1
|
Estay SF, Morales-Moraga C, Vielma AH, Palacios-Muñoz A, Chiu CQ, Chávez AE. Non-canonical type 1 cannabinoid receptor signaling regulates night visual processing in the inner rat retina. iScience 2024; 27:109920. [PMID: 38799553 PMCID: PMC11126983 DOI: 10.1016/j.isci.2024.109920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
Type 1 cannabinoid receptors (CB1Rs) are expressed in major retinal neurons within the rod-pathway suggesting a role in regulating night visual processing, but the underlying mechanisms remain poorly understood. Using acute rat retinal slices, we show that CB1R activation reduces glutamate release from rod bipolar cell (RBC) axon terminals onto AII and A17 amacrine cells through a pathway that requires exchange proteins directly activated by cAMP (EPAC1/2) signaling. Consequently, CB1R activation abrogates reciprocal GABAergic feedback inhibition from A17 amacrine cells. Moreover, the activation of CB1Rs in vivo enhances and prolongs the time course of the dim-light rod-driven visual responses, an effect that was eliminated when both GABAA and GABAC receptors were blocked. Altogether, our findings underscore a non-canonical mechanism by which cannabinoid signaling regulates RBC dyad synapses in the inner retina to regulate dim-light visual responses to fine-tune night vision.
Collapse
Affiliation(s)
- Sebastián F. Estay
- Programa de Doctorado en Ciencias, Mención Neurociencia, Valparaíso 2340000, Chile
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Camila Morales-Moraga
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Alex H. Vielma
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Angelina Palacios-Muñoz
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Chiayu Q. Chiu
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Andrés E. Chávez
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| |
Collapse
|
2
|
Zhang X, Wang F, Su Y. TRPV: An emerging target in glaucoma and optic nerve damage. Exp Eye Res 2024; 239:109784. [PMID: 38199261 DOI: 10.1016/j.exer.2024.109784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/30/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Transient receptor potential vanilloid (TRPV) channels are members of the TRP channel superfamily, which are ion channels that sense mechanical and osmotic stimuli and participate in Ca2+ signalling across the cell membrane. TRPV channels play important roles in maintaining the normal functions of an organism, and defects or abnormalities in TRPV channel function cause a range of diseases, including cardiovascular, neurological and urological disorders. Glaucoma is a group of chronic progressive optic nerve diseases with pathological changes that can occur in the tissues of the anterior and posterior segments of the eye, including the ciliary body, trabecular meshwork, Schlemm's canal, and retina. TRPV channels are expressed in these tissues and play various roles in glaucoma. In this article, we review various aspects of the pathogenesis of glaucoma, the structure and function of TRPV channels, the relationship between TRPV channels and systemic diseases, and the relationship between TRPV channels and ocular diseases, especially glaucoma, and we suggest future research directions. This information will help to further our understanding of TRPV channels and provide new ideas and targets for the treatment of glaucoma and optic nerve damage.
Collapse
Affiliation(s)
- Xiaotong Zhang
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Feng Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China.
| | - Ying Su
- Eye Hospital, The First Affiliated Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|
3
|
Wang HN, Qian WJ, Zhao GL, Li F, Miao YY, Lei B, Sun XH, Wang ZF. L- and T-type Ca 2+ channels dichotomously contribute to retinal ganglion cell injury in experimental glaucoma. Neural Regen Res 2023; 18:1570-1577. [PMID: 36571364 PMCID: PMC10075096 DOI: 10.4103/1673-5374.360277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Retinal ganglion cell apoptotic death is the main pathological characteristic of glaucoma, which is the leading cause of irreversible blindness. Disruption of Ca2+ homeostasis plays an important role in glaucoma. Voltage-gated Ca2+ channel blockers have been shown to improve vision in patients with glaucoma. However, whether and how voltage-gated Ca2+ channels are involved in retinal ganglion cell apoptotic death are largely unknown. In this study, we found that total Ca2+ current densities in retinal ganglion cells were reduced in a rat model of chronic ocular hypertension experimental glaucoma, as determined by whole-cell patch-clamp electrophysiological recordings. Further analysis showed that L-type Ca2+ currents were downregulated while T-type Ca2+ currents were upregulated at the later stage of glaucoma. Western blot assay and immunofluorescence experiments confirmed that expression of the CaV1.2 subunit of L-type Ca2+ channels was reduced and expression of the CaV3.3 subunit of T-type Ca2+ channels was increased in retinas of the chronic ocular hypertension model. Soluble tumor necrosis factor-α, an important inflammatory factor, inhibited the L-type Ca2+ current of isolated retinal ganglion cells from control rats and enhanced the T-type Ca2+ current. These changes were blocked by the tumor necrosis factor-α inhibitor XPro1595, indicating that both types of Ca2+ currents may be mediated by soluble tumor necrosis factor-α. The intracellular mitogen-activated protein kinase/extracellular signal-regulated kinase pathway and nuclear factor kappa-B signaling pathway mediate the effects of tumor necrosis factor-α. TUNEL assays revealed that mibefradil, a T-type calcium channel blocker, reduced the number of apoptotic retinal ganglion cells in the rat model of chronic ocular hypertension. These results suggest that T-type Ca2+ channels are involved in disrupted Ca2+ homeostasis and apoptosis of retinal ganglion cells in glaucoma, and application of T-type Ca2+ channel blockers, especially a specific CaV3.3 blocker, may be a potential strategy for the treatment of glaucoma.
