1
|
Choi CH, Felder J, Lerche C, Shah NJ. MRI Coil Development Strategies for Hybrid MR-PET Systems: A Review. IEEE Rev Biomed Eng 2024; 17:342-350. [PMID: 37015609 DOI: 10.1109/rbme.2022.3227337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Simultaneously operating MR-PET systems have the potential to provide synergetic multi-parametric information, and, as such, interest surrounding their use and development is increasing. However, despite the potential advantages offered by fully combined MR-PET systems, implementing this hybrid integration is technically laborious, and any factors degrading the quality of either modality must be circumvented to ensure optimal performance. In order to attain the best possible quality from both systems, most full MR-PET integrations tend to place the shielded PET system inside the MRI system, close to the target volume of the subject. The radiofrequency (RF) coil used in MRI systems is a key factor in determining the quality of the MR images, and, in simultaneous acquisition, it is generally positioned inside the PET system and PET imaging region, potentially resulting in attenuation and artefacts in the PET images. Therefore, when designing hybrid MR-PET systems, it is imperative that consideration be given to the RF coils inside the PET system. In this review, we present current state-of-the-art RF coil designs used for hybrid MR-PET experiments and discuss various design strategies for constructing PET transparent RF coils.
Collapse
|
2
|
Gómez-González E, Caro C, García-Martín ML, Becerro AI, Ocaña M. Outstanding MRI contrast with dysprosium phosphate nanoparticles of tuneable size. NANOSCALE 2022; 14:11461-11470. [PMID: 35904370 DOI: 10.1039/d2nr02630a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The use of high-field magnets for magnetic resonance imaging (MRI) is expected to experience the fastest growth rate during the present decade. Although several CAs for MRI scanners using high magnetic fields have been reported, they are mostly based on fluoride matrices, which are known for their low chemical stability in aqueous suspensions. Chemically stable MRI CAs for high-field magnets are therefore needed to enable the advances in MRI technique. Herein, we synthesized uniform DyPO4 nanoparticles (NPs) with tuneable sizes between 23 and 57 nm using homogeneous precipitation in butanol. The NPs were successfully functionalized with polyacrylic acid (PAA) and showed good colloidal stability in aqueous suspensions. Chemical stability was also assessed in PBS, showing negligible solubility. The effect of particle size on the transversal relaxivity value (r2) was further explored at 9.4 T, finding a clear increase in r2 with particle size. The r2 value found for the largest NPs was 516 mM-1 s-1, which is, to the best of our knowledge, the highest r2 value ever reported at 9.4 T for any Dy-based nanometric particles in the literature. Finally, the latter NPs were submitted to biosafety studies after polyethylene glycol (PEG) functionalization. Cell morphology, induction of necrotic/late apoptotic cells, and mitochondrial activity were thoroughly analyzed. The results clearly indicated negligible toxicity effects under the assayed conditions. Short- and long-term in vivo pharmacokinetics of the intravenously injected NPs were assessed by dynamic T2-weighted MRI and quantitative T2 mapping, revealing faster liver than spleen uptake, while no accumulation was observed in the kidneys. Finally, no histopathological changes were observed in any of the studied organs, including the liver, kidney, spleen, and lung, which provide further evidence of the biocompatibility of DyPO4 NPs and, therefore, their suitability as bioimaging probes.
Collapse
Affiliation(s)
- Elisabet Gómez-González
- Instituto de Ciencia de Materiales de Sevilla (ICMS) CSIC-Universidad de Sevilla, c/Américo Vespucio, 49, 41092 Seville, Spain.
| | - Carlos Caro
- Instituto de Investigación Biomédica de Málaga - Plataforma Bionand (IBIMA-Plataforma BIONAND) and CIBER-BBN, Málaga 29590, Spain
| | - María L García-Martín
- Instituto de Investigación Biomédica de Málaga - Plataforma Bionand (IBIMA-Plataforma BIONAND) and CIBER-BBN, Málaga 29590, Spain
| | - Ana Isabel Becerro
- Instituto de Ciencia de Materiales de Sevilla (ICMS) CSIC-Universidad de Sevilla, c/Américo Vespucio, 49, 41092 Seville, Spain.
