1
|
Agarwalla S, Farhadi A, Carney LH. Forward masking in the inferior colliculus: Dynamics of discharge-rate recovery after narrowband noise maskers. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2025; 157:3680-3693. [PMID: 40358229 PMCID: PMC12077374 DOI: 10.1121/10.0036741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 05/02/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025]
Abstract
In forward masking, the detection threshold for a target sound (probe) is elevated due to the presence of a preceding sound (masker). Although many factors are known to influence the probe response following a masker, the current work focused on the temporal separation (delay) between the masker and probe and the inter-trial interval (ITI). Human probe thresholds recover from forward masking within 150-300 ms, similar to neural threshold recovery in the inferior colliculus (IC) within 300 ms after tone maskers. Our study focused on the recovery of discharge rate of IC neurons in response to probe tones after narrowband Gaussian noise (GN) forward maskers, with varying time delays. Additionally, we examined how prior masker trials influenced IC rates by varying ITI. Previous masker trials affected probe-evoked discharge rates, with full recovery requiring ITIs over 1.5 s after 70 dB SPL narrowband GN maskers. Neural thresholds in the IC for probes preceded by noise maskers were in the range observed in psychoacoustical studies. Two proposed mechanisms for forward masking, persistence, and efferent gain control, were tested using rate analyses or computational modeling. A physiological model with efferent feedback gain control had responses consistent with trends in the physiological recordings.
Collapse
Affiliation(s)
- Swapna Agarwalla
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, USA
| | - Afagh Farhadi
- Department of Speech, Language and Hearing Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | - Laurel H Carney
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York 14642, USA
| |
Collapse
|
2
|
Maxwell BN, Farhadi A, Brennan MA, Svec A, Carney LH. A Subcortical Model for Auditory Forward Masking with Efferent Control of Cochlear Gain. eNeuro 2024; 11:ENEURO.0365-24.2024. [PMID: 39231633 PMCID: PMC11419694 DOI: 10.1523/eneuro.0365-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
Previous physiological and psychophysical studies have explored whether feedback to the cochlea from the efferent system influences forward masking. The present work proposes that the limited growth-of-masking (GOM) observed in auditory nerve (AN) fibers may have been misunderstood; namely, that this limitation may be due to the influence of anesthesia on the efferent system. Building on the premise that the unanesthetized AN may exhibit GOM similar to more central nuclei, the present computational modeling study demonstrates that feedback from the medial olivocochlear (MOC) efferents may contribute to GOM observed physiologically in onset-type neurons in both the cochlear nucleus and inferior colliculus (IC). Additionally, the computational model of MOC efferents used here generates a decrease in masking with longer masker-signal delays similar to that observed in IC physiology and in psychophysical studies. An advantage of this explanation over alternative physiological explanations (e.g., that forward masking requires inhibition from the superior paraolivary nucleus) is that this theory can explain forward masking observed in the brainstem, early in the ascending pathway. For explaining psychoacoustic results, one strength of this model is that it can account for the lack of elevation in thresholds observed when masker level is randomly varied from interval-to-interval, a result that is difficult to explain using the conventional temporal window model of psychophysical forward masking. Future directions for evaluating the efferent mechanism as a contributing mechanism for psychoacoustic results are discussed.
Collapse
Affiliation(s)
- Braden N Maxwell
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14642
- Department of Neuroscience, University of Rochester, Rochester, New York 14642
| | - Afagh Farhadi
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627
| | - Marc A Brennan
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, Nebraska 68583
| | - Adam Svec
- Department of Audiology, San José State University, San José, California 95192
| | - Laurel H Carney
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14642
- Department of Neuroscience, University of Rochester, Rochester, New York 14642
| |
Collapse
|
3
|
Liu M, Wang Y, Jiang L, Zhang X, Wang C, Zhang T. Research progress of the inferior colliculus: from Neuron, neural circuit to auditory disease. Brain Res 2024; 1828:148775. [PMID: 38244755 DOI: 10.1016/j.brainres.2024.148775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
The auditory midbrain, also known as the inferior colliculus (IC), serves as a crucial hub in the auditory pathway. Comprising diverse cell types, the IC plays a pivotal role in various auditory functions, including sound localization, auditory plasticity, sound detection, and sound-induced behaviors. Notably, the IC is implicated in several auditory central disorders, such as tinnitus, age-related hearing loss, autism and Fragile X syndrome. Accurate classification of IC neurons is vital for comprehending both normal and dysfunctional aspects of IC function. Various parameters, including dendritic morphology, neurotransmitter synthesis, potassium currents, biomarkers, and axonal targets, have been employed to identify distinct neuron types within the IC. However, the challenge persists in effectively classifying IC neurons into functional categories due to the limited clustering capabilities of most parameters. Recent studies utilizing advanced neuroscience technologies have begun to shed light on biomarker-based approaches in the IC, providing insights into specific cellular properties and offering a potential avenue for understanding IC functions. This review focuses on recent advancements in IC research, spanning from neurons and neural circuits to aspects related to auditory diseases.