Collapse
Affiliation(s)
- Hong-Ning Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wen-Jing Qian
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Guo-Li Zhao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Fang Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yan-Ying Miao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Bo Lei
- Institutes of Neuroscience and Third Affiliated Hospital, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xing-Huai Sun
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, NHC Key Laboratory of Myopia, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Zhong-Feng Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Neurocircuit of chronic pain and pain-induced negative emotions and regulatory mechanisms of electroacupuncture. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2022. [DOI: 10.1016/j.wjam.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Heinbockel T, Straiker A. Cannabinoids Regulate Sensory Processing in Early Olfactory and Visual Neural Circuits. Front Neural Circuits 2021; 15:662349. [PMID: 34305536 PMCID: PMC8294086 DOI: 10.3389/fncir.2021.662349] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/11/2021] [Indexed: 12/25/2022] Open
Abstract
Our sensory systems such as the olfactory and visual systems are the target of neuromodulatory regulation. This neuromodulation starts at the level of sensory receptors and extends into cortical processing. A relatively new group of neuromodulators includes cannabinoids. These form a group of chemical substances that are found in the cannabis plant. Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are the main cannabinoids. THC acts in the brain and nervous system like the chemical substances that our body produces, the endogenous cannabinoids or endocannabinoids, also nicknamed the brain's own cannabis. While the function of the endocannabinoid system is understood fairly well in limbic structures such as the hippocampus and the amygdala, this signaling system is less well understood in the olfactory pathway and the visual system. Here, we describe and compare endocannabinoids as signaling molecules in the early processing centers of the olfactory and visual system, the olfactory bulb, and the retina, and the relevance of the endocannabinoid system for synaptic plasticity.
Collapse
Affiliation(s)
- Thomas Heinbockel
- Department of Anatomy, Howard University College of Medicine, Washington, DC, United States
| | - Alex Straiker
- The Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| |
Collapse
|
6
|
Li Q, Jin R, Zhang S, Sun X, Wu J. Transient receptor potential vanilloid four channels modulate inhibitory inputs through differential regulation of GABA and glycine receptors in rat retinal ganglion cells. FASEB J 2020; 34:14521-14538. [PMID: 32892440 DOI: 10.1096/fj.201902937rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 01/06/2023]
Abstract
The transient receptor potential vanilloid 4 (TRPV4) channel is widely distributed in the retina. Activation of the TRPV4 channel enhances excitatory signaling from bipolar cells to retinal ganglion cells (RGCs), thereby increasing RGC firing rate and membrane excitability. In this study, we investigated the effect of TRPV4 channel activation on the miniature inhibitory postsynaptic current (mIPSC) in rat RGCs. Our results showed that perfusion with HC-067047, a TRPV4-channel antagonist, significantly reduced the amplitude of RGC mIPSCs. Extracellular application of the TRPV4 channel agonist GSK1016790A (GSK101) enhanced the frequency and amplitude of mIPSCs in ON- and OFF-type RGCs; pre-application of HC-067047 blocked the effect of GSK101 on mIPSCs. Furthermore, TRPV4 channels were able to enhance the frequency and amplitude of glycine receptor (GlyR)-mediated mIPSCs and inhibit the frequency of type A γ-aminobutyric acid receptor (GABAA R)-mediated mIPSCs. Upon intracellular administration or intravitreal injection of GSK101, TRPV4 channel activation reduced the release of presynaptic glycine and enhanced the function and expression of postsynaptic GlyRs; however, it inhibited presynaptic release of GABA, but did not affect postsynaptic GABAA Rs. Our study results provide insight regarding the effect of TRPV4 channel activation on RGCs and offer a potential interventional target for retinal diseases involving TRPV4 channels.