| | - Manuel Ocaña
- Instituto de Ciencia de Materiales de Sevilla (ICMS) CSIC-Universidad de Sevilla, c/Américo Vespucio, 49, 41092 Seville, Spain.
| |
Collapse
|
3
|
Yun SD, Pais-Roldán P, Palomero-Gallagher N, Shah NJ. Mapping of whole-cerebrum resting-state networks using ultra-high resolution acquisition protocols. Hum Brain Mapp 2022; 43:3386-3403. [PMID: 35384130 PMCID: PMC9248311 DOI: 10.1002/hbm.25855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/17/2022] [Accepted: 03/25/2022] [Indexed: 12/28/2022] Open
Abstract
Resting‐state functional magnetic resonance imaging (fMRI) has been used in numerous studies to map networks in the brain that employ spatially disparate regions. However, attempts to map networks with high spatial resolution have been hampered by conflicting technical demands and associated problems. Results from recent fMRI studies have shown that spatial resolution remains around 0.7 × 0.7 × 0.7 mm3, with only partial brain coverage. Therefore, this work aims to present a novel fMRI technique that was developed based on echo‐planar‐imaging with keyhole (EPIK) combined with repetition‐time‐external (TR‐external) EPI phase correction. Each technique has been previously shown to be effective in enhancing the spatial resolution of fMRI, and in this work, the combination of the two techniques into TR‐external EPIK provided a nominal spatial resolution of 0.51 × 0.51 × 1.00 mm3 (0.26 mm3 voxel) with whole‐cerebrum coverage. Here, the feasibility of using half‐millimetre in‐plane TR‐external EPIK for resting‐state fMRI was validated using 13 healthy subjects and the corresponding reproducible mapping of resting‐state networks was demonstrated. Furthermore, TR‐external EPIK enabled the identification of various resting‐state networks distributed throughout the brain from a single fMRI session, with mapping fidelity onto the grey matter at 7T. The high‐resolution functional image further revealed mesoscale anatomical structures, such as small cerebral vessels and the internal granular layer of the cortex within the postcentral gyrus.
Collapse
Affiliation(s)
- Seong Dae Yun
- Institute of Neuroscience and Medicine-4, Medical Imaging Physics, Forschungszentrum Jülich, Jülich, Germany
| | - Patricia Pais-Roldán
- Institute of Neuroscience and Medicine-4, Medical Imaging Physics, Forschungszentrum Jülich, Jülich, Germany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine-1, Structural and Functional Organisation of the Brain, Forschungszentrum Jülich, Jülich, Germany.,C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, Düsseldorf, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine-4, Medical Imaging Physics, Forschungszentrum Jülich, Jülich, Germany.,Institute of Neuroscience and Medicine-11, Molecular Neuroscience and Neuroimaging, JARA, Forschungszentrum Jülich, Jülich, Germany.,JARA - BRAIN - Translational Medicine, Aachen, Germany.,Department of Neurology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
4
|
Shymanskaya A, Worthoff WA, Stoffels G, Lindemeyer J, Neumaier B, Lohmann P, Galldiks N, Langen KJ, Shah NJ. Comparison of [ 18F]Fluoroethyltyrosine PET and Sodium MRI in Cerebral Gliomas: a Pilot Study. Mol Imaging Biol 2021; 22:198-207. [PMID: 30989437 DOI: 10.1007/s11307-019-01349-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE Positron emission tomography (PET) using O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) improves the diagnostics of cerebral gliomas compared with conventional magnetic resonance imaging (MRI). Sodium MRI is an evolving method to assess tumor metabolism. In this pilot study, we explored the relationship of [18F]FET-PET and sodium MRI in patients with cerebral gliomas in relation to the mutational status of the enzyme isocitrate dehydrogenase (IDH). PROCEDURES Ten patients with untreated cerebral gliomas and one patient with a recurrent glioblastoma (GBM) were investigated by dynamic [18F]FET-PET and sodium MRI using an enhanced simultaneous single-quantum- and triple-quantum-filtered imaging of 23Na (SISTINA) sequence to estimate total (NaT), weighted non-restricted (NaNR, mainly extracellular), and restricted (NaR, mainly intracellular) sodium in tumors and normal brain tissue. [18F]FET uptake and sodium parameters in tumors with a different IDH mutational status were compared. After biopsy or resection, histology and the IDH mutational status were determined neuropathologically. RESULTS