Collapse
Affiliation(s)
- Mengting Liu
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Yuyao Wang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Li Jiang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Xiaopeng Zhang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Chunrui Wang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Tianhong Zhang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
4
|
Asim SA, Tran S, Reynolds N, Sauve O, Zhang H. Spatial-dependent suppressive aftereffect produced by a sound in the rat’s inferior colliculus is partially dependent on local inhibition. Front Neurosci 2023; 17:1130892. [PMID: 37021140 PMCID: PMC10069703 DOI: 10.3389/fnins.2023.1130892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/15/2023] [Indexed: 03/22/2023] Open
Abstract
In a natural acoustic environment, a preceding sound can suppress the perception of a succeeding sound which can lead to auditory phenomena such as forward masking and the precedence effect. The degree of suppression is dependent on the relationship between the sounds in sound quality, timing, and location. Correlates of such phenomena exist in sound-elicited activities of neurons in hearing-related brain structures. The present study recorded responses to pairs of leading-trailing sounds from ensembles of neurons in the rat’s inferior colliculus. Results indicated that a leading sound produced a suppressive aftereffect on the response to a trailing sound when the two sounds were colocalized at the ear contralateral to the site of recording (i.e., the ear that drives excitatory inputs to the inferior colliculus). The degree of suppression was reduced when the time gap between the two sounds was increased or when the leading sound was relocated to an azimuth at or close to the ipsilateral ear. Local blockage of the type-A γ-aminobutyric acid receptor partially reduced the suppressive aftereffect when a leading sound was at the contralateral ear but not at the ipsilateral ear. Local blockage of the glycine receptor partially reduced the suppressive aftereffect regardless of the location of the leading sound. Results suggest that a sound-elicited suppressive aftereffect in the inferior colliculus is partly dependent on local interaction between excitatory and inhibitory inputs which likely involves those from brainstem structures such as the superior paraolivary nucleus. These results are important for understanding neural mechanisms underlying hearing in a multiple-sound environment.
Collapse
|
5
|
Xu N, Luo L, Chen L, Ding Y, Li L. Different binaural processing of the envelope component and the temporal fine structure component of a narrowband noise in rat inferior colliculus. Hear Res 2021; 411:108354. [PMID: 34583218 DOI: 10.1016/j.heares.2021.108354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/29/2021] [Accepted: 09/15/2021] [Indexed: 11/18/2022]
Abstract
Complex broadband sounds are decomposed by peripheral auditory filters into a series of relatively narrowband signals, each with a slowly varying envelope (ENV) and a rapidly fluctuating temporal fine structure (TFS). ENV and TFS information at the bilateral ears contribute differentially to auditory perception. However, whether the difference could attribute to mechanisms of binaural integration remains an open question. As a potential neural correlate, subsets of neurons in the central nucleus of the inferior colliculus (ICC) are known to integrate binaural information with binaural inhibition or binaural summation. Therefore, we recorded the frequency-following responses (FFRs) to the ENV and TFS components of narrowband noises in the ICC of anesthetized rats and examined changes in FFR amplitude and stimulus-response coherence under various sound-delivery settings. We showed that binaural FFRENV was predominantly elicited by contralateral inputs and inhibited by ipsilateral inputs, exhibiting a "binaural-inhibition" like property. On the other hand, binaural FFRTFS received a balanced contribution from both sides, echoing the "binaural-summation" mechanism. What is more, binaural FFRENV was significantly correlated with contralateral-evoked but not ipsilateral-evoked FFRENV, while binaural FFRTFS correlated with both contralateral- and ipsilateral-evoked FFRTFS. Overall, these results suggest distinct binaural processing of ENV and TFS information at the midbrain level.
Collapse
Affiliation(s)
- Na Xu
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100080, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Lu Luo
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100080, China; School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Liangjie Chen
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100080, China
| | - Yu Ding
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100080, China; Division of Sports Science and physical education, Tsinghua University, Beijing 100084, China
| | - Liang Li
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100080, China; Speech and Hearing Research Center, Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing 100871, China; Beijing Institute for Brain Disorders, Beijing 100096, China.
