1
|
Godbersen GM, Falb P, Klug S, Silberbauer LR, Reed MB, Nics L, Hacker M, Lanzenberger R, Hahn A. Non-invasive assessment of stimulation-specific changes in cerebral glucose metabolism with functional PET. Eur J Nucl Med Mol Imaging 2024; 51:2283-2292. [PMID: 38491215 PMCID: PMC11178598 DOI: 10.1007/s00259-024-06675-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/02/2024] [Indexed: 03/18/2024]
Abstract
PURPOSE Functional positron emission tomography (fPET) with [18F]FDG allows quantification of stimulation-induced changes in glucose metabolism independent of neurovascular coupling. However, the gold standard for quantification requires invasive arterial blood sampling, limiting its widespread use. Here, we introduce a novel fPET method without the need for an input function. METHODS We validated the approach using two datasets (DS). For DS1, 52 volunteers (23.2 ± 3.3 years, 24 females) performed Tetris® during a [18F]FDG fPET scan (bolus + constant infusion). For DS2, 18 participants (24.2 ± 4.3 years, 8 females) performed an eyes-open/finger tapping task (constant infusion). Task-specific changes in metabolism were assessed with the general linear model (GLM) and cerebral metabolic rate of glucose (CMRGlu) was quantified with the Patlak plot as reference. We then estimated simplified outcome parameters, including GLM beta values and percent signal change (%SC), and compared them, region and whole-brain-wise. RESULTS We observed higher agreement with the reference for DS1 than DS2. Both DS resulted in strong correlations between regional task-specific beta estimates and CMRGlu (r = 0.763…0.912). %SC of beta values exhibited strong agreement with %SC of CMRGlu (r = 0.909…0.999). Average activation maps showed a high spatial similarity between CMRGlu and beta estimates (Dice = 0.870…0.979) as well as %SC (Dice = 0.932…0.997), respectively. CONCLUSION The non-invasive method reliably estimates task-specific changes in glucose metabolism without blood sampling. This streamlines fPET, albeit with the trade-off of being unable to quantify baseline metabolism. The simplification enhances its applicability in research and clinical settings.
Collapse
Affiliation(s)
- Godber Mathis Godbersen
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Pia Falb
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Sebastian Klug
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Leo R Silberbauer
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Murray Bruce Reed
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Lukas Nics
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria.
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Siva NK, Bauer C, Glover C, Stolin A, Chandi S, Melnick H, Marano G, Parker B, Mandich M, Lewis JW, Qi J, Gao S, Nott K, Majewski S, Brefczynski-Lewis JA. Real-time motion-enabling positron emission tomography of the brain of upright ambulatory humans. COMMUNICATIONS MEDICINE 2024; 4:117. [PMID: 38872007 PMCID: PMC11176317 DOI: 10.1038/s43856-024-00547-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/05/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Mobile upright PET devices have the potential to enable previously impossible neuroimaging studies. Currently available options are imagers with deep brain coverage that severely limit head/body movements or imagers with upright/motion enabling properties that are limited to only covering the brain surface. METHODS In this study, we test the feasibility of an upright, motion-compatible brain imager, our Ambulatory Motion-enabling Positron Emission Tomography (AMPET) helmet prototype, for use as a neuroscience tool by replicating a variant of a published PET/fMRI study of the neurocorrelates of human walking. We validate our AMPET prototype by conducting a walking movement paradigm to determine motion tolerance and assess for appropriate task related activity in motor-related brain regions. Human participants (n = 11 patients) performed a walking-in-place task with simultaneous AMPET imaging, receiving a bolus delivery of F18-Fluorodeoxyglucose. RESULTS Here we validate three pre-determined measure criteria, including brain alignment motion artifact of less than <2 mm and functional neuroimaging outcomes consistent with existing walking movement literature. CONCLUSIONS The study extends the potential and utility for use of mobile, upright, and motion-tolerant neuroimaging devices in real-world, ecologically-valid paradigms. Our approach accounts for the real-world logistics of an actual human participant study and can be used to inform experimental physicists, engineers and imaging instrumentation developers undertaking similar future studies. The technical advances described herein help set new priorities for facilitating future neuroimaging devices and research of the human brain in health and disease.
