1
|
Guven EB, Pranic NM, Unal G. The differential effects of brief environmental enrichment following social isolation in rats. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:818-832. [PMID: 35199313 PMCID: PMC8865499 DOI: 10.3758/s13415-022-00989-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 11/08/2022]
Abstract
Environmental enrichment (EE) in rodents is associated with a wide range of physiological, affective, and cognitive benefits. A seemingly opposite housing condition, social isolation (SI), is used as a rodent model of stress, negatively affecting several neurobiological mechanisms and hampering cognitive performance. Experimental designs that involve switching between these housing conditions produced mixed results. We evaluated different behavioral and cognitive effects of brief EE following long-term, SI-induced stress. We revealed the influence of enrichment after 30 days of isolation on behavioral despair, anxiety-like behavior, and spatial working memory in adult male Wistar rats and found a substantial anxiolytic effect in the experimental (SI to EE) group. Interestingly, rats exposed to EE also showed increased behavioral despair compared with the control (continuous SI) group. There was no difference in spatial working memory performance at the end of a 5-day water Y-maze (WYM) test. However, the SI to EE animals displayed better memory performance in the first 2 days of the WYM, indicating faster learning. In line with this difference, we recorded significantly more c-Fos-immunopositive (c-Fos+) cells in the retrosplenial and perirhinal cortices of the SI to EE animals. The lateral and basolateral nuclei of the amygdala showed no such difference. These results suggest that brief enrichment following isolation stress leads to differential results in affective and cognitive systems.
Collapse
Affiliation(s)
- Elif Beyza Guven
- Department of Psychology, Behavioral Neuroscience Laboratory, Boğaziçi University, 34342, Istanbul, Turkey
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
| | - Nicole Melisa Pranic
- Department of Psychology, Behavioral Neuroscience Laboratory, Boğaziçi University, 34342, Istanbul, Turkey
- Department of Psychology, Cornell University, Ithaca, NY, USA
| | - Gunes Unal
- Department of Psychology, Behavioral Neuroscience Laboratory, Boğaziçi University, 34342, Istanbul, Turkey.
| |
Collapse
|
2
|
Nilssen ES, Doan TP, Nigro MJ, Ohara S, Witter MP. Neurons and networks in the entorhinal cortex: A reappraisal of the lateral and medial entorhinal subdivisions mediating parallel cortical pathways. Hippocampus 2019; 29:1238-1254. [PMID: 31408260 DOI: 10.1002/hipo.23145] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/29/2019] [Accepted: 07/11/2019] [Indexed: 12/31/2022]
Abstract
In this review, we aim to reappraise the organization of intrinsic and extrinsic networks of the entorhinal cortex with a focus on the concept of parallel cortical connectivity streams. The concept of two entorhinal areas, the lateral and medial entorhinal cortex, belonging to two parallel input-output streams mediating the encoding and storage of respectively what and where information hinges on the claim that a major component of their cortical connections is with the perirhinal cortex and postrhinal or parahippocampal cortex in, respectively, rodents or primates. In this scenario, the lateral entorhinal cortex and the perirhinal cortex are connectionally associated and likewise the postrhinal/parahippocampal cortex and the medial entorhinal cortex are partners. In contrast, here we argue that the connectivity matrix emphasizes the potential of substantial integration of cortical information through interactions between the two entorhinal subdivisions and between the perirhinal and postrhinal/parahippocampal cortices, but most importantly through a new observation that the postrhinal/parahippocampal cortex projects to both lateral and medial entorhinal cortex. We suggest that entorhinal inputs provide the hippocampus with high-order complex representations of the external environment, its stability, as well as apparent changes either as an inherent feature of a biological environment or as the result of navigating the environment. This thus indicates that the current connectional model of the parahippocampal region as part of the medial temporal lobe memory system needs to be revised.