| |
Collapse
|
6
|
Imam A, Bhagwandin A, Ajao MS, Spocter MA, Manger PR. The brain of the tree pangolin (Manis tricuspis). VI. The brainstem and cerebellum. J Comp Neurol 2019; 527:2440-2473. [PMID: 31152436 DOI: 10.1002/cne.24721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/20/2019] [Accepted: 05/29/2019] [Indexed: 11/07/2022]
Abstract
The brainstem (midbrain, pons, and medulla oblongata) and cerebellum (diencephalic prosomere 1 through to rhombomere 11) play central roles in the processing of sensorimotor information, autonomic activity, levels of awareness and the control of functions external to the conscious cognitive world of mammals. As such, comparative analyses of these structures, especially the understanding of specializations or reductions of structures with functions that have been elucidated in commonly studied mammalian species, can provide crucial information for our understanding of the behavior of less commonly studied species, like pangolins. In the broadest sense, the nuclear complexes and subdivisions of nuclear complexes, the topographical arrangement, the neuronal chemistry, and fiber pathways of the tree pangolin conform to that typically observed across more commonly studied mammalian species. Despite this, variations in regions associated with the locus coeruleus complex, auditory system, and motor, neuromodulatory and autonomic systems involved in feeding, were observed in the current study. While we have previously detailed the unusual locus coeruleus complex of the tree pangolin, the superior olivary nuclear complex of the auditory system, while not exhibiting additional nuclei or having an altered organization, this nuclear complex, particularly the lateral superior olivary nucleus and nucleus of the trapezoid body, shows architectonic refinement. The cephalic decussation of the pyramidal tract, an enlarged hypoglossal nucleus, an additional subdivision of the serotonergic raphe obscurus nucleus, and the expansion of the superior salivatory nucleus, all indicate neuronal specializations related to the myrmecophagous diet of the pangolins.
Collapse
Affiliation(s)
- Aminu Imam
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, South Africa.,Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, South Africa
| | - Moyosore S Ajao
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Muhammad A Spocter
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, South Africa.,Department of Anatomy, Des Moines University, Des Moines, Iowa
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, South Africa
| |
Collapse
|
7
|
Felix RA, Chavez VA, Novicio DM, Morley BJ, Portfors CV. Nicotinic acetylcholine receptor subunit α 7-knockout mice exhibit degraded auditory temporal processing. J Neurophysiol 2019; 122:451-465. [PMID: 31116647 DOI: 10.1152/jn.00170.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The CHRNA7 gene that encodes the α7-subunit of the nicotinic acetylcholine receptor (α7-nAChR) has been associated with some autism spectrum disorders and other neurodevelopmental conditions characterized, in part, by auditory and language impairment. These conditions may include auditory processing disorders that represent impaired timing of neural activity, often accompanied by problems understanding speech. Here, we measure timing properties of sound-evoked activity via the auditory brainstem response (ABR) of α7-nAChR knockout mice of both sexes and wild-type colony controls. We find a significant timing delay in evoked ABR signals that represents midbrain activity in knockouts. We also examine spike-timing properties of neurons in the inferior colliculus, a midbrain nucleus that exhibits high levels of α7-nAChR during development. We find delays of evoked responses along with degraded spiking precision in knockout animals. We find similar timing deficits in responses of neurons in the superior paraolivary nucleus and ventral nucleus of the lateral lemniscus, which are brainstem nuclei thought to shape temporal precision in the midbrain. In addition, we find that other measures of temporal acuity including forward masking and gap detection are impaired for knockout animals. We conclude that altered temporal processing at the level of the brainstem in α7-nAChR-deficient mice may contribute to degraded spike timing in the midbrain, which may underlie the observed timing delay in the ABR signals. Our findings are consistent with a role for the α7-nAChR in types of neurodevelopmental and auditory processing disorders and we identify potential neural targets for intervention.NEW & NOTEWORTHY Disrupted signaling via the α7-nicotinic acetylcholine receptor (α7-nAChR) is associated with neurodevelopmental disorders that include impaired auditory processing. The underlying causes of dysfunction are not known but a common feature is abnormal timing of neural activity. We examined temporal processing of α7-nAChR knockout mice and wild-type controls. We found degraded spike timing of neurons in knockout animals, which manifests at the level of the auditory brainstem and midbrain.