Collapse
Affiliation(s)
- Nanda K Siva
- Department of Neuroscience, West Virginia University, P.O. Box 9303, Morgantown, WV, USA
| | | | - Colson Glover
- Department of Neuroscience, West Virginia University, P.O. Box 9303, Morgantown, WV, USA
| | - Alexander Stolin
- Department of Neuroscience, West Virginia University, P.O. Box 9303, Morgantown, WV, USA
| | - Sonia Chandi
- Department of Neuroscience, West Virginia University, P.O. Box 9303, Morgantown, WV, USA
| | - Helen Melnick
- Department of Neuroscience, West Virginia University, P.O. Box 9303, Morgantown, WV, USA
| | - Gary Marano
- Department of Neuroscience, West Virginia University, P.O. Box 9303, Morgantown, WV, USA
| | - Benjamin Parker
- Department of Neuroscience, West Virginia University, P.O. Box 9303, Morgantown, WV, USA
| | - MaryBeth Mandich
- Department of Neuroscience, West Virginia University, P.O. Box 9303, Morgantown, WV, USA
| | - James W Lewis
- Department of Neuroscience, West Virginia University, P.O. Box 9303, Morgantown, WV, USA
| | - Jinyi Qi
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Si Gao
- Department of Neuroscience, West Virginia University, P.O. Box 9303, Morgantown, WV, USA
| | - Kaylee Nott
- Department of Neuroscience, West Virginia University, P.O. Box 9303, Morgantown, WV, USA
| | - Stan Majewski
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | | |
Collapse
|
3
|
do Nascimento DC, Santos da Silva JR, Ara A, Sato JR, Costa L. Hyperscanning fNIRS data analysis using multiregression dynamic models: an illustration in a violin duo. Front Comput Neurosci 2023; 17:1132160. [PMID: 37576070 PMCID: PMC10413103 DOI: 10.3389/fncom.2023.1132160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/13/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Interpersonal neural synchronization (INS) demands a greater understanding of a brain's influence on others. Therefore, brain synchronization is an even more complex system than intrasubject brain connectivity and must be investigated. There is a need to develop novel methods for statistical inference in this context. Methods In this study, motivated by the analysis of fNIRS hyperscanning data, which measure the activity of multiple brains simultaneously, we propose a two-step network estimation: Tabu search local method and global maximization in the selected subgroup [partial conditional directed acyclic graph (DAG) + multiregression dynamic model]. We illustrate this approach in a dataset of two individuals who are playing the violin together. Results This study contributes new tools to the social neuroscience field, which may provide new perspectives about intersubject interactions. Our proposed approach estimates the best probabilistic network representation, in addition to providing access to the time-varying parameters, which may be helpful in understanding the brain-to-brain association of these two players. Discussion The illustration of the violin duo highlights the time-evolving changes in the brain activation of an individual influencing the other one through a data-driven analysis. We confirmed that one player was leading the other given the ROI causal relation toward the other player.
Collapse
Affiliation(s)
| | - José Roberto Santos da Silva
- Department of Statistics, Federal University of Bahia, Salvador, Brazil
- EcMetrics Pesquisa de Mercado, Salvador, Brazil
| | - Anderson Ara
- Departamento de Estatística, Universidade Federal do Parana, Curitiba, Brazil
| | - João Ricardo Sato
- Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Lilia Costa
- Department of Statistics, Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
4
|
Godbersen GM, Klug S, Wadsak W, Pichler V, Raitanen J, Rieckmann A, Stiernman L, Cocchi L, Breakspear M, Hacker M, Lanzenberger R, Hahn A. Task-evoked metabolic demands of the posteromedial default mode network are shaped by dorsal attention and frontoparietal control networks. eLife 2023; 12:e84683. [PMID: 37226880 PMCID: PMC10229117 DOI: 10.7554/elife.84683] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/03/2023] [Indexed: 05/26/2023] Open
Abstract
External tasks evoke characteristic fMRI BOLD signal deactivations in the default mode network (DMN). However, for the corresponding metabolic glucose demands both decreases and increases have been reported. To resolve this discrepancy, functional PET/MRI data from 50 healthy subjects performing Tetris were combined with previously published data sets of working memory, visual and motor stimulation. We show that the glucose metabolism of the posteromedial DMN is dependent on the metabolic demands of the correspondingly engaged task-positive networks. Specifically, the dorsal attention and frontoparietal network shape the glucose metabolism of the posteromedial DMN in opposing directions. While tasks that mainly require an external focus of attention lead to a consistent downregulation of both metabolism and the BOLD signal in the posteromedial DMN, cognitive control during working memory requires a metabolically expensive BOLD suppression. This indicates that two types of BOLD deactivations with different oxygen-to-glucose index may occur in this region. We further speculate that consistent downregulation of the two signals is mediated by decreased glutamate signaling, while divergence may be subject to active GABAergic inhibition. The results demonstrate that the DMN relates to cognitive processing in a flexible manner and does not always act as a cohesive task-negative network in isolation.
Collapse
Affiliation(s)
- Godber M Godbersen
- Department of Psychiatry and Psychotherapy, Medical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of ViennaViennaAustria
| | - Sebastian Klug
- Department of Psychiatry and Psychotherapy, Medical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of ViennaViennaAustria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of ViennaViennaAustria
- Center for Biomarker Research in Medicine (CBmed)GrazAustria
| | - Verena Pichler
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of ViennaViennaAustria
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of ViennaViennaAustria
| | - Julia Raitanen
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of ViennaViennaAustria
- Ludwig Boltzmann Institute Applied DiagnosticsViennaAustria
- Department of Inorganic Chemistry, Faculty of Chemistry, University of ViennaViennaAustria
| | - Anna Rieckmann
- Department of Integrative Medical Biology, Umeå UniversityUmeåSweden
- Department of Radiation Sciences, Umeå UniversityUmeåSweden
- Umeå Center for Functional Brain Imaging, Umeå UniversityUmeåSweden
- The Munich Center for the Economics of Aging, Max Planck Institute for Social Law and Social PolicyMunichGermany
| | - Lars Stiernman
- Department of Integrative Medical Biology, Umeå UniversityUmeåSweden
- Umeå Center for Functional Brain Imaging, Umeå UniversityUmeåSweden
| | - Luca Cocchi
- Clinical Brain Networks Group, QIMR Berghofer Medical Research InstituteBrisbaneAustralia
- School of Biomedical Sciences, Faculty of Medicine, University of QueenslandBrisbaneAustralia
| | - Michael Breakspear
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of NewcastleCallaghanAustralia
- School of Psychological Sciences, College of Engineering, Science and Environment, The University of NewcastleCallaghanAustralia
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of ViennaViennaAustria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of ViennaViennaAustria
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of ViennaViennaAustria
| |
Collapse
|
5
|
