1
|
Schregel K, Heinz L, Hunger J, Pan C, Bode J, Fischer M, Sturm V, Venkataramani V, Karimian-Jazi K, Agardy DA, Streibel Y, Zerelles R, Wick W, Heiland S, Bunse T, Tews B, Platten M, Winkler F, Bendszus M, Breckwoldt MO. A Cellular Ground Truth to Develop MRI Signatures in Glioma Models by Correlative Light Sheet Microscopy and Atlas-Based Coregistration. J Neurosci 2023; 43:5574-5587. [PMID: 37429718 PMCID: PMC10376935 DOI: 10.1523/jneurosci.1470-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 05/21/2023] [Accepted: 06/25/2023] [Indexed: 07/12/2023] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor with poor overall survival. Magnetic resonance imaging (MRI) is the main imaging modality for glioblastoma but has inherent shortcomings. The molecular and cellular basis of MR signals is incompletely understood. We established a ground truth-based image analysis platform to coregister MRI and light sheet microscopy (LSM) data to each other and to an anatomic reference atlas for quantification of 20 predefined anatomic subregions. Our pipeline also includes a segmentation and quantification approach for single myeloid cells in entire LSM datasets. This method was applied to three preclinical glioma models in male and female mice (GL261, U87MG, and S24), which exhibit different key features of the human glioma. Multiparametric MR data including T2-weighted sequences, diffusion tensor imaging, T2 and T2* relaxometry were acquired. Following tissue clearing, LSM focused on the analysis of tumor cell density, microvasculature, and innate immune cell infiltration. Correlated analysis revealed differences in quantitative MRI metrics between the tumor-bearing and the contralateral hemisphere. LSM identified tumor subregions that differed in their MRI characteristics, indicating tumor heterogeneity. Interestingly, MRI signatures, defined as unique combinations of different MRI parameters, differed greatly between the models. The direct correlation of MRI and LSM allows an in-depth characterization of preclinical glioma and can be used to decipher the structural, cellular, and, likely, molecular basis of tumoral MRI biomarkers. Our approach may be applied in other preclinical brain tumor or neurologic disease models, and the derived MRI signatures could ultimately inform image interpretation in a clinical setting.SIGNIFICANCE STATEMENT We established a histologic ground truth-based approach for MR image analyses and tested this method in three preclinical glioma models exhibiting different features of glioblastoma. Coregistration of light sheet microscopy to MRI allowed for an evaluation of quantitative MRI data in histologically distinct tumor subregions. Coregistration to a mouse brain atlas enabled a regional comparison of MRI parameters with a histologically informed interpretation of the results. Our approach is transferable to other preclinical models of brain tumors and further neurologic disorders. The method can be used to decipher the structural, cellular, and molecular basis of MRI signal characteristics. Ultimately, information derived from such analyses could strengthen the neuroradiological evaluation of glioblastoma as they enhance the interpretation of MRI data.
Collapse
Affiliation(s)
- Katharina Schregel
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lennart Heinz
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Jessica Hunger
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Chenchen Pan
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Julia Bode
- Molecular Mechanisms of Tumor Invasion, Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Manuel Fischer
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Volker Sturm
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Varun Venkataramani
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Kianush Karimian-Jazi
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Dennis A Agardy
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, 68167 Mannheim, Germany
| | - Yannik Streibel
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Roland Zerelles
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Theresa Bunse
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, 68167 Mannheim, Germany
| | - Björn Tews
- Molecular Mechanisms of Tumor Invasion, Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Michael Platten
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, 68167 Mannheim, Germany
| | - Frank Winkler
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Michael O Breckwoldt