Collapse
Affiliation(s)
- Richard A Felix
- School of Biological Sciences and the Department of Integrated Physiology and Neuroscience, Washington State University Vancouver, Vancouver, Washington
| | - Vicente A Chavez
- School of Biological Sciences and the Department of Integrated Physiology and Neuroscience, Washington State University Vancouver, Vancouver, Washington
| | - Dyana M Novicio
- School of Biological Sciences and the Department of Integrated Physiology and Neuroscience, Washington State University Vancouver, Vancouver, Washington
| | | | - Christine V Portfors
- School of Biological Sciences and the Department of Integrated Physiology and Neuroscience, Washington State University Vancouver, Vancouver, Washington
| |
Collapse
|
8
|
Kopp-Scheinpflug C, Sinclair JL, Linden JF. When Sound Stops: Offset Responses in the Auditory System. Trends Neurosci 2018; 41:712-728. [DOI: 10.1016/j.tins.2018.08.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/30/2018] [Accepted: 08/10/2018] [Indexed: 11/17/2022]
|
9
|
Gómez-Álvarez M, Gourévitch B, Felix RA, Nyberg T, Hernández-Montiel HL, Magnusson AK. Temporal information in tones, broadband noise, and natural vocalizations is conveyed by differential spiking responses in the superior paraolivary nucleus. Eur J Neurosci 2018; 48:2030-2049. [PMID: 30019495 DOI: 10.1111/ejn.14073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/12/2018] [Accepted: 06/26/2018] [Indexed: 12/31/2022]
Abstract
Communication sounds across all mammals consist of multiple frequencies repeated in sequence. The onset and offset of vocalizations are potentially important cues for recognizing distinct units, such as phonemes and syllables, which are needed to perceive meaningful communication. The superior paraolivary nucleus (SPON) in the auditory brainstem has been implicated in the processing of rhythmic sounds. Here, we compared how best frequency tones (BFTs), broadband noise (BBN), and natural mouse calls elicit onset and offset spiking in the mouse SPON. The results demonstrate that onset spiking typically occurs in response to BBN, but not BFT stimulation, while spiking at the sound offset occurs for both stimulus types. This effect of stimulus bandwidth on spiking is consistent with two of the established inputs to the SPON from the octopus cells (onset spiking) and medial nucleus of the trapezoid body (offset spiking). Natural mouse calls elicit two main spiking peaks. The first spiking peak, which is weak or absent with BFT stimulation, occurs most consistently during the call envelope, while the second spiking peak occurs at the call offset. This suggests that the combined spiking activity in the SPON elicited by vocalizations reflects the entire envelope, that is, the coarse amplitude waveform. Since the output from the SPON is purely inhibitory, it is speculated that, at the level of the inferior colliculus, the broadly tuned first peak may improve the signal-to-noise ratio of the subsequent, more call frequency-specific peak. Thus, the SPON may provide a dual inhibition mechanism for tracking phonetic boundaries in social-vocal communication.
Collapse
Affiliation(s)
- Marcelo Gómez-Álvarez
- Unit of Audiology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Boris Gourévitch
- Unité de Génétique et Physiologie de l'Audition, INSERM, Institut Pasteur, Sorbonne Université Paris, Paris, France.,CNRS, Paris, France
| | | | - Tobias Nyberg
- Division of Neuronic Engineering, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Hebert L Hernández-Montiel
- Laboratorio de Neurobiología y Bioingeniería Celular, Clínica del Sistema Nervioso, Universidad Autónoma de Querétaro, Santiago de Querétaro, México
| | - Anna K Magnusson
- Unit of Audiology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Felix RA, Gourévitch B, Portfors CV. Subcortical pathways: Towards a better understanding of auditory disorders. Hear Res 2018; 362:48-60. [PMID: 29395615 PMCID: PMC5911198 DOI: 10.1016/j.heares.2018.01.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/11/2017] [Accepted: 01/16/2018] [Indexed: 01/13/2023]
Abstract
Hearing loss is a significant problem that affects at least 15% of the population. This percentage, however, is likely significantly higher because of a variety of auditory disorders that are not identifiable through traditional tests of peripheral hearing ability. In these disorders, individuals have difficulty understanding speech, particularly in noisy environments, even though the sounds are loud enough to hear. The underlying mechanisms leading to such deficits are not well understood. To enable the development of suitable treatments to alleviate or prevent such disorders, the affected processing pathways must be identified. Historically, mechanisms underlying speech processing have been thought to be a property of the auditory cortex and thus the study of auditory disorders has largely focused on cortical impairments and/or cognitive processes. As we review here, however, there is strong evidence to suggest that, in fact, deficits in subcortical pathways play a significant role in auditory disorders. In this review, we highlight the role of the auditory brainstem and midbrain in processing complex sounds and discuss how deficits in these regions may contribute to auditory dysfunction. We discuss current research with animal models of human hearing and then consider human studies that implicate impairments in subcortical processing that may contribute to auditory disorders.
Collapse
Affiliation(s)
- Richard A Felix
- School of Biological Sciences and Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, USA
| | - Boris Gourévitch
- Unité de Génétique et Physiologie de l'Audition, UMRS 1120 INSERM, Institut Pasteur, Université Pierre et Marie Curie, F-75015, Paris, France; CNRS, France
| | - Christine V Portfors
- School of Biological Sciences and Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, USA.
| |
Collapse
|
11
|
Oertel D, Cao XJ, Ison JR, Allen PD. Cellular Computations Underlying Detection of Gaps in Sounds and Lateralizing Sound Sources. Trends Neurosci 2017; 40:613-624. [PMID: 28867348 DOI: 10.1016/j.tins.2017.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 11/29/2022]
Abstract
In mammals, acoustic information arises in the cochlea and is transmitted to the ventral cochlear nuclei (VCN). Three groups of VCN neurons extract different features from the firing of auditory nerve fibers and convey that information along separate pathways through the brainstem. Two of these pathways process temporal information: octopus cells detect coincident firing among auditory nerve fibers and transmit signals along monaural pathways, and bushy cells sharpen the encoding of fine structure and feed binaural pathways. The ability of these cells to signal with temporal precision depends on a low-voltage-activated K+ conductance (gKL) and a hyperpolarization-activated conductance (gh). This 'tale of two conductances' traces gap detection and sound lateralization to their cellular and biophysical origins.