Collapse
Affiliation(s)
- Eirik S Nilssen
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Thanh P Doan
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Maximiliano J Nigro
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Shinya Ohara
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- Laboratory of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
3
|
Donix M, Haussmann R, Helling F, Zweiniger A, Lange J, Werner A, Donix KL, Brandt MD, Linn J, Bauer M, Buthut M. Cognitive impairment and medial temporal lobe structure in young adults with a depressive episode. J Affect Disord 2018; 237:112-117. [PMID: 29803901 DOI: 10.1016/j.jad.2018.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/03/2018] [Accepted: 05/15/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND Cognitive deficits are common in patients with a depressive episode although the predictors for their development and severity remain elusive. We investigated whether subjective and objective cognitive impairment in young depressed adults would be associated with cortical thinning in medial temporal subregions. METHODS High-resolution magnetic resonance imaging, cortical unfolding data analysis, and comprehensive assessments of subjective and objective cognitive abilities were performed on 27 young patients with a depressive episode (mean age: 29.0 ± 5.8 years) and 23 older participants without a history of a depressive disorder but amnestic mild cognitive impairment (68.5 ± 6.6 years) or normal cognition (65.2 ± 8.7 years). RESULTS Thickness reductions in parahippocampal, perirhinal and fusiform cortices were associated with subjective memory deficits only among young patients with a depressive episode and a measurable cognitive impairment. LIMITATIONS Long-term longitudinal data would be desirable to determine the trajectories of cognitive impairment associated with depression in patients with or without cortical structure changes. CONCLUSIONS The presence of clinically significant cognitive deficits in young people with a depressive episode may identify a patient population with extrahippocampal cortical thinning.
Collapse
Affiliation(s)
- Markus Donix
- Department of Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; German Center for Neurodegenerative Diseases (DZNE), 01307 Dresden, Germany.
| | - Robert Haussmann
- Department of Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Franziska Helling
- Department of Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Anne Zweiniger
- Department of Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jan Lange
- Department of Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Annett Werner
- Department of Neuroradiology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; German Center for Neurodegenerative Diseases (DZNE), 01307 Dresden, Germany
| | - Katharina L Donix
- Department of Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Moritz D Brandt
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; German Center for Neurodegenerative Diseases (DZNE), 01307 Dresden, Germany
| | - Jennifer Linn
- Department of Neuroradiology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Michael Bauer
- Department of Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Maria Buthut
- Department of Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Department of Neurology (Neustadt/Trachau), Städtisches Klinikum Dresden, Industriestr. 40, 01129 Dresden, Germany
| |
Collapse
|
4
|
Miranda M, Bekinschtein P. Plasticity Mechanisms of Memory Consolidation and Reconsolidation in the Perirhinal Cortex. Neuroscience 2018; 370:46-61. [DOI: 10.1016/j.neuroscience.2017.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/26/2017] [Accepted: 06/01/2017] [Indexed: 12/17/2022]
|
5
|
Hummos A, Nair SS. An integrative model of the intrinsic hippocampal theta rhythm. PLoS One 2017; 12:e0182648. [PMID: 28787026 PMCID: PMC5546630 DOI: 10.1371/journal.pone.0182648] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/21/2017] [Indexed: 11/23/2022] Open
Abstract
Hippocampal theta oscillations (4–12 Hz) are consistently recorded during memory tasks and spatial navigation. Despite several known circuits and structures that generate hippocampal theta locally in vitro, none of them were found to be critical in vivo, and the hippocampal theta rhythm is severely attenuated by disruption of external input from medial septum or entorhinal cortex. We investigated these discrepancies that question the sufficiency and robustness of hippocampal theta generation using a biophysical spiking network model of the CA3 region of the hippocampus that included an interconnected network of pyramidal cells, inhibitory basket cells (BC) and oriens-lacunosum moleculare (OLM) cells. The model was developed by matching biological data characterizing neuronal firing patterns, synaptic dynamics, short-term synaptic plasticity, neuromodulatory inputs, and the three-dimensional organization of the hippocampus. The model generated theta power robustly through five cooperating generators: spiking oscillations of pyramidal cells, recurrent connections between them, slow-firing interneurons and pyramidal cells subnetwork, the fast-spiking interneurons and pyramidal cells subnetwork, and non-rhythmic structured external input from entorhinal cortex to CA3. We used the modeling framework to quantify the relative contributions of each of these generators to theta power, across different cholinergic states. The largest contribution to theta power was that of the divergent input from the entorhinal cortex to CA3, despite being constrained to random Poisson activity. We found that the low cholinergic states engaged the recurrent connections in generating theta activity, whereas high cholinergic states utilized the OLM-pyramidal subnetwork. These findings revealed that theta might be generated differently across cholinergic states, and demonstrated a direct link between specific theta generators and neuromodulatory states.