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Kaufmann E, Rojczyk P, Sydnor VJ, Guenette JP, Tripodis Y, Kaufmann D, Umminger L, Seitz-Holland J, Sollmann N, Rathi Y, Bouix S, Fortier CB, Salat D, Pasternak O, Hinds SR, Milberg WP, McGlinchey RE, Shenton ME, Koerte IK. Association of War Zone-Related Stress With Alterations in Limbic Gray Matter Microstructure. JAMA Netw Open 2022; 5:e2231891. [PMID: 36112375 PMCID: PMC9482063 DOI: 10.1001/jamanetworkopen.2022.31891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
IMPORTANCE Military service members returning from theaters of war are at increased risk for mental illness, but despite high prevalence and substantial individual and societal burden, the underlying pathomechanisms remain largely unknown. Exposure to high levels of emotional stress in theaters of war and mild traumatic brain injury (mTBI) are presumed factors associated with risk for the development of mental disorders. OBJECTIVE To investigate (1) whether war zone-related stress is associated with microstructural alterations in limbic gray matter (GM) independent of mental disorders common in this population, (2) whether associations between war zone-related stress and limbic GM microstructure are modulated by a history of mTBI, and (3) whether alterations in limbic GM microstructure are associated with neuropsychological functioning. DESIGN, SETTING, AND PARTICIPANTS This cohort study was part of the TRACTS (Translational Research Center for TBI and Stress Disorders) study, which took place in 2010 to 2014 at the Veterans Affair Rehabilitation Research and Development TBI National Network Research Center. Participants included male veterans (aged 18-65 years) with available diffusion tensor imaging data enrolled in the TRACTS study. Data analysis was performed between December 2017 to September 2021. EXPOSURES The Deployment Risk and Resilience Inventory (DRRI) was used to measure exposure to war zone-related stress. The Boston Assessment of TBI-Lifetime was used to assess history of mTBI. Stroop Inhibition (Stroop-IN) and Inhibition/Switching (Stroop-IS) Total Error Scaled Scores were used to assess executive or attentional control functions. MAIN OUTCOMES AND MEASURES Diffusion characteristics (fractional anisotropy of tissue [FAT]) of 16 limbic and paralimbic GM regions and measures of functional outcome. RESULTS Among 384 male veterans recruited, 168 (mean [SD] age, 31.4 [7.4] years) were analyzed. Greater war zone-related stress was associated with lower FAT in the cingulate (DRRI-combat left: P = .002, partial r = -0.289; DRRI-combat right: P = .02, partial r = -0.216; DRRI-aftermath left: P = .004, partial r = -0.281; DRRI-aftermath right: P = .02, partial r = -0.219), orbitofrontal (DRRI-combat left medial orbitofrontal cortex: P = .02, partial r = -0.222; DRRI-combat right medial orbitofrontal cortex: P = .005, partial r = -0.256; DRRI-aftermath left medial orbitofrontal cortex: P = .02, partial r = -0.214; DRRI-aftermath right medial orbitofrontal cortex: P = .005, partial r = -0.260; DRRI-aftermath right lateral orbitofrontal cortex: P = .03, partial r = -0.196), and parahippocampal (DRRI-aftermath right: P = .03, partial r = -0.191) gyrus, as well as with higher FAT in the amygdala-hippocampus complex (DRRI-combat: P = .005, partial r = 0.254; DRRI-aftermath: P = .02, partial r = 0.223). Lower FAT in the cingulate-orbitofrontal gyri was associated with impaired response inhibition (Stroop-IS left cingulate: P < .001, partial r = -0.440; Stroop-IS right cingulate: P < .001, partial r = -0.372; Stroop-IS left medial orbitofrontal cortex: P < .001, partial r = -0.304; Stroop-IS right medial orbitofrontal cortex: P < .001, partial r = -0.340; Stroop-IN left cingulate: P < .001, partial r = -0.421; Stroop-IN right cingulate: P < .001, partial r = -0.300; Stroop-IN left medial orbitofrontal cortex: P = .01, partial r = -0.223; Stroop-IN right medial orbitofrontal cortex: P < .001, partial r = -0.343), whereas higher FAT in the mesial temporal regions was associated with improved short-term memory and processing speed (left amygdala-hippocampus complex: P < .001, partial r = -0.574; right amygdala-hippocampus complex: P < .001, partial r = 0.645; short-term memory left amygdala-hippocampus complex: P < .001, partial r = 0.570; short-term memory right amygdala-hippocampus complex: P < .001, partial r = 0.633). A history of mTBI did not modulate the association between war zone-related stress and GM diffusion. CONCLUSIONS AND RELEVANCE This study revealed an association between war zone-related stress and alteration of limbic GM microstructure, which was associated with cognitive functioning. These results suggest that altered limbic GM microstructure may underlie the deleterious outcomes of war zone-related stress on brain health. Military service members may benefit from early therapeutic interventions after deployment to a war zone.