Collapse
Affiliation(s)
- Donata Oertel
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705 USA.
| | - Xiao-Jie Cao
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705 USA
| | - James R Ison
- Department of Brain and Cognitive Sciences, Meliora Hall, University of Rochester, Rochester, NY 14627, USA; Department of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Paul D Allen
- Department of Otolaryngology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
12
|
Graña GD, Hutson KA, Badea A, Pappa A, Scott W, Fitzpatrick DC. The organization of frequency and binaural cues in the gerbil inferior colliculus. J Comp Neurol 2017; 525:2050-2074. [PMID: 27997696 PMCID: PMC5473171 DOI: 10.1002/cne.24155] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 11/18/2016] [Accepted: 11/22/2016] [Indexed: 11/12/2022]
Abstract
The inferior colliculus (IC) is the common target of separate pathways that transmit different types of auditory information. Beyond tonotopy, little is known about the organization of response properties within the 3-dimensional layout of the auditory midbrain in most species. Through study of interaural time difference (ITD) processing, the functional properties of neurons can be readily characterized and related to specific pathways. To characterize the representation of ITDs relative to the frequency and hodological organization of the IC, the properties of neurons were recorded and the sites recovered histologically. Subdivisions of the IC were identified based on cytochrome oxidase (CO) histochemistry. The results were plotted within a framework formed by an MRI atlas of the gerbil brain. The central nucleus was composed of two parts, and lateral and dorsal cortical areas were identified. The lateral part of the central nucleus had the highest CO activity in the IC and a high proportion of neurons sensitive to ITDs. The medial portion had lower CO activity and fewer ITD-sensitive neurons. A common tonotopy with a dorsolateral to ventromedial gradient of low to high frequencies spanned the two regions. The distribution of physiological responses was in close agreement with known patterns of ascending inputs. An understanding of the 3-dimensional organization of the IC is needed to specify how the single tonotopic representation in the IC central nucleus leads to the multiple tonotopic representations in core areas of the auditory cortex.
Collapse
Affiliation(s)
- Gilberto David Graña
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kendall A. Hutson
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alexandra Badea
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina
| | - Andrew Pappa
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William Scott
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Douglas C. Fitzpatrick
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
13
|
Felix Ii RA, Gourévitch B, Gómez-Álvarez M, Leijon SCM, Saldaña E, Magnusson AK. Octopus Cells in the Posteroventral Cochlear Nucleus Provide the Main Excitatory Input to the Superior Paraolivary Nucleus. Front Neural Circuits 2017; 11:37. [PMID: 28620283 PMCID: PMC5449481 DOI: 10.3389/fncir.2017.00037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/19/2017] [Indexed: 12/26/2022] Open
Abstract
Auditory streaming enables perception and interpretation of complex acoustic environments that contain competing sound sources. At early stages of central processing, sounds are segregated into separate streams representing attributes that later merge into acoustic objects. Streaming of temporal cues is critical for perceiving vocal communication, such as human speech, but our understanding of circuits that underlie this process is lacking, particularly at subcortical levels. The superior paraolivary nucleus (SPON), a prominent group of inhibitory neurons in the mammalian brainstem, has been implicated in processing temporal information needed for the segmentation of ongoing complex sounds into discrete events. The SPON requires temporally precise and robust excitatory input(s) to convey information about the steep rise in sound amplitude that marks the onset of voiced sound elements. Unfortunately, the sources of excitation to the SPON and the impact of these inputs on the behavior of SPON neurons have yet to be resolved. Using anatomical tract tracing and immunohistochemistry, we identified octopus cells in the contralateral cochlear nucleus (CN) as the primary source of excitatory input to the SPON. Cluster analysis of miniature excitatory events also indicated that the majority of SPON neurons receive one type of excitatory input. Precise octopus cell-driven onset spiking coupled with transient offset spiking make SPON responses well-suited to signal transitions in sound energy contained in vocalizations. Targets of octopus cell projections, including the SPON, are strongly implicated in the processing of temporal sound features, which suggests a common pathway that conveys information critical for perception of complex natural sounds.