Collapse
Affiliation(s)
- Qian Li
- Eye Institute, Eye and ENT Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Ruiri Jin
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shenghai Zhang
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xinghuai Sun
- Eye Institute, Eye and ENT Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jihong Wu
- Eye Institute, Eye and ENT Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
7
|
Vielma AH, Tapia F, Alcaino A, Fuenzalida M, Schmachtenberg O, Chávez AE. Cannabinoid Signaling Selectively Modulates GABAergic Inhibitory Input to OFF Bipolar Cells in Rat Retina. Invest Ophthalmol Vis Sci 2020; 61:3. [PMID: 32150246 PMCID: PMC7401570 DOI: 10.1167/iovs.61.3.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose In the mammalian retina, cannabinoid type 1 receptors (CB1Rs) are well-positioned to alter inhibitory synaptic function from amacrine cells and, thus, might influence visual signal processing in the inner retina. However, it is not known if CB1R modulates amacrine cells feedback inhibition at retinal bipolar cell (BC) terminals. Methods Using whole-cell voltage-clamp recordings, we examined the pharmacological effect of CB1R activation and inhibition on spontaneous inhibitory postsynaptic currents (sIPSCs) and glutamate-evoked IPSCs (gIPSCs) from identified OFF BCs in light-adapted rat retinal slices. Results Activation of CB1R with WIN55212-2 selectively increased the frequency of GABAergic, but not glycinergic sIPSC in types 2, 3a, and 3b OFF BCs, and had no effect on inhibitory activity in type 4 OFF BCs. The increase in GABAergic activity was eliminated in axotomized BCs and can be suppressed by blocking CB1R with AM251 or GABAA and GABAρ receptors with SR-95531 and TPMPA, respectively. In all OFF BC types tested, a brief application of glutamate to the outer plexiform layer elicited gIPSCs comprising GABAergic and glycinergic components that were unaffected by CB1R activation. However, blocking CB1R selectively increased GABAergic gIPSCs, supporting a role for endocannabinoid signaling in the regulation of glutamate-evoked GABAergic inhibitory feedback to OFF BCs. Conclusions CB1R activation shape types 2, 3a, and 3b OFF BC responses by selectively regulate GABAergic feedback inhibition at their axon terminals, thus cannabinoid signaling might play an important role in the fine-tuning of visual signal processing in the mammalian inner retina.
Collapse
|
8
|
Qin X, He Y, Wang N, Zou JX, Zhang YM, Cao JL, Pan BX, Zhang WH. Moderate maternal separation mitigates the altered synaptic transmission and neuronal activation in amygdala by chronic stress in adult mice. Mol Brain 2019; 12:111. [PMID: 31849343 PMCID: PMC6918580 DOI: 10.1186/s13041-019-0534-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/11/2019] [Indexed: 12/22/2022] Open
Abstract
Exposure to moderate level of stress during the perinatal period helps the organisms to cope well with stressful events in their later life, an effect known as stress inoculation. Amygdala is one of the kernel brain regions mediating stress-coping in the brain. However, little is known about whether early life stress may affect amygdala to have its inoculative effect. Here, we observed that moderate maternal separation (MS) from postnatal day 3 to day 21 (D3–21, 1 h per day) significantly alleviated the increased anxiety-like behavior induced by chronic social defeat stress (CSDS) in adulthood, suggesting an obvious inoculative effect of moderate MS. Further studies revealed that MS prevented CSDS-evoked augmentation of glutamatergic transmission onto principal neurons (PNs) in the basolateral amygdala (BLA) by inhibiting presynaptic glutamate release. By contrast, it did not affect GABAergic transmission in BLA PNs, as indicated by unaltered frequency and amplitude of miniature inhibitory postsynaptic currents (mIPSCs). Moreover, the CSDS-induced increase of neuronal excitability was also mitigated by MS in BLA PNs. In conclusion, our results suggest that MS may have its inoculative effect through alleviating the influences of later life stress on the glutamatergic transmission and neuronal activity in amygdala neurons.
Collapse
Affiliation(s)
- Xia Qin
- College of Life Science, Nanchang University, Nanchang, 330031, China.,Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.,Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Ye He
- College of Life Science, Nanchang University, Nanchang, 330031, China.,Department of Pharmacology, Nanchang University, Nanchang, 330031, China
| | - Na Wang
- Department of Physiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Jia-Xin Zou
- College of Life Science, Nanchang University, Nanchang, 330031, China.,Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Yong-Mei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Bing-Xing Pan
- College of Life Science, Nanchang University, Nanchang, 330031, China.,Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Wen-Hua Zhang
- College of Life Science, Nanchang University, Nanchang, 330031, China. .,Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
9
|
Li Q, Zhang Y, Wu N, Yin N, Sun XH, Wang Z. Activation of somatostatin receptor 5 suppresses T-type Ca 2+ channels through NO/cGMP/PKG signaling pathway in rat retinal ganglion cells. Neurosci Lett 2019; 708:134337. [PMID: 31220522 DOI: 10.1016/j.neulet.2019.134337] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/19/2019] [Accepted: 06/17/2019] [Indexed: 11/16/2022]
Abstract
Somatostatin has been shown to modulate a variety of neuronal functions by activating the five specific G-protein coupled receptors (sst1-sst5). Here, effects of sst5 receptor activation on T-type Ca2+ channels in acutely isolated retinal ganglion cells (RGCs) of rats were investigated using whole-cell patch-clamp techniques. The sst5 receptor specific agonist L-817,818 significantly and reversibly suppressed T-type Ca2+ currents, and shifted inactivation curve of the channels toward hyperpolarization direction. The effect of L-817,818 was in a dose-dependent manner, with an IC50 being 8.8 μM. Pertussis toxin-sensitive Gi/o protein mediated intracellular nitric oxide (NO)/cGMP/protein kinase G (PKG) signaling cascade was involved in the L-817,818 effect on Ca2+ currents because pharmacological interference of each of these signaling molecules abolished the L-817,818 effect. In contrast, neither phospholipase C/protein kinase C nor cAMP/protein kinase A signal pathways seemed likely to be involved because the L-817,818 effect persisted when these signaling pathways were blocked by U73122, bisindolylmaleimide IV, chelerythrine chloride, and Rp-cAMP, respectively. These results suggest that activation of sst5 receptors suppresses T-type Ca2+ currents in rat RGCs through intracellular NO/cGMP/PKG signaling pathway, which may provide a potential mechanism for protecting RGCs against injury.