Rischka L, Godbersen GM, Pichler V, Michenthaler P, Klug S, Klöbl M, Ritter V, Wadsak W, Hacker M, Kasper S, Lanzenberger R, Hahn A. Reliability of task-specific neuronal activation assessed with functional PET, ASL and BOLD imaging. J Cereb Blood Flow Metab 2021; 41:2986-2999. [PMID: 34078145 PMCID: PMC8545051 DOI: 10.1177/0271678x211020589] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mapping the neuronal response during cognitive processing is of crucial importance to gain new insights into human brain function. BOLD imaging and ASL are established MRI methods in this endeavor. Recently, the novel approach of functional PET (fPET) was introduced, enabling absolute quantification of glucose metabolism at rest and during task execution in a single measurement. Here, we report test-retest reliability of fPET in direct comparison to BOLD imaging and ASL. Twenty healthy subjects underwent two PET/MRI measurements, providing estimates of glucose metabolism, cerebral blood flow (CBF) and blood oxygenation. A cognitive task was employed with different levels of difficulty requiring visual-motor coordination. Task-specific neuronal activation was robustly detected with all three imaging approaches. The highest reliability was obtained for glucose metabolism at rest. Although this dropped during task performance it was still comparable to that of CBF. In contrast, BOLD imaging yielded high performance only for qualitative spatial overlap of task effects but not for quantitative comparison. Hence, the combined assessment of fPET and ASL offers reliable and simultaneous absolute quantification of glucose metabolism and CBF at rest and task.
Collapse
Affiliation(s)
- Lucas Rischka
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Godber M Godbersen
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Verena Pichler
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Paul Michenthaler
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Sebastian Klug
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Manfred Klöbl
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Vera Ritter
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria.,Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Jamadar SD, Zhong S, Carey A, McIntyre R, Ward PGD, Fornito A, Premaratne M, Jon Shah N, O'Brien K, Stäb D, Chen Z, Egan GF. Task-evoked simultaneous FDG-PET and fMRI data for measurement of neural metabolism in the human visual cortex. Sci Data 2021; 8:267. [PMID: 34654823 PMCID: PMC8520012 DOI: 10.1038/s41597-021-01042-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/12/2021] [Indexed: 01/21/2023] Open
Abstract
Understanding how the living human brain functions requires sophisticated in vivo neuroimaging technologies to characterise the complexity of neuroanatomy, neural function, and brain metabolism. Fluorodeoxyglucose positron emission tomography (FDG-PET) studies of human brain function have historically been limited in their capacity to measure dynamic neural activity. Simultaneous [18 F]-FDG-PET and functional magnetic resonance imaging (fMRI) with FDG infusion protocols enable examination of dynamic changes in cerebral glucose metabolism simultaneously with dynamic changes in blood oxygenation. The Monash vis-fPET-fMRI dataset is a simultaneously acquired FDG-fPET/BOLD-fMRI dataset acquired from n = 10 healthy adults (18-49 yrs) whilst they viewed a flickering checkerboard task. The dataset contains both raw (unprocessed) images and source data organized according to the BIDS specification. The source data includes PET listmode, normalization, sinogram and physiology data. Here, the technical feasibility of using opensource frameworks to reconstruct the PET listmode data is demonstrated. The dataset has significant re-use value for the development of new processing pipelines, signal optimisation methods, and to formulate new hypotheses concerning the relationship between neuronal glucose uptake and cerebral haemodynamics.
Collapse
Affiliation(s)
- Sharna D Jamadar
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia. .,Australian Research Council Centre of Excellence for Integrative Brain Function, Clayton, Australia. .,Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia.
| | - Shenjun Zhong
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia.,National Imaging Facility, Clayton, Australia
| | - Alexandra Carey
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia.,Department of Medical Imaging, Monash Health, Clayton, VIC, Australia
| | - Richard McIntyre
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia.,Department of Medical Imaging, Monash Health, Clayton, VIC, Australia
| | - Phillip G D Ward
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Clayton, Australia.,Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| | - Alex Fornito
- Australian Research Council Centre of Excellence for Integrative Brain Function, Clayton, Australia.,Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| | - Malin Premaratne
- Department of Electrical and Computer Systems Engineering, Monash University, Clayton, VIC, Australia
| | - N Jon Shah
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Jülich, Germany
| | - Kieran O'Brien
- MR Research Collaborations, Siemens Healthcare Pty Ltd, Clayton, Australia
| | - Daniel Stäb
- MR Research Collaborations, Siemens Healthcare Pty Ltd, Clayton, Australia
| | - Zhaolin Chen
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia.,Monash Data Futures Institute, Monash University, Clayton, Australia
| | - Gary F Egan
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Clayton, Australia.,Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| |
Collapse
|
7
|
Dissociations between glucose metabolism and blood oxygenation in the human default mode network revealed by simultaneous PET-fMRI. Proc Natl Acad Sci U S A 2021; 118:2021913118. [PMID: 34193521 PMCID: PMC8271663 DOI: 10.1073/pnas.2021913118] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A consistent finding from functional MRI (fMRI) of externally focused cognitive control is negative signal change in the brain’s default mode network (DMN), but it is unknown whether this reflects an increase of synaptic activity during rest periods or active suppression during task. Using hybrid PET-MRI, we show that task-positive fMRI responses align with increasing glucose metabolism during cognitive control, but task-negative fMRI responses in DMN are not accompanied by corresponding decreases in metabolism. The results are incompatible with an interpretation of task-negative fMRI signal in DMN as a relative metabolic increase during a resting baseline condition. The present results open up avenues for understanding abnormal fMRI activity patterns in DMN in aging and psychiatric disease. The finding of reduced functional MRI (fMRI) activity in the default mode network (DMN) during externally focused cognitive control has been highly influential to our understanding of human brain function. However, these negative fMRI responses, measured as relative decreases in the blood-oxygenation-level–dependent (BOLD) response between rest and task, have also prompted major questions of interpretation. Using hybrid functional positron emission tomography (PET)-MRI, this study shows that task-positive and -negative BOLD responses do not reflect antagonistic patterns of synaptic metabolism. Task-positive BOLD responses in attention and control networks were accompanied by concomitant increases in glucose metabolism during cognitive control, but metabolism in widespread DMN remained high during rest and task despite negative BOLD responses. Dissociations between glucose metabolism and the BOLD response specific to the DMN reveal functional heterogeneity in this network and demonstrate that negative BOLD responses during cognitive control should not be interpreted to reflect relative increases in metabolic activity during rest. Rather, neurovascular coupling underlying BOLD response patterns during rest and task in DMN appears fundamentally different from BOLD responses in other association networks during cognitive control.
