1
|
Collin SP, Yopak KE, Crowe-Riddell JM, Camilieri-Asch V, Kerr CC, Robins H, Ha MH, Ceddia A, Dutka TL, Chapuis L. Bioimaging of sense organs and the central nervous system in extant fishes and reptiles in situ: A review. Anat Rec (Hoboken) 2024. [PMID: 39223842 DOI: 10.1002/ar.25566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Bioimaging is changing the field of sensory biology, especially for taxa that are lesser-known, rare, and logistically difficult to source. When integrated with traditional neurobiological approaches, developing an archival, digital repository of morphological images can offer the opportunity to improve our understanding of whole neural systems without the issues of surgical intervention and negate the risk of damage and artefactual interpretation. This review focuses on current approaches to bioimaging the peripheral (sense organs) and central (brain) nervous systems in extant fishes (cartilaginous and bony) and non-avian reptiles in situ. Magnetic resonance imaging (MRI), micro-computed tomography (μCT), both super-resolution track density imaging and diffusion tensor-based imaging, and a range of other new technological advances are presented, together with novel approaches in optimizing both contrast and resolution, for developing detailed neuroanatomical atlases and enhancing comparative analyses of museum specimens. For MRI, tissue preparation, including choice of fixative, impacts tissue MR responses, where both resolving power and signal-to-noise ratio improve as field strength increases. Time in fixative, concentration of contrast agent, and duration of immersion in the contrast agent can also significantly affect relaxation times, and thus image quality. For μCT, the use of contrast-enhancing stains (iodine-, non-iodine-, or nanoparticle-based) is critical, where the type of fixative used, and the concentration of stain and duration of staining time often require species-specific optimization. Advanced reconstruction algorithms to reduce noise and artifacts and post-processing techniques, such as deconvolution and filtering, are now being used to improve image quality and resolution.
Collapse
Affiliation(s)
- Shaun P Collin
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Kara E Yopak
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Jenna M Crowe-Riddell
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Victoria Camilieri-Asch
- Max Planck Queensland Centre for the Materials Science of Extracellular Matrices, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Caroline C Kerr
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Hope Robins
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Myoung Hoon Ha
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Annalise Ceddia
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Travis L Dutka
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Lucille Chapuis
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
- School of Biological Sciences, University of Bristol, Bristol, UK
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Leigh, New Zealand
| |
Collapse
|
2
|
Jiménez S, Santos-Álvarez I, Fernández-Valle E, Castejón D, Villa-Valverde P, Rojo-Salvador C, Pérez-Llorens P, Ruiz-Fernández MJ, Ariza-Pastrana S, Martín-Orti R, González-Soriano J, Moreno N. Comparative MRI analysis of the forebrain of three sauropsida models. Brain Struct Funct 2024; 229:1349-1364. [PMID: 38546870 PMCID: PMC11176103 DOI: 10.1007/s00429-024-02788-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/12/2024] [Indexed: 06/15/2024]
Abstract
The study of the brain by magnetic resonance imaging (MRI) allows to obtain detailed anatomical images, useful to describe specific encephalic structures and to analyze possible variabilities. It is widely used in clinical practice and is becoming increasingly used in veterinary medicine, even in exotic animals; however, despite its potential, its use in comparative neuroanatomy studies is still incipient. It is a technology that in recent years has significantly improved anatomical resolution, together with the fact that it is non-invasive and allows for systematic comparative analysis. All this makes it particularly interesting and useful in evolutionary neuroscience studies, since it allows for the analysis and comparison of brains of rare or otherwise inaccessible species. In the present study, we have analyzed the prosencephalon of three representative sauropsid species, the turtle Trachemys scripta (order Testudine), the lizard Pogona vitticeps (order Squamata) and the snake Python regius (order Squamata) by MRI. In addition, we used MRI sections to analyze the total brain volume and ventricular system of these species, employing volumetric and chemometric analyses together. The raw MRI data of the sauropsida models analyzed in the present study are available for viewing and downloading and have allowed us to produce an atlas of the forebrain of each of the species analyzed, with the main brain regions. In addition, our volumetric data showed that the three groups presented clear differences in terms of total and ventricular brain volumes, particularly the turtles, which in all cases presented distinctive characteristics compared to the lizards and snakes.