NaT (p = 0.05), tumor-to-brain ratios (TBR) of NaT (p = 0.02), NaNR (p = 0.003), and the ratio of NaT/NaR (p < 0.001) were significantly higher in IDH-mutated than in IDH-wild-type gliomas (n = 5 patients each) while NaR was significantly lower in IDH-mutated gliomas (p = 0.01). [18F]FET parameters (TBR, time-to-peak) were not predictive of IDH status in this small cohort of patients. There was no obvious relationship between sodium distribution and [18F]FET uptake. The patient with a recurrent GBM exhibited an additional radiation injury with strong abnormalities in sodium MRI. CONCLUSIONS Sodium MRI appears to be more strongly related to the IDH mutational status than are [18F]FET-PET parameters. A further evaluation of the combination of the two methods in a larger group of high- and low-grade gliomas seems promising.
Collapse
Affiliation(s)
- Aliaksandra Shymanskaya
- Institute of Neuroscience and Medicine (3, 4, 5, 11), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Wieland A Worthoff
- Institute of Neuroscience and Medicine (3, 4, 5, 11), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| | - Gabriele Stoffels
- Institute of Neuroscience and Medicine (3, 4, 5, 11), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Johannes Lindemeyer
- Institute of Neuroscience and Medicine (3, 4, 5, 11), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Bernd Neumaier
- Institute of Neuroscience and Medicine (3, 4, 5, 11), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (3, 4, 5, 11), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (3, 4, 5, 11), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Department of Neurology, University of Cologne, Cologne, Germany.,Center of Integrated Oncology (CIO), Universities of Bonn and Cologne, Cologne, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (3, 4, 5, 11), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Department of Nuclear Medicine, RWTH Aachen University, Aachen, Germany.,Jülich-Aachen Research Alliance (JARA) - Section JARA-Brain, Aachen, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine (3, 4, 5, 11), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Jülich-Aachen Research Alliance (JARA) - Section JARA-Brain, Aachen, Germany.,Department of Neurology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
5
|
Felder J, Choi CH, Ko Y, Shah NJ. Optimization of high-channel count, switch matrices for multinuclear, high-field MRI. PLoS One 2020; 15:e0237494. [PMID: 32804972 PMCID: PMC7430713 DOI: 10.1371/journal.pone.0237494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
Modern magnetic resonance imaging systems are equipped with a large number of receive connectors in order to optimally support a large field-of-view and/or high acceleration in parallel imaging using high-channel count, phased array coils. Given that the MR system is equipped with a limited number of digitizing receivers and in order to support operation of multinuclear coil arrays, these connectors need to be flexibly routed to the receiver outside the RF shielded examination room. However, for a number of practical, economic and safety reasons, it is better to only route a subset of the connectors. This is usually accomplished with the use of switch matrices. These exist in a variety of topologies and differ in routing flexibility and technological implementation. A highly flexible implementation is a crossbar topology that allows to any one input to be routed to any one output and can use single PIN diodes as active elements. However, in this configuration, long open-ended transmission lines can potentially remain connected to the signal path leading to high transmission losses. Thus, especially for high-field systems compensation mechanisms are required to remove the effects of open-ended transmission line stubs. The selection of a limited number of lumped element reactance values to compensate for the for the effect of transmission line stubs in large-scale switch matrices capable of supporting multi-nuclear operation is non-trivial and is a combinatorial problem of high order. Here, we demonstrate the use of metaheuristic approaches to optimize the circuit design of these matrices that additionally carry out the optimization of distances between the parallel transmission lines. For a matrix with 128 inputs and 64 outputs a realization is proposed that displays a worst-case insertion loss of 3.8 dB.