Collapse
|
8
|
Jamadar SD, Ward PGD, Liang EX, Orchard ER, Chen Z, Egan GF. Metabolic and Hemodynamic Resting-State Connectivity of the Human Brain: A High-Temporal Resolution Simultaneous BOLD-fMRI and FDG-fPET Multimodality Study. Cereb Cortex 2021; 31:2855-2867. [PMID: 33529320 DOI: 10.1093/cercor/bhaa393] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/26/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Simultaneous [18F]-fluorodeoxyglucose positron emission tomography functional magnetic resonance imaging (FDG-PET/fMRI) provides the capacity to image 2 sources of energetic dynamics in the brain-glucose metabolism and the hemodynamic response. fMRI connectivity has been enormously useful for characterizing interactions between distributed brain networks in humans. Metabolic connectivity based on static FDG-PET has been proposed as a biomarker for neurological disease, but FDG-sPET cannot be used to estimate subject-level measures of "connectivity," only across-subject "covariance." Here, we applied high-temporal resolution constant infusion functional positron emission tomography (fPET) to measure subject-level metabolic connectivity simultaneously with fMRI connectivity. fPET metabolic connectivity was characterized by frontoparietal connectivity within and between hemispheres. fPET metabolic connectivity showed moderate similarity with fMRI primarily in superior cortex and frontoparietal regions. Significantly, fPET metabolic connectivity showed little similarity with FDG-sPET metabolic covariance, indicating that metabolic brain connectivity is a nonergodic process whereby individual brain connectivity cannot be inferred from group-level metabolic covariance. Our results highlight the complementary strengths of fPET and fMRI in measuring the intrinsic connectivity of the brain and open up the opportunity for novel fundamental studies of human brain connectivity as well as multimodality biomarkers of neurological diseases.
Collapse
Affiliation(s)
- Sharna D Jamadar
- Monash Biomedical Imaging, Melbourne, Vic, 3800 Australia.,Turner Institute for Brain and Mental Health, Monash University, Melbourne, Vic, 3800 Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Melbourne 3800, Australia
| | - Phillip G D Ward
- Monash Biomedical Imaging, Melbourne, Vic, 3800 Australia.,Turner Institute for Brain and Mental Health, Monash University, Melbourne, Vic, 3800 Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Melbourne 3800, Australia
| | - Emma X Liang
- Monash Biomedical Imaging, Melbourne, Vic, 3800 Australia
| | - Edwina R Orchard
- Monash Biomedical Imaging, Melbourne, Vic, 3800 Australia.,Turner Institute for Brain and Mental Health, Monash University, Melbourne, Vic, 3800 Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Melbourne 3800, Australia
| | - Zhaolin Chen
- Monash Biomedical Imaging, Melbourne, Vic, 3800 Australia.,Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, Vic, 3800 Australia
| | - Gary F Egan
- Monash Biomedical Imaging, Melbourne, Vic, 3800 Australia.,Turner Institute for Brain and Mental Health, Monash University, Melbourne, Vic, 3800 Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Melbourne 3800, Australia
| |
Collapse
|
9
|
Brain glucose uptake during transcranial direct current stimulation measured with functional [ 18F]FDG-PET. Brain Imaging Behav 2021; 14:477-484. [PMID: 31598826 PMCID: PMC7160063 DOI: 10.1007/s11682-019-00195-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Previous evidence indicates that transcranial direct stimulation (tDCS) is a neuromodulatory brain stimulation technique. Easy applicability, low side-effects and negligible costs facilitated its wide-spread application in efforts to modulate brain function, however neuronal mechanisms of tDCS are insufficiently understood. Hence, we investigated the immediate impact of tDCS on the brain's glucose consumption in a continuous infusion protocol with the radioligand 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG) and positron emission tomography (PET). This novel functional PET (fPET) method is capable to reliably detect area-specific and dynamic absolute glucose demand related to neuronal activity in a single molecular imaging session. Fifteen healthy subjects underwent tDCS at 0.5, 1 and 2 mA (mA) at the bilateral dorsolateral prefrontal cortex (dlPFC, cathodal right) for 10 min during functional [18F]FDG-PET lasting 70 min. Active stimulation compared to sham did not yield significant changes in glucose consumption at any tested stimulation intensity in this paradigm. Exploratory investigation of aftereffects provided hints for increased glucose consumption with a delay of 5 min at 1 mA in the right posterior temporal cortex. This is the first study investigating changes of glucose consumption in the brain during tDCS. The lack of immediately increased glucose consumption indicates that energy demanding processes in the brain such as glutamatergic signaling might not be immediately increased by tDCS. However, our results implicate the need of fPET investigations for medium-term and long-term effects.