Collapse
Affiliation(s)
- Qian Li
- Eye Institute, Eye & ENT Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Key Laboratory of Myopia (Ministry of Health), Fudan University, Shanghai, 200031, China
| | - Yi Zhang
- Eye Institute, Eye & ENT Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Key Laboratory of Myopia (Ministry of Health), Fudan University, Shanghai, 200031, China
| | - Na Wu
- Eye Institute, Eye & ENT Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Key Laboratory of Myopia (Ministry of Health), Fudan University, Shanghai, 200031, China
| | - Ning Yin
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xing-Huai Sun
- Eye Institute, Eye & ENT Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Key Laboratory of Myopia (Ministry of Health), Fudan University, Shanghai, 200031, China.
| | - Zhongfeng Wang
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
10
|
Middleton TP, Huang JY, Protti DA. Cannabinoids Modulate Light Signaling in ON-Sustained Retinal Ganglion Cells of the Mouse. Front Neural Circuits 2019; 13:37. [PMID: 31164809 PMCID: PMC6536650 DOI: 10.3389/fncir.2019.00037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/02/2019] [Indexed: 11/13/2022] Open
Abstract
The sole output of the retina to the brain is a signal that results from the integration of excitatory and inhibitory synaptic inputs at the level of retinal ganglion cells (RGCs). Endogenous cannabinoids (eCBs) are found throughout the central nervous system where they modulate synaptic excitability. Cannabinoid receptors and their ligands have been localized to most retinal neurons in mammals, yet their impact on retinal processing is not well known. Here, we set out to investigate the role of the cannabinoid system in retinal signaling using electrophysiological recordings from ON-sustained (ON-S) RGCs that displayed morphological and physiological signatures of ON alpha RGCs in dark adapted mouse retina. We studied the effect of the cannabinoid agonist WIN55212-2 and the inverse agonist AM251 on the spatial tuning of ON-S RGCs. WIN55212-2 significantly reduced their spontaneous spiking activity and responses to optimal spot size as well as altered their spatial tuning by reducing light driven excitatory and inhibitory inputs to RGCs. AM251 produced the opposite effect, increasing spontaneous spiking activity and peak response as well as increasing inhibitory and excitatory inputs. In addition, AM251 sharpened the spatial tuning of ON-S RGCs by increasing the inhibitory effect of the surround. These results demonstrate the presence of a functional cannabinergic system in the retina as well as sensitivity of ON-RGCs to cannabinoids. These results reveal a neuromodulatory system that can regulate the sensitivity and excitability of retinal synapses in a dynamic, activity dependent manner and that endocannabinoids may play a significant role in retinal processing.
Collapse
Affiliation(s)
- Terence Peter Middleton
- Discipline of Physiology, The University of Sydney, Sydney, NSW, Australia.,Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Jin Yu Huang
- Bosch Institute, The University of Sydney, Sydney, NSW, Australia.,Discipline of Biomedical Science, The University of Sydney, Sydney, NSW, Australia
| | - Dario Alejandro Protti
- Discipline of Physiology, The University of Sydney, Sydney, NSW, Australia.,Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
11
|
Zhu H, Xiang HC, Li HP, Lin LX, Hu XF, Zhang H, Meng WY, Liu L, Chen C, Shu Y, Zhang RY, Zhang P, Si JQ, Li M. Inhibition of GABAergic Neurons and Excitation of Glutamatergic Neurons in the Ventrolateral Periaqueductal Gray Participate in Electroacupuncture Analgesia Mediated by Cannabinoid Receptor. Front Neurosci 2019; 13:484. [PMID: 31156369 PMCID: PMC6533898 DOI: 10.3389/fnins.2019.00484] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/29/2019] [Indexed: 01/26/2023] Open
Abstract
Although electroacupuncture (EA) has become a worldwide practice, little is understood about its precise target in the central nervous system (CNS) and the cell type-specific analgesia mechanism. In the present study, we found that EA has significant antinociceptive effects both in inflammatory and neuropathic pain models. Chemogenetic inhibition of GABAergic neurons in the ventrolateral periaqueductal gray (vlPAG) replicated the effects of EA, whereas the combination of chemogenetic activation of GABAergic neurons and chemogenetic inhibition of glutamatergic neurons in the vlPAG was needed to reverse the effects of EA. Specifically knocking out CB1 receptors on GABAergic neurons in the vlPAG abolished the EA effect on pain hypersensitivity, while specifically knocking out CB1 receptors on glutamatergic neurons attenuated only a small portion of the EA effect. EA synchronously inhibits GABAergic neurons and activates glutamatergic neurons in the vlPAG through CB1 receptors to produce EA-induced analgesia. The CB1 receptors on GABAergic neurons localized in the vlPAG was the basis of the EA effect on pain hypersensitivity. This study provides new experimental evidence that EA can bidirectionally regulate GABAergic neurons and glutamatergic neurons via the CB1 receptors of the vlPAG to produce analgesia effects.