Collapse
Affiliation(s)
- Jörg Felder
- Institute of Neuroscience and Medicine -4, Forschungszentrum Jülich, Jülich, Germany
| | - Chang-Hoon Choi
- Institute of Neuroscience and Medicine -4, Forschungszentrum Jülich, Jülich, Germany
| | - Yunkyoung Ko
- Institute of Neuroscience and Medicine -4, Forschungszentrum Jülich, Jülich, Germany
| | - N. Jon Shah
- Institute of Neuroscience and Medicine -4, Forschungszentrum Jülich, Jülich, Germany
- Institute of Neuroscience and Medicine -11, Forschungszentrum Jülich, Jülich, Germany
- JARA—BRAIN—Translational Medicine, Aachen, Germany
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
6
|
Choi CH, Stegmayr C, Shymanskaya A, Worthoff WA, da Silva NA, Felder J, Langen KJ, Shah NJ. An in vivo multimodal feasibility study in a rat brain tumour model using flexible multinuclear MR and PET systems. EJNMMI Phys 2020; 7:50. [PMID: 32728773 PMCID: PMC7391464 DOI: 10.1186/s40658-020-00319-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/12/2020] [Indexed: 11/16/2022] Open
Abstract
Background In addition to the structural information afforded by 1H MRI, the use of X-nuclei, such as sodium-23 (23Na) or phosphorus-31 (31P), offers important complementary information concerning physiological and biochemical parameters. By then combining this technique with PET, which provides valuable insight into a wide range of metabolic and molecular processes by using of a variety of radioactive tracers, the scope of medical imaging and diagnostics can be significantly increased. While the use of multimodal imaging is undoubtedly advantageous, identifying the optimal combination of these parameters to diagnose a specific dysfunction is very important and is advanced by the use of sophisticated imaging techniques in specific animal models. Methods In this pilot study, rats with intracerebral 9L gliosarcomas were used to explore a combination of sequential multinuclear MRI using a sophisticated switchable coil set in a small animal 9.4 T MRI scanner and, subsequently, a small animal PET with the tumour tracer O-(2-[18F]-fluoroethyl)-L-tyrosine ([18F]FET). This made it possible for in vivo multinuclear MR-PET experiments to be conducted without compromising the performance of either multinuclear MR or PET. Results High-quality in vivo images and spectra including high-resolution 1H imaging, 23Na-weighted imaging, detection of 31P metabolites and [18F]FET uptake were obtained, allowing the characterisation of tumour tissues in comparison to a healthy brain. It has been reported in the literature that these parameters are useful in the identification of the genetic profile of gliomas, particularly concerning the mutation of the isocitrate hydrogenase gene, which is highly relevant for treatment strategy. Conclusions The combination of multinuclear MR and PET in, for example, brain tumour models with specific genetic mutations will enable the physiological background of signal alterations to be explored and the identification of the optimal combination of imaging parameters for the non-invasive characterisation of the molecular profile of tumours.