Collapse
Affiliation(s)
- Elisabeth Kaufmann
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Philine Rojczyk
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Valerie J. Sydnor
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Jeffrey P. Guenette
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
| | - David Kaufmann
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Diagnostic and Interventional Radiology and Neuroradiology, Klinikum Augsburg, Germany
| | - Lisa Umminger
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Johanna Seitz-Holland
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Nico Sollmann
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Catherine B. Fortier
- Translational Research Center for TBI and Stress Disorders and Geriatric Research, Education and Clinical Center, VA Boston Healthcare System, Boston, Massachusetts
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - David Salat
- Translational Research Center for TBI and Stress Disorders and Geriatric Research, Education and Clinical Center, VA Boston Healthcare System, Boston, Massachusetts
- Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, Massachusetts
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Sidney R. Hinds
- Department of Neurology, Uniformed Services University of the Health Science, Bethesda, Maryland
| | - William P. Milberg
- Translational Research Center for TBI and Stress Disorders and Geriatric Research, Education and Clinical Center, VA Boston Healthcare System, Boston, Massachusetts
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Regina E. McGlinchey
- Translational Research Center for TBI and Stress Disorders and Geriatric Research, Education and Clinical Center, VA Boston Healthcare System, Boston, Massachusetts
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Martha E. Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Inga K. Koerte
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
5
|
Patkar OL, Caruso M, Teakle N, Keshvari S, Bush SJ, Pridans C, Belmer A, Summers KM, Irvine KM, Hume DA. Analysis of homozygous and heterozygous Csf1r knockout in the rat as a model for understanding microglial function in brain development and the impacts of human CSF1R mutations. Neurobiol Dis 2021; 151:105268. [PMID: 33450391 PMCID: PMC7941205 DOI: 10.1016/j.nbd.2021.105268] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Mutations in the human CSF1R gene have been associated with dominant and recessive forms of neurodegenerative disease. Here we describe the impacts of Csf1r mutation in the rat on development of the brain. Diffusion imaging indicated small reductions in major fiber tracts that may be associated in part with ventricular enlargement. RNA-seq profiling revealed a set of 105 microglial markers depleted in all brain regions of the Csf1rko rats. There was no evidence of region or sex-specific expression of microglia-associated transcripts. Other than the microglial signature, Csf1rko had no effect on any neuronal or region-specific transcript cluster. Expression of markers of oligodendrocytes, astrocytes, dopaminergic neurons and Purkinje cells was minimally affected. However, there were defects in dendritic arborization of doublecortin-positive neurogenic precursors and expression of poly-sialylated neural cell adhesion molecule (PS-NCAM) in the dentate gyrus of the hippocampus. Heterozygous Csf1rko rats had no detectable brain phenotype. We conclude that most brain developmental processes occur normally in the absence of microglia and that CSF1R haploinsufficiency is unlikely to cause leukoencephalopathy.
Collapse
Affiliation(s)
- Omkar L Patkar
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Melanie Caruso
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Ngari Teakle
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Sahar Keshvari
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Stephen J Bush
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Clare Pridans
- University of Edinburgh Centre for Inflammation Research, Edinburgh, UK and Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, UK
| | - Arnauld Belmer
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Katharine M Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
6
|
Salo RA, Belevich I, Jokitalo E, Gröhn O, Sierra A. Assessment of the structural complexity of diffusion MRI voxels using 3D electron microscopy in the rat brain. Neuroimage 2020; 225:117529. [PMID: 33147507 DOI: 10.1016/j.neuroimage.2020.117529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/09/2020] [Accepted: 10/27/2020] [Indexed: 10/23/2022] Open
Abstract
Validation and interpretation of diffusion magnetic resonance imaging (dMRI) requires detailed understanding of the actual microstructure restricting the diffusion of water molecules. In this study, we used serial block-face scanning electron microscopy (SBEM), a three-dimensional electron microscopy (3D-EM) technique, to image seven white and grey matter volumes in the rat brain. SBEM shows excellent contrast of cellular membranes, which are the major components restricting the diffusion of water in tissue. Additionally, we performed 3D structure tensor (3D-ST) analysis on the SBEM volumes and parameterised the resulting orientation distributions using Watson and angular central Gaussian (ACG) probability distributions as well as spherical harmonic (SH) decomposition. We analysed how these parameterisations described the underlying orientation distributions and compared their orientation and dispersion with corresponding parameters from two dMRI methods, neurite orientation dispersion and density imaging (NODDI) and constrained spherical deconvolution (CSD). Watson and ACG parameterisations and SH decomposition captured well the 3D-ST orientation distributions, but ACG and SH better represented the distributions due to its ability to model asymmetric dispersion. The dMRI parameters corresponded well with the 3D-ST parameters in the white matter volumes, but the correspondence was less evident in the more complex grey matter. SBEM imaging and 3D-ST analysis also revealed that the orientation distributions were often not axially symmetric, a property neatly captured by the ACG distribution. Overall, the ability of SBEM to image diffusion barriers in intricate detail, combined with 3D-ST analysis and parameterisation, provides a step forward toward interpreting and validating the dMRI signals in complex brain tissue microstructure.
Collapse
Affiliation(s)
- Raimo A Salo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| | - Ilya Belevich
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, PO Box 56, FI-00014 Helsinki, Finland
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, PO Box 56, FI-00014 Helsinki, Finland
| | - Olli Gröhn
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| | - Alejandra Sierra
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|