Collapse
|
10
|
Jamadar SD, Ward PGD, Close TG, Fornito A, Premaratne M, O'Brien K, Stäb D, Chen Z, Shah NJ, Egan GF. Simultaneous BOLD-fMRI and constant infusion FDG-PET data of the resting human brain. Sci Data 2020; 7:363. [PMID: 33087725 PMCID: PMC7578808 DOI: 10.1038/s41597-020-00699-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
Simultaneous [18 F]-fluorodeoxyglucose positron emission tomography and functional magnetic resonance imaging (FDG-PET/fMRI) provides the capability to image two sources of energetic dynamics in the brain - cerebral glucose uptake and the cerebrovascular haemodynamic response. Resting-state fMRI connectivity has been enormously useful for characterising interactions between distributed brain regions in humans. Metabolic connectivity has recently emerged as a complementary measure to investigate brain network dynamics. Functional PET (fPET) is a new approach for measuring FDG uptake with high temporal resolution and has recently shown promise for assessing the dynamics of neural metabolism. Simultaneous fMRI/fPET is a relatively new hybrid imaging modality, with only a few biomedical imaging research facilities able to acquire FDG PET and BOLD fMRI data simultaneously. We present data for n = 27 healthy young adults (18-20 yrs) who underwent a 95-min simultaneous fMRI/fPET scan while resting with their eyes open. This dataset provides significant re-use value to understand the neural dynamics of glucose metabolism and the haemodynamic response, the synchrony, and interaction between these measures, and the development of new single- and multi-modality image preparation and analysis procedures.
Collapse
Affiliation(s)
- Sharna D Jamadar
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia.
- Australian Research Council Centre of Excellence for Integrative Brain Function, Melbourne, Australia.
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia.
| | - Phillip G D Ward
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, Melbourne, Australia
| | - Thomas G Close
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
- Australian National Imaging Facility, Brisbane, QLD, Australia
| | - Alex Fornito
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - Malin Premaratne
- Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, VIC, Australia
| | - Kieran O'Brien
- Siemens Healthineers, Siemens Healthcare Pty Ltd, Bayswater, VIC, 3153, Australia
| | - Daniel Stäb
- Siemens Healthineers, Siemens Healthcare Pty Ltd, Bayswater, VIC, 3153, Australia
| | - Zhaolin Chen
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
- Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, VIC, Australia
| | - N Jon Shah
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
- Institute of Neuroscience and Medicine, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Gary F Egan
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, Melbourne, Australia
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Wang J, Shan Y, Dai J, Cui B, Shang K, Yang H, Chen Z, Shan B, Zhao G, Lu J. Altered coupling between resting-state glucose metabolism and functional activity in epilepsy. Ann Clin Transl Neurol 2020; 7:1831-1842. [PMID: 32860354 PMCID: PMC7545617 DOI: 10.1002/acn3.51168] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/22/2020] [Accepted: 07/30/2020] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE Altered functional activities and hypometabolism have been found in medial temporal lobe epilepsy patients with hippocampal sclerosis (mTLE-HS). Hybrid PET/MR scanners provide opportunities to explore the relationship between resting-state energy consumption and functional activities, but whether repeated seizures disturb the bioenergetic coupling and its relationship with seizure outcomes remain unknown. METHODS 18 F-FDG PET and resting-state functional MRI (rs-fMRI) scans were performed with hybrid PET/MR in 26 patients with mTLE-HS and in healthy controls. Energy consumption was quantified by 18 F-FDG standardized uptake value ratio(SUVR) relative to cerebellum. Spontaneous neural activities were estimated using regional homogeneity (ReHo), fractional amplitude of low frequency fluctuations (fALFF) from rs-fMRI. Between-group differences in SUVR and rs-fMRI derived metrics were evaluated by two-sample t test. Voxel-wise spatial correlations were explored between SUVR and ReHo, fALFF across gray matter and compared between groups. Furthermore, the relationships between altered fALFF/SUVR and ReHo/SUVR coupling and surgical outcomes were evaluated. RESULTS Both the patients and healthy controls showed significant positive correlations between SUVR and rs-fMRI metrics. Spatial correlations between SUVR and fMRI-derived metrics across gray matter were significantly higher in patients with mTLE-HS compared with healthy controls (fALFF/SUVR, P < 0.001; ReHo/SUVR, P = 0.022). Higher fALFF/SUVR couplings were found in patients who had Engel class IA after surgery than all other (P = 0.025), while altered ReHo/SUVR couplings (P = 0.097) were not. CONCLUSION These findings demonstrated altered bioenergetic coupling across gray matter and its relationship with seizure outcomes, which may provide novel insights into pathogenesis of mTLE-HS and potential biomarkers for epilepsy surgery planning.