Collapse
Affiliation(s)
- Chang-Hoon Choi
- Institute of Neuroscience and Medicine-4, INM-4, Forschungszentrum Jülich, Germany
| | - Carina Stegmayr
- Institute of Neuroscience and Medicine-4, INM-4, Forschungszentrum Jülich, Germany
| | | | - Wieland A Worthoff
- Institute of Neuroscience and Medicine-4, INM-4, Forschungszentrum Jülich, Germany
| | - Nuno A da Silva
- Institute of Neuroscience and Medicine-4, INM-4, Forschungszentrum Jülich, Germany
| | - Jörg Felder
- Institute of Neuroscience and Medicine-4, INM-4, Forschungszentrum Jülich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine-4, INM-4, Forschungszentrum Jülich, Germany.,Department of Nuclear Medicine, RWTH Aachen University Hospital, Aachen, Germany.,Jülich-Aachen Research Alliance (JARA)-Section JARA-BRAIN, Aachen, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine-4, INM-4, Forschungszentrum Jülich, Germany. .,Institute of Neuroscience and Medicine-11, INM-11, JARA, Forschungszentrum Jülich, Germany. .,JARA-BRAIN-Translational Medicine, Aachen, Germany. .,Department of Neurology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
7
|
Huhn K, Engelhorn T, Linker RA, Nagel AM. Potential of Sodium MRI as a Biomarker for Neurodegeneration and Neuroinflammation in Multiple Sclerosis. Front Neurol 2019; 10:84. [PMID: 30804885 PMCID: PMC6378293 DOI: 10.3389/fneur.2019.00084] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/22/2019] [Indexed: 01/18/2023] Open
Abstract
In multiple sclerosis (MS), experimental and ex vivo studies indicate that pathologic intra- and extracellular sodium accumulation may play a pivotal role in inflammatory as well as neurodegenerative processes. Yet, in vivo assessment of sodium in the microenvironment is hard to achieve. Here, sodium magnetic resonance imaging (23NaMRI) with its non-invasive properties offers a unique opportunity to further elucidate the effects of sodium disequilibrium in MS pathology in vivo in addition to regular proton based MRI. However, unfavorable physical properties and low in vivo concentrations of sodium ions resulting in low signal-to-noise-ratio (SNR) as well as low spatial resolution resulting in partial volume effects limited the application of 23NaMRI. With the recent advent of high-field MRI scanners and more sophisticated sodium MRI acquisition techniques enabling better resolution and higher SNR, 23NaMRI revived. These studies revealed pathologic total sodium concentrations in MS brains now even allowing for the (partial) differentiation of intra- and extracellular sodium accumulation. Within this review we (1) demonstrate the physical basis and imaging techniques of 23NaMRI and (2) analyze the present and future clinical application of 23NaMRI focusing on the field of MS thus highlighting its potential as biomarker for neuroinflammation and -degeneration.
Collapse
Affiliation(s)
- Konstantin Huhn
- Department of Neurology, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Tobias Engelhorn
- Department of Neuroradiology, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ralf A Linker
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Armin M Nagel
- Department of Radiology, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany.,Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
8
|
Ha Y, Choi CH, Shah NJ. Development and Implementation of a PIN-Diode Controlled, Quadrature-Enhanced, Double-Tuned RF Coil for Sodium MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:1626-1631. [PMID: 29969413 DOI: 10.1109/tmi.2017.2786466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sodium (23Na) MRI provides complementary cellular and metabolic information. However, the intrinsic MR sensitivity of 23Na is considerably lower compared with that of the proton, making it difficult to measure MR-detectable sodium signals. It is therefore important to maintain the signal-to-noise ratio (SNR) of the sodium signal as high as possible. Double-tuned coils are often employed in combinationwith a 1H coil, providing structural images and B0 shimming capability. The double-tuned coil design can be achieved with the use of two geometrically decoupled coils whose B1 field directions are perpendicular to each other. This can be used to design quadrature-driven, single-nucleus coils to improve SNR, and additionally, this coil can also be utilized as a linear-driven double-resonant mode. Here, we have developed and evaluateda quadrature-enhanced, double-tuned coil. The novel coil uses PIN-diode switches, inserted only in the loop coil, to shift the resonance frequency between 1H and 23Na so that 23Na signals can be acquired in quadrature and the capability of using 1H function remains. Consequently, the 23Na SNR values obtained with the double-tuned coil are nearly 33% and 17% higher in comparison with geometrically identical single-tuned coils. SNR plots also show the superiority of double-tuned coil in 23Na.