Collapse
Affiliation(s)
- He Zhu
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, School of Basic Medicine, The Institute of Brain Research, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.,Department of Physiology, Medical College of Shihezi University, Shihezi, China
| | - Hong-Chun Xiang
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, School of Basic Medicine, The Institute of Brain Research, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Ping Li
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, School of Basic Medicine, The Institute of Brain Research, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Li-Xue Lin
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, School of Basic Medicine, The Institute of Brain Research, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Fei Hu
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, School of Basic Medicine, The Institute of Brain Research, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Hong Zhang
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, School of Basic Medicine, The Institute of Brain Research, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Wang-Yang Meng
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, School of Basic Medicine, The Institute of Brain Research, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Lu Liu
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, School of Basic Medicine, The Institute of Brain Research, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Chao Chen
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, School of Basic Medicine, The Institute of Brain Research, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yang Shu
- Department of Central Laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ru-Yue Zhang
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, School of Basic Medicine, The Institute of Brain Research, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Pei Zhang
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, School of Basic Medicine, The Institute of Brain Research, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Jun-Qiang Si
- Department of Physiology, Medical College of Shihezi University, Shihezi, China
| | - Man Li
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Ministry of Education, School of Basic Medicine, The Institute of Brain Research, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Rac1 Modulates Excitatory Synaptic Transmission in Mouse Retinal Ganglion Cells. Neurosci Bull 2019; 35:673-687. [PMID: 30888607 DOI: 10.1007/s12264-019-00353-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 10/21/2018] [Indexed: 10/26/2022] Open
Abstract
Ras-related C3 botulinum toxin substrate 1 (Rac1), a member of the Rho GTPase family which plays important roles in dendritic spine morphology and plasticity, is a key regulator of cytoskeletal reorganization in dendrites and spines. Here, we investigated whether and how Rac1 modulates synaptic transmission in mouse retinal ganglion cells (RGCs) using selective conditional knockout of Rac1 (Rac1-cKO). Rac1-cKO significantly reduced the frequency of AMPA receptor-mediated miniature excitatory postsynaptic currents, while glycine/GABAA receptor-mediated miniature inhibitory postsynaptic currents were not affected. Although the total GluA1 protein level was increased in Rac1-cKO mice, its expression in the membrane component was unchanged. Rac1-cKO did not affect spine-like branch density in single dendrites, but significantly reduced the dendritic complexity, which resulted in a decrease in the total number of dendritic spine-like branches. These results suggest that Rac1 selectively affects excitatory synaptic transmission in RGCs by modulating dendritic complexity.
Collapse
|
13
|
Involvement of mGluR I in EphB/ephrinB reverse signaling activation induced retinal ganglion cell apoptosis in a rat chronic hypertension model. Brain Res 2018; 1683:27-35. [PMID: 29366625 DOI: 10.1016/j.brainres.2018.01.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/05/2018] [Accepted: 01/17/2018] [Indexed: 02/08/2023]
Abstract
EphB/ephrinB reverse signaling is involved in retinal ganglion cell (RGC) apoptosis in experimental glaucoma. Here, we further investigated the mechanisms underlying EphB/ephrinB reverse signaling activation induced RGC apoptosis in a rat chronic ocular hypertension (COH) model, using patch-clamp techniques in retinal slices. In COH retinas, RGCs showed higher spontaneous firing frequency and much more depolarized membrane potential as compared to control, which was mimicked by intravitreally injection of EphB2-Fc, an activator of ephrinB2. The changes in RGC spontaneous firing and membrane potential could be reversed by the tyrosine kinase inhibitor PP2, suggesting that EphB/ephrinB reverse signaling activation induced RGC hyperexcitability. Intravitreal pre-injection of either LY367385 or MPEP, selective mGluR1 and mGluR5 antagonists, also blocked the changes in RGC spontaneous firing and membrane potential. Co-immunoprecipitation experiments showed an interaction between ephrinB2 and group I metabotropic glutamate receptor (mGluR I) (mGluR1/mGluR5). Furthermore, intravitreal pre-injection of the mixture of L-NAME (an NO synthase inhibitor) and XPro1595 (a selective inhibitor of soluble TNF-α) could reduce the EphB2-Fc injection induced increase in RGC firing, suggesting that Müller cells might be involved in EphB/ephrinB reverse signaling activation induced change in RGC hyperexcitability. In addition, LY367385/MPEP reduced the numbers of TUNEL-positive RGCs both in EphB2-Fc injected and COH retinas. All results suggest that activation of EphB/ephrinB reverse signaling induces RGC hyperexcitability and apoptosis by interacting with mGluR I in COH rats. Appropriate reduction of EphB/ephrinB reverse signaling could alleviate the loss of RGCs in glaucoma.