Collapse
Affiliation(s)
- Jingjuan Wang
- Department of Nuclear MedicineXuanwu Hospital Capital Medical UniversityBeijingChina
| | - Yi Shan
- Department of RadiologyXuanwu Hospital Capital Medical UniversityBeijingChina
- Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Jindong Dai
- Department of NeurosurgeryBeijing Haidian Section of Peking University Third HospitalBeijingChina
- Department of Functional NeurosurgeryXuanwu Hospital Capital Medical UniversityBeijingChina
| | - Bixiao Cui
- Department of Nuclear MedicineXuanwu Hospital Capital Medical UniversityBeijingChina
| | - Kun Shang
- Department of Nuclear MedicineXuanwu Hospital Capital Medical UniversityBeijingChina
| | - Hongwei Yang
- Department of Nuclear MedicineXuanwu Hospital Capital Medical UniversityBeijingChina
| | | | - Baoci Shan
- Division of Nuclear Technology and ApplicationsInstitute of High Energy PhysicsChinese Academy of SciencesBeijingChina
- Beijing Engineering Research Center of Radiographic Techniques and EquipmentBeijingChina
- CAS Centre for Excellence in Brain Science and Intelligent TechnologyShanghaiChina
| | - Guoguang Zhao
- Department of NeurosurgeryXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Jie Lu
- Department of Nuclear MedicineXuanwu Hospital Capital Medical UniversityBeijingChina
- Department of RadiologyXuanwu Hospital Capital Medical UniversityBeijingChina
- Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| |
Collapse
|
12
|
Sander CY, Hansen HD, Wey HY. Advances in simultaneous PET/MR for imaging neuroreceptor function. J Cereb Blood Flow Metab 2020; 40:1148-1166. [PMID: 32169011 PMCID: PMC7238372 DOI: 10.1177/0271678x20910038] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hybrid imaging using PET/MRI has emerged as a platform for elucidating novel neurobiology, molecular and functional changes in disease, and responses to physiological or pharmacological interventions. For the central nervous system, PET/MRI has provided insights into biochemical processes, linking selective molecular targets and distributed brain function. This review highlights several examples that leverage the strengths of simultaneous PET/MRI, which includes measuring the perturbation of multi-modal imaging signals on dynamic timescales during pharmacological challenges, physiological interventions or behavioral tasks. We discuss important considerations for the experimental design of dynamic PET/MRI studies and data analysis approaches for comparing and quantifying simultaneous PET/MRI data. The primary focus of this review is on functional PET/MRI studies of neurotransmitter and receptor systems, with an emphasis on the dopamine, opioid, serotonin and glutamate systems as molecular neuromodulators. In this context, we provide an overview of studies that employ interventions to alter the activity of neuroreceptors or the release of neurotransmitters. Overall, we emphasize how the synergistic use of simultaneous PET/MRI with appropriate study design and interventions has the potential to expand our knowledge about the molecular and functional dynamics of the living human brain. Finally, we give an outlook on the future opportunities for simultaneous PET/MRI.
Collapse
Affiliation(s)
- Christin Y Sander
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, MA, USA
| | - Hanne D Hansen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, MA, USA.,Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, MA, USA
| |
Collapse
|
13
|
Hahn A, Breakspear M, Rischka L, Wadsak W, Godbersen GM, Pichler V, Michenthaler P, Vanicek T, Hacker M, Kasper S, Lanzenberger R, Cocchi L. Reconfiguration of functional brain networks and metabolic cost converge during task performance. eLife 2020; 9:52443. [PMID: 32314956 PMCID: PMC7176400 DOI: 10.7554/elife.52443] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/07/2020] [Indexed: 12/23/2022] Open
Abstract
The ability to solve cognitive tasks depends upon adaptive changes in the organization of whole-brain functional networks. However, the link between task-induced network reconfigurations and their underlying energy demands is poorly understood. We address this by multimodal network analyses integrating functional and molecular neuroimaging acquired concurrently during a complex cognitive task. Task engagement elicited a marked increase in the association between glucose consumption and functional brain network reorganization. This convergence between metabolic and neural processes was specific to feedforward connections linking the visual and dorsal attention networks, in accordance with task requirements of visuo-spatial reasoning. Further increases in cognitive load above initial task engagement did not affect the relationship between metabolism and network reorganization but only modulated existing interactions. Our findings show how the upregulation of key computational mechanisms to support cognitive performance unveils the complex, interdependent changes in neural metabolism and neuro-vascular responses.
Collapse
Affiliation(s)
- Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Michael Breakspear
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Psychology, University of Newcastle, Newcastle, Australia
| | - Lucas Rischka
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria.,Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Godber M Godbersen
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Verena Pichler
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Paul Michenthaler
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Thomas Vanicek
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Luca Cocchi
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
14
|
Pasquini L, Toller G, Staffaroni A, Brown JA, Deng J, Lee A, Kurcyus K, Shdo SM, Allen I, Sturm VE, Cobigo Y, Borghesani V, Battistella G, Gorno-Tempini ML, Rankin KP, Kramer J, Rosen HH, Miller BL, Seeley WW. State and trait characteristics of anterior insula time-varying functional connectivity. Neuroimage 2020; 208:116425. [PMID: 31805382 PMCID: PMC7225015 DOI: 10.1016/j.neuroimage.2019.116425] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 12/12/2022] Open
Abstract
The human anterior insula (aINS) is a topographically organized brain region, in which ventral portions contribute to socio-emotional function through limbic and autonomic connections, whereas the dorsal aINS contributes to cognitive processes through frontal and parietal connections. Open questions remain, however, regarding how aINS connectivity varies over time. We implemented a novel approach combining seed-to-whole-brain sliding-window functional connectivity MRI and k-means clustering to assess time-varying functional connectivity of aINS subregions. We studied three independent large samples of healthy participants and longitudinal datasets to assess inter- and intra-subject stability, and related aINS time-varying functional connectivity profiles to dispositional empathy. We identified four robust aINS time-varying functional connectivity modes that displayed both "state" and "trait" characteristics: while modes featuring connectivity to sensory regions were modulated by eye closure, modes featuring connectivity to higher cognitive and emotional processing regions were stable over time and related to empathy measures.