Collapse
Affiliation(s)
- Richard A Felix Ii
- Unit of Audiology, Department of Clinical Science, Intervention and Technology, Karolinska InstitutetStockholm, Sweden
| | - Boris Gourévitch
- Institut Pasteur, Unité de Génétique et Physiologie de l'AuditionParis, France.,Institut National de la Santé et de la Recherche Médicale, UMRS 1120Paris, France.,Université Pierre et Marie CurieParis, France
| | - Marcelo Gómez-Álvarez
- Unit of Audiology, Department of Clinical Science, Intervention and Technology, Karolinska InstitutetStockholm, Sweden.,Neuroscience Institute of Castilla y León (INCyL), Universidad de SalamancaSalamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL)Salamanca, Spain
| | - Sara C M Leijon
- Unit of Audiology, Department of Clinical Science, Intervention and Technology, Karolinska InstitutetStockholm, Sweden
| | - Enrique Saldaña
- Neuroscience Institute of Castilla y León (INCyL), Universidad de SalamancaSalamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL)Salamanca, Spain
| | - Anna K Magnusson
- Unit of Audiology, Department of Clinical Science, Intervention and Technology, Karolinska InstitutetStockholm, Sweden
| |
Collapse
|
14
|
Deleting the HCN1 Subunit of Hyperpolarization-Activated Ion Channels in Mice Impairs Acoustic Startle Reflexes, Gap Detection, and Spatial Localization. J Assoc Res Otolaryngol 2017; 18:427-440. [PMID: 28050647 DOI: 10.1007/s10162-016-0610-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022] Open
Abstract
It has been proposed that the high temporal and spatial acuities of human listeners and animals tested in the hearing laboratory depend in part on the short time constants of auditory neurons that are able to preserve or sharpen the information conveyed in the timing of firing of auditory nerve fibers. We tested this hypothesis in a series of in vivo experiments, based on previous in vitro experiments showing that neuronal time constants are raised in brainstem slices when HCN1 channels are blocked or in slices obtained from Hcn1 -/- null mutant mice. We compared Hcn1 -/- and Hcn1 +/+ mice on auditory brainstem responses (ABRs) and behavioral measures. Those measures included temporal integration for acoustic startle responses (ASRs), ASR depression by noise offset, and ASR inhibition by gaps in noise and by shifts of a noise source along the azimuth as measures of temporal and spatial acuity. Hcn1 -/- mice had less sensitive ABR thresholds at 32 and 48 kHz. Their wavelet P1b was delayed, and wave 2 was absent in the 16 kHz/90 SPL waveform, indicating that groups of neurons early in the auditory pathways were delayed and fired asynchronously. Baseline ASR levels were lower in Hcn1 -/- mice, temporal integration was delayed, time constants for ASR depression by noise offset were higher, and their sensitivity to brief gaps and spatial acuity was diminished. HCN1 channels are also present in vestibular, cutaneous, digestive, and cardiac neurons that variously may contribute to the deficits in spatial acuity and possibly in ASR levels.
Collapse
|
15
|
Felix RA, Magnusson AK. Development of excitatory synaptic transmission to the superior paraolivary and lateral superior olivary nuclei optimizes differential decoding strategies. Neuroscience 2016; 334:1-12. [PMID: 27476438 DOI: 10.1016/j.neuroscience.2016.07.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/08/2016] [Accepted: 07/23/2016] [Indexed: 11/17/2022]
Abstract
The superior paraolivary nucleus (SPON) is a prominent structure in the mammalian auditory brainstem with a proposed role in encoding transient broadband sounds such as vocalized utterances. Currently, the source of excitatory pathways that project to the SPON and how these inputs contribute to SPON function are poorly understood. To shed light on the nature of these inputs, we measured evoked excitatory postsynaptic currents (EPSCs) in the SPON originating from the intermediate acoustic stria and compared them with the properties of EPSCs in the lateral superior olive (LSO) originating from the ventral acoustic stria during auditory development from postnatal day 5 to 22 in mice. Before hearing onset, EPSCs in the SPON and LSO are very similar in size and kinetics. After the onset of hearing, SPON excitation is refined to extremely few (2:1) fibers, with each strengthened by an increase in release probability, yielding fast and strong EPSCs. LSO excitation is recruited from more fibers (5:1), resulting in strong EPSCs with a comparatively broader stimulus-response range after hearing onset. Evoked SPON excitation is comparatively weaker than evoked LSO excitation, likely due to a larger fraction of postsynaptic GluR2-containing Ca2+-impermeable AMPA receptors after hearing onset. Taken together, SPON excitation develops synaptic properties that are suited for transmitting single events with high temporal reliability and the strong, dynamic LSO excitation is compatible with high rate-level sensitivity. Thus, the excitatory input pathways to the SPON and LSO mature to support different decoding strategies of respective coarse temporal and sound intensity information at the brainstem level.