Collapse
|
14
|
Kubrusly RC, Günter A, Sampaio L, Martins RS, Schitine CS, Trindade P, Fernandes A, Borelli-Torres R, Miya-Coreixas VS, Rego Costa AC, Freitas HR, Gardino PF, de Mello FG, Calaza KC, Reis RA. Neuro-glial cannabinoid receptors modulate signaling in the embryonic avian retina. Neurochem Int 2018; 112:27-37. [DOI: 10.1016/j.neuint.2017.10.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 10/24/2017] [Accepted: 10/30/2017] [Indexed: 10/18/2022]
|
15
|
Cui P, Li XY, Zhao Y, Li Q, Gao F, Li LZ, Yin N, Sun XH, Wang Z. Activation of dopamine D1 receptors enhances the temporal summation and excitability of rat retinal ganglion cells. Neuroscience 2017; 355:71-83. [DOI: 10.1016/j.neuroscience.2017.04.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/24/2017] [Accepted: 04/30/2017] [Indexed: 01/11/2023]
|
16
|
Zaidman NA, Panoskaltsis-Mortari A, O'Grady SM. Large-conductance Ca 2+ -activated K + channel activation by apical P2Y receptor agonists requires hydrocortisone in differentiated airway epithelium. J Physiol 2017; 595:4631-4645. [PMID: 28481415 DOI: 10.1113/jp274200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/02/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Hydrocortisone (HC) is required for activation of large-conductance Ca2+ -activated K+ current (BK) by purinergic receptor agonists. HC reduces insertion of the stress-regulated exon (STREX) in the KCNMA1 gene, permitting protein kinase C (PKC)-dependent channel activation. Overlapping and unique purinergic signalling regions exist at the apical border of differentiated surface cells. BK channels localize in the cilia of surface cells. ABSTRACT In the present study we investigated the role of hydrocortisone (HC) on uridine-5'-triphosphate (UTP)-stimulated ion transport in differentiated, pseudostratified epithelia derived from normal human bronchial basal cells. The presence of a UTP-stimulated, paxilline-sensitive large-conductance Ca2+ -activated K+ (BK) current was demonstrated in control epithelia but was not stimulated in epithelia differentiated in the absence of HC (HC0). Addition of the BK channel opener NS11021 directly activated channels in control epithelia; however, under HC0 conditions, activation only occurred when UTP was added after NS11021. The PKC inhibitors GF109203x and Gö6983 blocked BK activation by UTP in control epithelia, suggesting that PKC-mediated phosphorylation plays a permissive role in purinoceptor-stimulated BK activation. Moreover, HC0 epithelia expressed significantly more KCNMA1 containing the stress-regulated exon (STREX), a splice-variant of the α-subunit that displays altered channel regulation by phosphorylation, compared to control epithelia. Furthermore, BK channels as well as purinergic receptors were shown to localize in unique and overlapping domains at the apical membrane of ciliated surface cells. These results establish a previously unrecognized role for glucocorticoids in regulation of BK channels in airway epithelial cells.