Collapse
|
9
|
Hybrid MR-PET of brain tumours using amino acid PET and chemical exchange saturation transfer MRI. Eur J Nucl Med Mol Imaging 2018; 45:1031-1040. [PMID: 29478081 DOI: 10.1007/s00259-018-3940-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/04/2018] [Indexed: 10/18/2022]
Abstract
PURPOSE PET using radiolabelled amino acids has become a promising tool in the diagnostics of gliomas and brain metastasis. Current research is focused on the evaluation of amide proton transfer (APT) chemical exchange saturation transfer (CEST) MR imaging for brain tumour imaging. In this hybrid MR-PET study, brain tumours were compared using 3D data derived from APT-CEST MRI and amino acid PET using O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET). METHODS Eight patients with gliomas were investigated simultaneously with 18F-FET PET and APT-CEST MRI using a 3-T MR-BrainPET scanner. CEST imaging was based on a steady-state approach using a B1 average power of 1μT. B0 field inhomogeneities were corrected a Prametric images of magnetisation transfer ratio asymmetry (MTRasym) and differences to the extrapolated semi-solid magnetisation transfer reference method, APT# and nuclear Overhauser effect (NOE#), were calculated. Statistical analysis of the tumour-to-brain ratio of the CEST data was performed against PET data using the non-parametric Wilcoxon test. RESULTS A tumour-to-brain ratio derived from APT# and 18F-FET presented no significant differences, and no correlation was found between APT# and 18F-FET PET data. The distance between local hot spot APT# and 18F-FET were different (average 20 ± 13 mm, range 4-45 mm). CONCLUSION For the first time, CEST images were compared with 18F-FET in a simultaneous MR-PET measurement. Imaging findings derived from18F-FET PET and APT CEST MRI seem to provide different biological information. The validation of these imaging findings by histological confirmation is necessary, ideally using stereotactic biopsy.
Collapse
|
10
|
Henning A. Proton and multinuclear magnetic resonance spectroscopy in the human brain at ultra-high field strength: A review. Neuroimage 2017; 168:181-198. [PMID: 28712992 DOI: 10.1016/j.neuroimage.2017.07.017] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/27/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022] Open
Abstract
Magnetic Resonance Spectroscopy (MRS) allows for a non-invasive and non-ionizing determination of in vivo tissue concentrations and metabolic turn-over rates of more than 20 metabolites and compounds in the central nervous system of humans. The aim of this review is to give a comprehensive overview about the advantages, challenges and advances of ultra-high field MRS with regard to methodological development, discoveries and applications from its beginnings around 15 years ago up to the current state. The review is limited to human brain and spinal cord application at field strength of 7T and 9.4T and includes all relevant nuclei (1H, 31P, 13C).
Collapse
Affiliation(s)
- Anke Henning
- Max Plank Institute for Biological Cybernetics, Tübingen, Germany; Institute of Physics, Ernst-Moritz-Arndt University, Greifswald, Germany.
| |
Collapse
|
11
|
Choi CH, Hong SM, Ha Y, Shah NJ. Design and construction of a novel 1H/ 19F double-tuned coil system using PIN-diode switches at 9.4T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 279:11-15. [PMID: 28411437 DOI: 10.1016/j.jmr.2017.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/09/2017] [Accepted: 04/05/2017] [Indexed: 06/07/2023]
Abstract
A double-tuned 1H/19F coil using PIN-diode switches was developed and its performance evaluated. The is a key difference from the previous developments being that this design used a PIN-diode switch in series with an additionally inserted inductor in parallel to one of the capacitors on the loop. The probe was adjusted to 19F when the reverse bias voltage was applied (PIN-diode OFF), whilst it was switched to 1H when forward current was flowing (PIN-diode ON). S-parameters and Q-factors of single- and double-tuned coils were examined and compared with/without a phantom on the bench. Imaging experiments were carried out on a 9.4T preclinical scanner. All coils were tuned at resonance frequencies and matched well. It is shown that the Q-ratio and SNR of double-tuned coil at 19F frequency are nearly as good as those of a single-tuned coil. Since the operating frequency was tuned to 19F when the PIN-diodes were turned off, losses due to PIN-diodes were substantially lower resulting in the provision of excellent image quality of X-nuclei.