Collapse
Affiliation(s)
- Richard A Felix
- Unit of Audiology, Department of Clinical Science Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Anna K Magnusson
- Unit of Audiology, Department of Clinical Science Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
16
|
Gao F, Kadner A, Felix RA, Chen L, Berrebi AS. Forward masking in the superior paraolivary nucleus of the rat. Brain Struct Funct 2016; 222:365-379. [PMID: 27089883 DOI: 10.1007/s00429-016-1222-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 03/31/2016] [Indexed: 11/26/2022]
Abstract
In natural acoustic environments, perception of acoustic stimuli depends on the recent contextual history. Forward masking describes a phenomenon whereby the detection threshold of a probe stimulus is markedly increased when it is preceded by a masking stimulus. The aim of this study was to characterize the offset response of single units in the superior paraolivary nucleus (SPON) to a forward masking paradigm. We observed two distinct response types to forward-masked stimuli, namely inhibited and facilitated responses. In the presence of a default masking stimulus, inhibited responses to probe stimuli were characterized by elevated thresholds and/or diminished spike counts, whereas facilitated responses were characterized by reduced thresholds and increased spike counts. In units with inhibited responses to the probe stimuli, probe thresholds increased and spike counts decreased as masker intensity was raised or the masker-to-probe delay was shortened. Conversely, in units with facilitated responses to the probe stimuli, probe thresholds decreased and spike counts increased as masker intensity was raised or the masker-to-probe delay was shortened. Neither inhibited nor facilitated responses to the forward masking paradigm were significantly dependent on masker frequency. These findings suggest that SPON responses are not themselves consistently subject to the same forward masking properties observed in other nuclei along the ascending auditory pathway. The potential neural mechanisms of the forward masking responses observed in the SPON are discussed.
Collapse
Affiliation(s)
- Fei Gao
- Departments of Otolaryngology, Head and Neck Surgery, Neurobiology and Anatomy and the Sensory Neuroscience Research Center, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA
| | - Alexandra Kadner
- Departments of Otolaryngology, Head and Neck Surgery, Neurobiology and Anatomy and the Sensory Neuroscience Research Center, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA
| | - Richard A Felix
- School of Biological Sciences, Washington State University, Vancouver, WA, USA
| | - Liang Chen
- Department of Electrical Engineering and Computer Science, Russ College of Engineering and Technology, Ohio University, Athens, OH, 45701, USA
| | - Albert S Berrebi
- Departments of Otolaryngology, Head and Neck Surgery, Neurobiology and Anatomy and the Sensory Neuroscience Research Center, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA.
| |
Collapse
|
17
|
Kulesza RJ, Grothe B. Yes, there is a medial nucleus of the trapezoid body in humans. Front Neuroanat 2015; 9:35. [PMID: 25873865 PMCID: PMC4379933 DOI: 10.3389/fnana.2015.00035] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/09/2015] [Indexed: 01/20/2023] Open
Abstract
The medial nucleus of the trapezoid body (MNTB) is a collection of brainstem neurons that function within the ascending auditory pathway. MNTB neurons are associated with a number of anatomical and physiological specializations which make these cells especially well-equipped to provide extremely fast and precise glycinergic inhibition to its target neurons in the superior olivary complex and ventral nucleus of the lateral lemniscus. The inhibitory influence of MNTB neurons plays essentials roles in the localization of sound sources and encoding temporal features of complex sounds. The morphology, afferent and efferent connections and physiological response properties of MNTB neurons have been well-characterized in a number of laboratory rodents and some carnivores. Furthermore, the MNTB has been positively identified in all mammals examined, ranging from opossum and mice to chimpanzees. From the early 1970s through 2009, a number of studies denied the existence of the MNTB in humans and consequentially, the existence of this nucleus in the human brain has been debated for nearly 50 years. The absence of the MNTB from the human brain would negate current principles of sound localization and would require a number of novel adaptations, entirely unique to humans. However, a number of recent studies of human post-mortem tissue have provided evidence supporting the existence of the MNTB in humans. It therefore seems timely to review the structure and function of the MNTB, critically review the literature which led to the denial of the human MNTB and then review recent investigations supporting the existence of the MNTB in the human brain.