Collapse
Affiliation(s)
- Nathan A Zaidman
- Department of Integrative Biology and Physiology, University of Minnesota, 6-125 Jackson Hall, Minneapolis, MN, USA
| | - Angela Panoskaltsis-Mortari
- Department of Integrative Biology and Physiology, University of Minnesota, 6-125 Jackson Hall, Minneapolis, MN, USA.,Department of Pediatrics, University of Minnesota, 660E MCRB, Minneapolis, MN, USA
| | - Scott M O'Grady
- Department of Integrative Biology and Physiology, University of Minnesota, 6-125 Jackson Hall, Minneapolis, MN, USA.,Department of Animal Science, University of Minnesota, 480 Haecker Hall, St. Paul, Minneapolis, MN, USA
| |
Collapse
|
17
|
Cannabinoid CB1 and CB2 receptors differentially modulate L- and T-type Ca 2+ channels in rat retinal ganglion cells. Neuropharmacology 2017; 124:143-156. [PMID: 28431968 DOI: 10.1016/j.neuropharm.2017.04.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/15/2017] [Accepted: 04/17/2017] [Indexed: 01/09/2023]
Abstract
Endocannabinoid signaling system is involved in regulating multiple neuronal functions in the central nervous system by activating G-protein coupled cannabinoid CB1 and CB2 receptors (CB1Rs and CB2Rs). Growing evidence has shown that CB1Rs and CB2Rs are extensively expressed in retinal ganglion cells (RGCs). Here, modulation of L- and T-types Ca2+ channels by activating CB1Rs and CB2Rs in RGCs was investigated. Triple immunofluorescent staining showed that L-type subunit CaV1.2 was co-localized with T-type subunits (CaV3.1, CaV3.2 and CaV3.3) in rat RGCs. In acutely isolated rat RGCs, the CB1R agonist WIN55212-2 suppressed both peak and steady-state Ca2+ currents in a dose-dependent manner, with IC50 being 9.6 μM and 8.4 μM, respectively. It was further shown that activation of CB1Rs by WIN55212-2 or ACEA, another CB1R agonist, significantly suppressed both L- and T-type Ca2+ currents, and shifted inactivation curve of T-type one toward hyperpolarization direction. While the effect on L-type Ca2+ channels was mediated by intracellular cAMP/protein kinase A (PKA), mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) and calcium/calmodulin-dependent protein kinase II (CaMKII) signaling pathways, only CaMKII signaling pathway was involved in the effect on T-type Ca2+ channels. Furthermore, CB65 and HU308, two specific CB2R agonists, significantly suppressed T-type Ca2+ channels, which was mediated by intracellular cAMP/PKA and CaMKII signaling pathways, but had no effect on L-type channels. These results imply that endogenous cannabinoids may modulate the excitability and the output of RGCs by differentially suppressing the activity of L- and T-type Ca2+ channels through activation of CB1Rs and CB2Rs. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology".
Collapse
|
18
|
Miraucourt LS, Tsui J, Gobert D, Desjardins JF, Schohl A, Sild M, Spratt P, Castonguay A, De Koninck Y, Marsh-Armstrong N, Wiseman PW, Ruthazer ES. Endocannabinoid signaling enhances visual responses through modulation of intracellular chloride levels in retinal ganglion cells. eLife 2016; 5. [PMID: 27501334 PMCID: PMC4987138 DOI: 10.7554/elife.15932] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 08/04/2016] [Indexed: 12/23/2022] Open
Abstract
Type 1 cannabinoid receptors (CB1Rs) are widely expressed in the vertebrate retina, but the role of endocannabinoids in vision is not fully understood. Here, we identified a novel mechanism underlying a CB1R-mediated increase in retinal ganglion cell (RGC) intrinsic excitability acting through AMPK-dependent inhibition of NKCC1 activity. Clomeleon imaging and patch clamp recordings revealed that inhibition of NKCC1 downstream of CB1R activation reduces intracellular Cl− levels in RGCs, hyperpolarizing the resting membrane potential. We confirmed that such hyperpolarization enhances RGC action potential firing in response to subsequent depolarization, consistent with the increased intrinsic excitability of RGCs observed with CB1R activation. Using a dot avoidance assay in freely swimming Xenopus tadpoles, we demonstrate that CB1R activation markedly improves visual contrast sensitivity under low-light conditions. These results highlight a role for endocannabinoids in vision and present a novel mechanism for cannabinoid modulation of neuronal activity through Cl− regulation. DOI:http://dx.doi.org/10.7554/eLife.15932.001
Collapse
Affiliation(s)
- Loïs S Miraucourt
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Jennifer Tsui
- Montreal Neurological Institute, McGill University, Montreal, Canada.,Department of Biology, University of La Verne, La Verne, United States
| | - Delphine Gobert
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | - Anne Schohl
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Mari Sild
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Perry Spratt
- Montreal Neurological Institute, McGill University, Montreal, Canada.,Neuroscience Graduate Program, University of California, San Francisco, San Francisco, United States
| | - Annie Castonguay
- Institut Universitaire en santé mentale de Québec, Université Laval, Québec, Canada
| | - Yves De Koninck
- Institut Universitaire en santé mentale de Québec, Université Laval, Québec, Canada
| | - Nicholas Marsh-Armstrong
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States.,Kennedy Krieger Institute, Baltimore, United States
| | - Paul W Wiseman
- Department of Physics, McGill University, Montreal, Canada
| | - Edward S Ruthazer
- Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
19
|
Li Q, Cui P, Miao Y, Gao F, Li XY, Qian WJ, Jiang SX, Wu N, Sun XH, Wang Z. Activation of group I metabotropic glutamate receptors regulates the excitability of rat retinal ganglion cells by suppressing Kir and I h. Brain Struct Funct 2016; 222:813-830. [PMID: 27306787 DOI: 10.1007/s00429-016-1248-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 06/05/2016] [Indexed: 10/21/2022]