Collapse
Affiliation(s)
- Chang-Hoon Choi
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich, 52425 Juelich, Germany.
| | - Suk-Min Hong
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich, 52425 Juelich, Germany
| | - YongHyun Ha
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich, 52425 Juelich, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich, 52425 Juelich, Germany; Faculty of Medicine, Department of Neurology, RWTH Aachen University, JARA, Aachen, Germany; Department of Electrical and Computer Systems Engineering, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia; Monash Biomedical Imaging, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Tse DH, da Silva NA, Poser BA, Shah NJ. B1+ inhomogeneity mitigation in CEST using parallel transmission. Magn Reson Med 2017; 78:2216-2225. [DOI: 10.1002/mrm.26624] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/05/2016] [Accepted: 01/07/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Desmond H.Y. Tse
- Faculty of Psychology and Neuroscience; Maastricht University; Maastricht The Netherlands
| | - Nuno Andre da Silva
- Institute of Neuroscience and Medicine-4, Forschungszentrum Juelich GmbH, Wilhelm-Johnen-Strasse; Juelich Germany
| | - Benedikt A. Poser
- Faculty of Psychology and Neuroscience; Maastricht University; Maastricht The Netherlands
| | - N. Jon Shah
- Institute of Neuroscience and Medicine-4, Forschungszentrum Juelich GmbH, Wilhelm-Johnen-Strasse; Juelich Germany
- Department of Neurology; Faculty of Medicine, RWTH Aachen University, JARA; Aachen Germany
- Department of Electrical and Computer Systems Engineering; and Monash Biomedical Imaging, School of Psychological Sciences, Monash University; Melbourne Victoria Australia
| |
Collapse
|
13
|
Choi CH, Ha Y, Veeraiah P, Felder J, Möllenhoff K, Shah NJ. Design and implementation of a simple multinuclear MRI system for ultra high-field imaging of animals. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 273:28-32. [PMID: 27741437 DOI: 10.1016/j.jmr.2016.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 06/06/2023]
Abstract
Non-proton MRI has recently garnered gathering interest with the increased availability of ultra high-field MRI system. Assuming the availability of a broadband RF amplifier, performing multinuclear MR experiments essentially requires additional hardware, such as an RF resonator and a T/R switch for each nucleus. A double- or triple-resonant RF probe is typically constructed using traps or PIN-diode circuits, but this approach degrades the signal-to-noise ratio (SNR) and image quality compared to a single-resonant coil and this is a limiting factor. In this work, we have designed the required hardware for multinuclear MR imaging experiments employing six single-resonant coil sets and a purpose-built animal bed; these have been implemented into a home-integrated 9.4T preclinical MRI scanner. System capabilities are demonstrated by distinguishing concentration differences and sensitivity of X-nuclei imaging and spectroscopy without SNR penalty for any nuclei, no subject interruption and no degradation of the static shim conditions.
Collapse
Affiliation(s)
- Chang-Hoon Choi
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich, 52425 Juelich, Germany.
| | - YongHyun Ha
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich, 52425 Juelich, Germany
| | - Pandichelvam Veeraiah
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich, 52425 Juelich, Germany
| | - Jörg Felder
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich, 52425 Juelich, Germany
| | - Klaus Möllenhoff
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich, 52425 Juelich, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich, 52425 Juelich, Germany; Faculty of Medicine, Department of Neurology, RWTH Aachen University, JARA, Aachen, Germany; Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, Victoria, Australia; Monash Biomedical Imaging, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Abstract
The revolution in cancer genomics has uncovered a variety of clinically relevant mutations in primary brain tumours, creating an urgent need to develop non-invasive imaging biomarkers to assess and integrate this genetic information into the clinical management of patients. Metabolic reprogramming is a central hallmark of cancer, including brain tumours; indeed, many of the molecular pathways implicated in the pathogenesis of brain tumours result in reprogramming of metabolism. This relationship provides the opportunity to devise in vivo metabolic imaging modalities to improve diagnosis, patient stratification, and monitoring of treatment response. Metabolic phenomena, such as the Warburg effect and altered mitochondrial metabolism, can be leveraged to image brain tumours using techniques including PET and MRI. Moreover, genetic alterations, such as mutations affecting isocitrate dehydrogenase, are associated with unique metabolic signatures that can be detected using magnetic resonance spectroscopy. The need to translate our understanding of the molecular features of brain tumours into imaging modalities with clinical utility is growing; metabolic imaging provides a unique platform to achieve this objective. In this Review, we examine the molecular basis for metabolic reprogramming in brain tumours, and examine current non-invasive metabolic imaging strategies that can be used to interrogate these molecular characteristics with the ultimate goal of guiding and improving patient care.