Collapse
Affiliation(s)
- Lorenzo Pasquini
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Gianina Toller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Adam Staffaroni
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Jesse A Brown
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Jersey Deng
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Alex Lee
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Katarzyna Kurcyus
- Department of Neuroradiology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany; Department of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | | | - Isabel Allen
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Virginia E Sturm
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Yann Cobigo
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Valentina Borghesani
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Giovanni Battistella
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | | | - Katherine P Rankin
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Joel Kramer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Howard H Rosen
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA; Memory and Aging Center, Department of Pathology, University of California, San Francisco, CA, USA.
| |
Collapse
|
15
|
Rischka L, Gryglewski G, Berroterán-Infante N, Rausch I, James GM, Klöbl M, Sigurdardottir H, Hartenbach M, Hahn A, Wadsak W, Mitterhauser M, Beyer T, Kasper S, Prayer D, Hacker M, Lanzenberger R. Attenuation Correction Approaches for Serotonin Transporter Quantification With PET/MRI. Front Physiol 2019; 10:1422. [PMID: 31824335 PMCID: PMC6883225 DOI: 10.3389/fphys.2019.01422] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/04/2019] [Indexed: 12/26/2022] Open
Abstract
Background Several MR-based attenuation correction (AC) approaches were developed to conquer the challenging AC in hybrid PET/MR imaging. These AC methods are commonly evaluated on standardized uptake values or tissue concentration. However, in neurotransmitter system studies absolute quantification is more favorable due to its accuracy. Therefore, our aim was to investigate the accuracy of segmentation- and atlas-based MR AC approaches on serotonin transporter (SERT) distribution volumes and occupancy after a drug challenge. Methods 18 healthy subjects (7 male) underwent two [11C]DASB PET/MRI measurements in a double-blinded, placebo controlled, cross-over design. After 70 min the selective serotonin reuptake inhibitor (SSRI) citalopram or a placebo was infused. The parameters total and specific volume of distribution (VT, VS = BPP) and occupancy were quantified. All subjects underwent a low-dose CT scan as reference AC method. Besides the standard AC approaches DIXON and UTE, a T1-weighted structural image was recorded to estimate a pseudo-CT based on an MR/CT database (pseudoCT). Another evaluated AC approach superimposed a bone model on AC DIXON. Lastly, an approach optimizing the segmentation of UTE images was analyzed (RESOLUTE). PET emission data were reconstructed with all 6 AC methods. The accuracy of the AC approaches was evaluated on a region of interest-basis for the parameters VT, BPP, and occupancy with respect to the results of AC CT. Results Variations for VT and BPP were found with all AC methods with bias ranging from -15 to 17%. The smallest relative errors for all regions were found with AC pseudoCT (<|5%|). Although the bias between BPP SSRI and BPP placebo varied markedly with AC DIXON (<|12%|) and AC UTE (<|9%|), a high correlation to AC CT was obtained (r 2∼1). The relative difference of the occupancy for all tested AC methods was small for SERT high binding regions (<|4%|). Conclusion The high correlation might offer a rescaling from the biased parameters VT and BPP to the true values. Overall, the pseudoCT approach yielded smallest errors and the best agreement with AC CT. For SERT occupancy, all AC methods showed little bias in high binding regions, indicating that errors may cancel out in longitudinal assessments.
Collapse
Affiliation(s)
- Lucas Rischka
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Gregor Gryglewski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Neydher Berroterán-Infante
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Ivo Rausch
- QIMP Group, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Gregory Miles James
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Manfred Klöbl
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Helen Sigurdardottir
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Markus Hartenbach
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.,CBmed, Graz, Austria
| | - Markus Mitterhauser
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Thomas Beyer
- QIMP Group, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Daniela Prayer
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Hahn A, Lanzenberger R, Kasper S. Making Sense of Connectivity. Int J Neuropsychopharmacol 2019; 22:194-207. [PMID: 30544240 PMCID: PMC6403091 DOI: 10.1093/ijnp/pyy100] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 11/07/2018] [Accepted: 12/11/2018] [Indexed: 02/07/2023] Open
Abstract
In addition to the assessment of local alterations of specific brain regions, the investigation of entire networks with in vivo neuroimaging techniques has gained increasing attention. In general, connectivity analysis refers to the investigation of links between brain regions, with the aim to characterize their interactions and information transfer. These may represent or relate to different physiological characteristics (structural, functional, or metabolic information) and can be calculated across different levels of granularity (2 regions vs whole brain). In this article, we provide an overview of different connectivity analysis approaches with interpretations and limitations as well as examples in pharmacological imaging and clinical applications. Structural connectivity obtained from diffusion MRI enables the reconstruction of neuronal fiber tracts. These physical links represent major constraints of functional connections, which are in turn defined as correlations between signal time courses. In addition, molecular connectivity approaches based on PET imaging enable the assessment of interregional associations of metabolic demands and neurotransmitter systems. Application of these approaches in clinical investigations has demonstrated novel alterations in various neurological and psychiatric disorders on a network level. Future work should aim for the combined assessment of multiple imaging modalities and to establish robust biomarkers for clinical use. These advancements will further improve the biological interpretation of connectivity metrics and networks of the human brain.