Abstract
Group I metabotropic glutamate receptor (mGluR I) activation exerts a slow postsynaptic excitatory effect in the CNS. Here, the issues of whether and how this receptor is involved in regulating retinal ganglion cell (RGC) excitability were investigated in retinal slices using patch-clamp techniques. Under physiological conditions, RGCs displayed spontaneous firing. Extracellular application of LY367385 (10 µM)/MPEP (10 µM), selective mGluR1 and mGluR5 antagonists, respectively, significantly reduced the firing frequency, suggesting that glutamate endogenously released from bipolar cells constantly modulates RGC firing. DHPG (10 µM), an mGluR I agonist, significantly increased the firing and caused depolarization of the cells, which were reversed by LY367385, but not by MPEP, suggesting the involvement of the mGluR1 subtype. Intracellular Ca2+-dependent PI-PLC/PKC and calcium/calmodulin-dependent protein kinase II (CaMKII) signaling pathways mediated the DHPG-induced effects. In the presence of cocktail synaptic blockers (CNQX, D-AP5, bicuculline, and strychnine), which terminated the spontaneous firing in both ON and OFF RGCs, DHPG still induced depolarization and triggered the cells to fire. The DHPG-induced depolarization could not be blocked by TTX. In contrast, Ba2+, an inwardly rectifying potassium channel (Kir) blocker, and Cs+ and ZD7288, hyperpolarization-activated cation channel (I h) blockers, mimicked the effect of DHPG. Furthermore, in the presence of Ba2+/ZD7288, DHPG did not show further effects. Moreover, Kir and I h currents could be recorded in RGCs, and extracellular application of DHPG indeed suppressed these currents. Our results suggest that activation of mGluR I regulates the excitability of rat RGCs by inhibiting Kir and I h.
Collapse
Affiliation(s)
- Qian Li
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.,Institute of Neurobiology, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Peng Cui
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.,Institute of Neurobiology, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yanying Miao
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.,Institute of Neurobiology, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Feng Gao
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.,Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Xue-Yan Li
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.,Institute of Neurobiology, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Wen-Jing Qian
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.,Institute of Neurobiology, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Shu-Xia Jiang
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.,Institute of Neurobiology, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Na Wu
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.,Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Xing-Huai Sun
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China. .,Eye & ENT Hospital, Fudan University, Shanghai, 200031, China. .,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China. .,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| | - Zhongfeng Wang
- Institutes of Brain Science, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China. .,Eye & ENT Hospital, Fudan University, Shanghai, 200031, China. .,Institute of Neurobiology, Fudan University, Shanghai, 200032, China. .,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China. .,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
20
|
α/β-Hydrolase domain-containing 6 (ABHD6) negatively regulates the surface delivery and synaptic function of AMPA receptors. Proc Natl Acad Sci U S A 2016; 113:E2695-704. [PMID: 27114538 DOI: 10.1073/pnas.1524589113] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In the brain, AMPA-type glutamate receptors are major postsynaptic receptors at excitatory synapses that mediate fast neurotransmission and synaptic plasticity. α/β-Hydrolase domain-containing 6 (ABHD6), a monoacylglycerol lipase, was previously found to be a component of AMPA receptor macromolecular complexes, but its physiological significance in the function of AMPA receptors (AMPARs) has remained unclear. The present study shows that overexpression of ABHD6 in neurons drastically reduced excitatory neurotransmission mediated by AMPA but not by NMDA receptors at excitatory synapses. Inactivation of ABHD6 expression in neurons by either CRISPR/Cas9 or shRNA knockdown methods significantly increased excitatory neurotransmission at excitatory synapses. Interestingly, overexpression of ABHD6 reduced glutamate-induced currents and the surface expression of GluA1 in HEK293T cells expressing GluA1 and stargazin, suggesting a direct functional interaction between these two proteins. The C-terminal tail of GluA1 was required for the binding between of ABHD6 and GluA1. Mutagenesis analysis revealed a GFCLIPQ sequence in the GluA1 C terminus that was essential for the inhibitory effect of ABHD6. The hydrolase activity of ABHD6 was not required for the effects of ABHD6 on AMPAR function in either neurons or transfected HEK293T cells. Thus, these findings reveal a novel and unexpected mechanism governing AMPAR trafficking at synapses through ABHD6.
Collapse
|
21
|
Yang W, Li Q, Wang SY, Gao F, Qian WJ, Li F, Ji M, Sun XH, Miao Y, Wang Z. Cannabinoid receptor agonists modulate calcium channels in rat retinal müller cells. Neuroscience 2016; 313:213-24. [DOI: 10.1016/j.neuroscience.2015.11.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/10/2015] [Accepted: 11/17/2015] [Indexed: 10/22/2022]
|