Collapse
Affiliation(s)
- Randy J Kulesza
- Department of Anatomy, Auditory Research Center, Lake Erie College of Osteopathic Medicine Erie, PA, USA
| | - Benedikt Grothe
- Division of Neurobiology, Department Biologie II, Ludwig-Maximilians-Universität München Munich, Germany
| |
Collapse
|
18
|
Karcz A, Allen PD, Walton J, Ison JR, Kopp-Scheinpflug C. Auditory deficits of Kcna1 deletion are similar to those of a monaural hearing impairment. Hear Res 2015; 321:45-51. [PMID: 25602577 DOI: 10.1016/j.heares.2015.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/29/2014] [Accepted: 01/07/2015] [Indexed: 11/28/2022]
Abstract
Kv1.1 subunits of low voltage-activated (Kv) potassium channels are encoded by the Kcna1 gene and crucially determine the synaptic integration window to control the number and temporal precision of action potentials in the auditory brainstem of mammals and birds. Prior electrophysiological studies showed that auditory signaling is compromised in monaural as well as in binaural neurons of the auditory brainstem in Kv1.1 knockout mice (Kcna1(-/-)). Here we examine the behavioral effects of Kcna1 deletion on sensory tasks dependent on either binaural processing (detecting the movement of a sound source across the azimuth), monaural processing (detecting a gap in noise), as well as binaural summation of the acoustic startle reflex (ASR). Hearing thresholds measured by auditory brainstem responses (ABR) do not differ between genotypes, but our data show a much stronger performance of wild type mice (+/+) in each test during binaural hearing which was lost by temporarily inducing a unilateral hearing loss (through short term blocking of one ear) thus remarkably, leaving no significant difference between binaural and monaural hearing in Kcna1(-/-) mice. These data suggest that the behavioral effect of Kv1.1 deletion is primarily to impede binaural integration and thus to mimic monaural hearing.
Collapse
Affiliation(s)
- Anita Karcz
- Carl-Ludwig-Institute for Physiology, University of Leipzig, Medical School, Germany
| | - Paul D Allen
- Department of Neurobiology and Anatomy, School of Medicine & Dentistry, University of Rochester, NY, USA
| | - Joseph Walton
- Department of Communication Sciences and Disorders, University of South Florida, 4202 Fowler Av., Tampa, Fl 32620, USA
| | - James R Ison
- Department of Neurobiology and Anatomy, School of Medicine & Dentistry, University of Rochester, NY, USA; Department of Brain & Cognitive Sciences, University of Rochester, NY, USA
| | | |
Collapse
|
19
|
Altieri SC, Zhao T, Jalabi W, Maricich SM. Development of glycinergic innervation to the murine LSO and SPN in the presence and absence of the MNTB. Front Neural Circuits 2014; 8:109. [PMID: 25309335 PMCID: PMC4162373 DOI: 10.3389/fncir.2014.00109] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/21/2014] [Indexed: 11/13/2022] Open
Abstract
Neurons in the superior olivary complex (SOC) integrate excitatory and inhibitory inputs to localize sounds in space. The majority of these inhibitory inputs have been thought to arise within the SOC from the medial nucleus of the trapezoid body (MNTB). However, recent work demonstrates that glycinergic innervation of the SOC persists in Egr2; En1CKO mice that lack MNTB neurons, suggesting that there are other sources of this innervation (Jalabi et al., 2013). To study the development of MNTB- and non-MNTB-derived glycinergic SOC innervation, we compared immunostaining patterns of glycine transporter 2 (GlyT2) at several postnatal ages in control and Egr2; En1CKO mice. GlyT2 immunostaining was present at birth (P0) in controls and reached adult levels by P7 in the superior paraolivary nucleus (SPN) and by P12 in the lateral superior olive (LSO). In Egr2; En1CKO mice, glycinergic innervation of the LSO developed at a similar rate but was delayed by one week in the SPN. Conversely, consistent reductions in the number of GlyT2+ boutons located on LSO somata were seen at all ages in Egr2; En1CKO mice, while these numbers reached control levels in the SPN by adulthood. Dendritic localization of GlyT2+ boutons was unaltered in both the LSO and SPN of adult Egr2; En1CKO mice. On the postsynaptic side, adult Egr2; En1CKO mice had reduced glycine receptor α1 (GlyRα1) expression in the LSO but normal levels in the SPN. GlyRα2 was not expressed by LSO or SPN neurons in either genotype. These findings contribute important information for understanding the development of MNTB- and non-MNTB-derived glycinergic pathways to the mouse SOC.
Collapse
Affiliation(s)
- Stefanie C Altieri
- Richard King Mellon Foundation Institute for Pediatric Research and Department of Pediatrics, University of Pittsburgh Pittsburgh, PA, USA ; Department of Otolaryngology, University of Pittsburgh Pittsburgh, PA, USA
| | - Tianna Zhao
- Richard King Mellon Foundation Institute for Pediatric Research and Department of Pediatrics, University of Pittsburgh Pittsburgh, PA, USA
| | - Walid Jalabi
- Department of Pediatrics, Case Western Reserve University Cleveland, OH, USA
| | - Stephen M Maricich
- Richard King Mellon Foundation Institute for Pediatric Research and Department of Pediatrics, University of Pittsburgh Pittsburgh, PA, USA
| |
Collapse
|