Collapse
Affiliation(s)
- Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| |
Collapse
|
17
|
Chen Z, Jamadar SD, Li S, Sforazzini F, Baran J, Ferris N, Shah NJ, Egan GF. From simultaneous to synergistic MR-PET brain imaging: A review of hybrid MR-PET imaging methodologies. Hum Brain Mapp 2018; 39:5126-5144. [PMID: 30076750 DOI: 10.1002/hbm.24314] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/25/2018] [Accepted: 07/02/2018] [Indexed: 12/17/2022] Open
Abstract
Simultaneous Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) scanning is a recent major development in biomedical imaging. The full integration of the PET detector ring and electronics within the MR system has been a technologically challenging design to develop but provides capacity for simultaneous imaging and the potential for new diagnostic and research capability. This article reviews state-of-the-art MR-PET hardware and software, and discusses future developments focusing on neuroimaging methodologies for MR-PET scanning. We particularly focus on the methodologies that lead to an improved synergy between MRI and PET, including optimal data acquisition, PET attenuation and motion correction, and joint image reconstruction and processing methods based on the underlying complementary and mutual information. We further review the current and potential future applications of simultaneous MR-PET in both systems neuroscience and clinical neuroimaging research. We demonstrate a simultaneous data acquisition protocol to highlight new applications of MR-PET neuroimaging research studies.
Collapse
Affiliation(s)
- Zhaolin Chen
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria, Australia
| | - Sharna D Jamadar
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Clayton, Victoria, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| | - Shenpeng Li
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria, Australia
| | | | - Jakub Baran
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Department of Biophysics, Faculty of Mathematics and Natural Sciences, University of Rzeszów, Rzeszów, Poland
| | - Nicholas Ferris
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Monash Imaging, Monash Health, Clayton, Victoria, Australia
| | - Nadim Jon Shah
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum, Jülich, Germany
| | - Gary F Egan
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Clayton, Victoria, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
18
|
Gryglewski G, Seiger R, James GM, Godbersen GM, Komorowski A, Unterholzner J, Michenthaler P, Hahn A, Wadsak W, Mitterhauser M, Kasper S, Lanzenberger R. Spatial analysis and high resolution mapping of the human whole-brain transcriptome for integrative analysis in neuroimaging. Neuroimage 2018; 176:259-267. [PMID: 29723639 DOI: 10.1016/j.neuroimage.2018.04.068] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/30/2018] [Accepted: 04/29/2018] [Indexed: 11/16/2022] Open
Abstract
The quantification of big pools of diverse molecules provides important insights on brain function, but is often restricted to a limited number of observations, which impairs integration with other modalities. To resolve this issue, a method allowing for the prediction of mRNA expression in the entire brain based on microarray data provided in the Allen Human Brain Atlas was developed. Microarray data of 3702 samples from 6 brain donors was registered to MNI and cortical surface space using FreeSurfer. For each of 18,686 genes, spatial dependence of transcription was assessed using variogram modelling. Variogram models were employed in Gaussian process regression to calculate best linear unbiased predictions for gene expression at all locations represented in well-established imaging atlases for cortex, subcortical structures and cerebellum. For validation, predicted whole-brain transcription of the HTR1A gene was correlated with [carbonyl-11C]WAY-100635 positron emission tomography data collected from 30 healthy subjects. Prediction results showed minimal bias ranging within ±0.016 (cortical surface), ±0.12 (subcortical regions) and ±0.14 (cerebellum) in units of log2 expression intensity for all genes. Across genes, the correlation of predicted and observed mRNA expression in leave-one-out cross-validation correlated with the strength of spatial dependence (cortical surface: r = 0.91, subcortical regions: r = 0.85, cerebellum: r = 0.84). 816 out of 18,686 genes exhibited a high spatial dependence accounting for more than 50% of variance in the difference of gene expression on the cortical surface. In subcortical regions and cerebellum, different sets of genes were implicated by high spatially structured variability. For the serotonin 1A receptor, correlation between PET binding potentials and predicted comprehensive mRNA expression was markedly higher (Spearman ρ = 0.72 for cortical surface, ρ = 0.84 for subcortical regions) than correlation of PET and discrete samples only (ρ = 0.55 and ρ = 0.63, respectively). Prediction of mRNA expression in the entire human brain allows for intuitive visualization of gene transcription and seamless integration in multimodal analysis without bias arising from non-uniform distribution of available samples. Extension of this methodology promises to facilitate translation of omics research and enable investigation of human brain function at a systems level.
Collapse
Affiliation(s)
- Gregor Gryglewski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - René Seiger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Gregory Miles James
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | | | - Arkadiusz Komorowski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Jakob Unterholzner
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Paul Michenthaler
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria; Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria; Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria.
| |
Collapse
|