwent PET scanning with the 5-HT(1A) receptor ligand, [(11)C]WAY-100635 and a metabolite corrected arterial input function. A linear mixed effects model compared 5-HT(1A) receptor binding potential (BP(F), proportional to the number of available receptors) in 13 brain regions of interest between met allele carriers (met/met and val/met) and noncarriers (val/val) using sex and C-1019G genotype of the 5-HT(1A) receptor promoter functional polymorphism as covariates. There was an interaction between diagnosis and allele (F=4.23, df=1, 94, p=0.042), such that met allele carriers had 17.4% lower BP(F) than non-met carriers in the HV group (t=2.6, df=96, p=0.010), but not in the MDD group (t=-0.4, df=96, p=0.58). These data are consistent with a model where the met allele of the val66met polymorphism causes less proliferation of serotonin synapses, and consequently fewer 5-HT(1A) receptors. In MDD, however, the effect of the val66met polymorphism is not detectable, possibly due to a ceiling effect of over-expression of 5-HT(1A) receptors in mood disorders.
Collapse
Affiliation(s)
- Martin J Lan
- Department of Psychiatry, Columbia University New York State Psychiatric Institute, 1051 Riverside Drive, Box 42, New York, NY 10032, USA; Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive, Box 42, New York, NY 10021, USA.
| | - R Todd Ogden
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive, Box 42, New York, NY 10021, USA; Department of Biostatistics, Columbia University School of Public Health, 722 West 168th Street, 6th Floor, New York, NY 10032, USA
| | - Yung-Yu Huang
- Department of Psychiatry, Columbia University New York State Psychiatric Institute, 1051 Riverside Drive, Box 42, New York, NY 10032, USA; Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive, Box 42, New York, NY 10021, USA
| | - Maria A Oquendo
- Department of Psychiatry, Columbia University New York State Psychiatric Institute, 1051 Riverside Drive, Box 42, New York, NY 10032, USA; Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive, Box 42, New York, NY 10021, USA
| | - Gregory M Sullivan
- Department of Psychiatry, Columbia University New York State Psychiatric Institute, 1051 Riverside Drive, Box 42, New York, NY 10032, USA; Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive, Box 42, New York, NY 10021, USA
| | - Jeffrey Miller
- Department of Psychiatry, Columbia University New York State Psychiatric Institute, 1051 Riverside Drive, Box 42, New York, NY 10032, USA; Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive, Box 42, New York, NY 10021, USA
| | - Matthew Milak
- Department of Psychiatry, Columbia University New York State Psychiatric Institute, 1051 Riverside Drive, Box 42, New York, NY 10032, USA; Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive, Box 42, New York, NY 10021, USA
| | - J John Mann
- Department of Psychiatry, Columbia University New York State Psychiatric Institute, 1051 Riverside Drive, Box 42, New York, NY 10032, USA; Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, 1051 Riverside Drive, Box 42, New York, NY 10021, USA; Department of Radiology, Columbia University College of Physicians and Surgeons, 180 Fort Washington Avenue, 3rd Floor, Harkness Pavilion, Room 313, New York, NY 10032, USA
| | - Ramin V Parsey
- Department of Psychiatry and Behavioral Science, Department of Radiology, Stony Brook Medicine, Health Sciences Center, T16, Rm-020, Stony Brook, NY 11794-8160, USA
| |
Collapse
|