Collapse
Affiliation(s)
- Ali Hummos
- Department of Health Informatics, University of Missouri, Columbia, Missouri, United States of America
- Department of Psychiatry, University of Missouri, Columbia, Missouri, United States of America
| | - Satish S. Nair
- Department of Electrical & Computer Engineering, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
6
|
Nair SS, Paré D, Vicentic A. Biologically based neural circuit modelling for the study of fear learning and extinction. NPJ SCIENCE OF LEARNING 2016; 1:16015. [PMID: 29541482 PMCID: PMC5846682 DOI: 10.1038/npjscilearn.2016.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/09/2016] [Accepted: 09/19/2016] [Indexed: 05/25/2023]
Abstract
The neuronal systems that promote protective defensive behaviours have been studied extensively using Pavlovian conditioning. In this paradigm, an initially neutral-conditioned stimulus is paired with an aversive unconditioned stimulus leading the subjects to display behavioural signs of fear. Decades of research into the neural bases of this simple behavioural paradigm uncovered that the amygdala, a complex structure comprised of several interconnected nuclei, is an essential part of the neural circuits required for the acquisition, consolidation and expression of fear memory. However, emerging evidence from the confluence of electrophysiological, tract tracing, imaging, molecular, optogenetic and chemogenetic methodologies, reveals that fear learning is mediated by multiple connections between several amygdala nuclei and their distributed targets, dynamical changes in plasticity in local circuit elements as well as neuromodulatory mechanisms that promote synaptic plasticity. To uncover these complex relations and analyse multi-modal data sets acquired from these studies, we argue that biologically realistic computational modelling, in conjunction with experiments, offers an opportunity to advance our understanding of the neural circuit mechanisms of fear learning and to address how their dysfunction may lead to maladaptive fear responses in mental disorders.
Collapse
Affiliation(s)
- Satish S Nair
- Department of Electrical and Computer Engineering, University of Missouri, Columbia, MO, USA
| | - Denis Paré
- Center for Molecular and Behavioral Neuroscience, Rutgers University—Newark, Newark, NJ, USA
| | - Aleksandra Vicentic
- Division of Neuroscience and Basic Behavioral Science, National Institute of Mental Health, Rockville, MD, USA
| |
Collapse
|
7
|
Willems JGP, Wadman WJ, Cappaert NLM. Distinct Spatiotemporal Activation Patterns of the Perirhinal-Entorhinal Network in Response to Cortical and Amygdala Input. Front Neural Circuits 2016; 10:44. [PMID: 27378860 PMCID: PMC4906015 DOI: 10.3389/fncir.2016.00044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/30/2016] [Indexed: 11/14/2022] Open
Abstract
The perirhinal (PER) and entorhinal cortex (EC) receive input from the agranular insular cortex (AiP) and the subcortical lateral amygdala (LA) and the main output area is the hippocampus. Information transfer through the PER/EC network however, is not always guaranteed. It is hypothesized that this network actively regulates the (sub)cortical activity transfer to the hippocampal network and that the inhibitory system is involved in this function. This study determined the recruitment by the AiP and LA afferents in PER/EC network with the use of voltage sensitive dye (VSD) imaging in horizontal mouse brain slices. Electrical stimulation (500 μA) of the AiP induced activity that gradually propagated predominantly in the rostro-caudal direction: from the PER to the lateral EC (LEC). In the presence of 1 μM of the competitive γ-aminobutyric acid (GABAA) receptor antagonist bicuculline, AiP stimulation recruited the medial EC (MEC) as well. In contrast, LA stimulation (500 μA) only induced activity in the deep layers of the PER. In the presence of bicuculline, the initial population activity in the PER propagated further towards the superficial layers and the EC after a delay. The latency of evoked responses decreased with increasing stimulus intensities (50–500 μA) for both the AiP and LA stimuli. The stimulation threshold for evoking responses in the PER/EC network was higher for the LA than for the AiP. This study showed that the extent of the PER/EC network activation depends on release of inhibition. When GABAA dependent inhibition is reduced, both the AiP and the LA activate spatially overlapping regions, although in a distinct spatiotemporal fashion. It is therefore hypothesized that the inhibitory network regulates excitatory activity from both cortical and subcortical areas that has to be transmitted through the PER/EC network.
Collapse
Affiliation(s)
- Janske G P Willems
- Center for NeuroScience, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Wytse J Wadman
- Center for NeuroScience, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Natalie L M Cappaert
- Center for NeuroScience, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|