Collapse
|
15
|
Electrodynamics and radiofrequency antenna concepts for human magnetic resonance at 23.5 T (1 GHz) and beyond. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 29:641-56. [PMID: 27097905 DOI: 10.1007/s10334-016-0559-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVE This work investigates electrodynamic constraints, explores RF antenna concepts and examines the transmission fields (B 1 (+) ) and RF power deposition of dipole antenna arrays for (1)H magnetic resonance of the human brain at 1 GHz (23.5 T). MATERIALS AND METHODS Electromagnetic field (EMF) simulations are performed in phantoms with average tissue simulants for dipole antennae using discrete frequencies [300 MHz (7.0 T) to 3 GHz (70.0 T)]. To advance to a human setup EMF simulations are conducted in anatomical human voxel models of the human head using a 20-element dipole array operating at 1 GHz. RESULTS Our results demonstrate that transmission fields suitable for (1)H MR of the human brain can be achieved at 1 GHz. An increase in transmit channel density around the human head helps to enhance B 1 (+) in the center of the brain. The calculated relative increase in specific absorption rate at 23.5 versus 7.0 T was below 1.4 (in-phase phase setting) and 2.7 (circular polarized phase setting) for the dipole antennae array. CONCLUSION The benefits of multi-channel dipole antennae at higher frequencies render MR at 23.5 T feasible from an electrodynamic standpoint. This very preliminary finding opens the door on further explorations that might be catalyzed into a 20-T class human MR system.
Collapse
|
16
|
Shah NJ, Worthoff WA, Langen KJ. Imaging of sodium in the brain: a brief review. NMR IN BIOMEDICINE 2016; 29:162-174. [PMID: 26451752 DOI: 10.1002/nbm.3389] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/30/2015] [Accepted: 08/07/2015] [Indexed: 06/05/2023]
Abstract
Sodium-based MRI plays a vital role in the study of metabolism and can unveil valuable information about emerging and existing pathology--in particular in the human brain. Sodium is the second most abundant MR active nucleus in living tissue and, due to its quadrupolar nature, has magnetic properties not common to conventional proton MRI, which can reveal further insights, such as information on the compartmental distribution of intra- and extracellular sodium. Nevertheless, the use of sodium nuclei for imaging comes at the expense of a lower sensitivity and significantly reduced relaxation times, making in vivo sodium studies feasible only at high magnetic field strength and by the use of dedicated pulse sequences. Hybrid imaging combining sodium MRI and positron emission tomography (PET) simultaneously is a novel and promising approach to access information on dynamic metabolism with much increased, PET-derived specificity. Application of this new methodology is demonstrated herein using examples from tumour imaging.
Collapse
Affiliation(s)
- N Jon Shah
- Institute of Neuroscience and Medicine-4, Forschungszentrum Juelich GmbH, 52425, Jülich, Germany
- Department of Neurology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance (JARA) - Translational Brain Medicine, Aachen and Jülich, Germany
| | - Wieland A Worthoff
- Institute of Neuroscience and Medicine-4, Forschungszentrum Juelich GmbH, 52425, Jülich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine-4, Forschungszentrum Juelich GmbH, 52425, Jülich, Germany
- Jülich Aachen Research Alliance (JARA) - Translational Brain Medicine, Aachen and Jülich, Germany
- Department of Nuclear Medicine, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| |
Collapse
|