Collapse
Affiliation(s)
- S Jiménez
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Bilbao, 48940, Spain
| | - I Santos-Álvarez
- Departament Section of Anatomy and Embriology, Faculty of Veterinary, Complutense University, Avenida Puerta de Hierro s/n, Madrid, 28040, Spain
| | - E Fernández-Valle
- ICTS Bioimagen Complutense, Complutense University, Paseo de Juan XXIII 1, Madrid, 28040, Spain
| | - D Castejón
- ICTS Bioimagen Complutense, Complutense University, Paseo de Juan XXIII 1, Madrid, 28040, Spain
| | - P Villa-Valverde
- ICTS Bioimagen Complutense, Complutense University, Paseo de Juan XXIII 1, Madrid, 28040, Spain
| | - C Rojo-Salvador
- Departament Section of Anatomy and Embriology, Faculty of Veterinary, Complutense University, Avenida Puerta de Hierro s/n, Madrid, 28040, Spain
| | - P Pérez-Llorens
- Departament Section of Anatomy and Embriology, Faculty of Veterinary, Complutense University, Avenida Puerta de Hierro s/n, Madrid, 28040, Spain
| | - M J Ruiz-Fernández
- Departament Section of Anatomy and Embriology, Faculty of Veterinary, Complutense University, Avenida Puerta de Hierro s/n, Madrid, 28040, Spain
| | - S Ariza-Pastrana
- Palmitos Park Canarias, Barranco de los Palmitos, s/n, Maspalomas, Las Palmas, 35109, Spain
| | - R Martín-Orti
- Departament Section of Anatomy and Embriology, Faculty of Veterinary, Complutense University, Avenida Puerta de Hierro s/n, Madrid, 28040, Spain
| | - Juncal González-Soriano
- Departament Section of Anatomy and Embriology, Faculty of Veterinary, Complutense University, Avenida Puerta de Hierro s/n, Madrid, 28040, Spain.
| | - Nerea Moreno
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University, Avenida José Antonio Nováis 12, Madrid, 28040, Spain.
| |
Collapse
|
3
|
Behroozi M, Graïc JM, Gerussi T. Beyond the surface: how ex-vivo diffusion-weighted imaging reveals large animal brain microstructure and connectivity. Front Neurosci 2024; 18:1411982. [PMID: 38988768 PMCID: PMC11233460 DOI: 10.3389/fnins.2024.1411982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
Diffusion-weighted Imaging (DWI) is an effective and state-of-the-art neuroimaging method that non-invasively reveals the microstructure and connectivity of tissues. Recently, novel applications of the DWI technique in studying large brains through ex-vivo imaging enabled researchers to gain insights into the complex neural architecture in different species such as those of Perissodactyla (e.g., horses and rhinos), Artiodactyla (e.g., bovids, swines, and cetaceans), and Carnivora (e.g., felids, canids, and pinnipeds). Classical in-vivo tract-tracing methods are usually considered unsuitable for ethical and practical reasons, in large animals or protected species. Ex-vivo DWI-based tractography offers the chance to examine the microstructure and connectivity of formalin-fixed tissues with scan times and precision that is not feasible in-vivo. This paper explores DWI's application to ex-vivo brains of large animals, highlighting the unique insights it offers into the structure of sometimes phylogenetically different neural networks, the connectivity of white matter tracts, and comparative evolutionary adaptations. Here, we also summarize the challenges, concerns, and perspectives of ex-vivo DWI that will shape the future of the field in large brains.
Collapse
Affiliation(s)
- Mehdi Behroozi
- Department of Biopsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr-University Bochum, Bochum, Germany
| | - Jean-Marie Graïc
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, Italy
| | - Tommaso Gerussi
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, Italy
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Lozano D, López JM, Chinarro A, Morona R, Moreno N. A detailed 3D MRI brain atlas of the African lungfish Protopterus annectens. Sci Rep 2024; 14:7999. [PMID: 38580713 PMCID: PMC10997765 DOI: 10.1038/s41598-024-58671-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024] Open
Abstract
The study of the brain by magnetic resonance imaging (MRI) in evolutionary analyses is still in its incipient stage, however, it is particularly useful as it allows us to analyze detailed anatomical images and compare brains of rare or otherwise inaccessible species, evolutionarily contextualizing possible differences, while at the same time being non-invasive. A good example is the lungfishes, sarcopterygians that are the closest living relatives of tetrapods and thus have an interesting phylogenetic position in the evolutionary conquest of the terrestrial environment. In the present study, we have developed a three-dimensional representation of the brain of the lungfish Protopterus annectens together with a rostrocaudal anatomical atlas. This methodological approach provides a clear delineation of the major brain subdivisions of this model and allows to measure both brain and ventricular volumes. Our results confirm that lungfish show neuroanatomical patterns reminiscent of those of extant basal sarcopterygians, with an evaginated telencephalon, and distinctive characters like a small optic tectum. These and additional characters uncover lungfish as a remarkable model to understand the origins of tetrapod diversity, indicating that their brain may contain significant clues to the characters of the brain of ancestral tetrapods.
Collapse
Affiliation(s)
- Daniel Lozano
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University, 28040, Madrid, Spain.
| | - Jesús M López
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University, 28040, Madrid, Spain
| | - Adrián Chinarro
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University, 28040, Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University, 28040, Madrid, Spain
| | - Nerea Moreno
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University, 28040, Madrid, Spain
| |
Collapse
|
5
|
Foss KD, Keller KA, Kehoe SP, Sutton BP. Establishing an MRI-Based Protocol and Atlas of the Bearded Dragon ( Pogona vitticeps) Brain. Front Vet Sci 2022; 9:886333. [PMID: 35647093 PMCID: PMC9136876 DOI: 10.3389/fvets.2022.886333] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 11/26/2022] Open
Abstract
The bearded dragon (Pogona vitticeps) has become a popular companion lizard, and as such, clients have increasingly come to expect the application of advanced diagnostic and therapeutic options in their care. The purpose of this study was to establish an MRI-based protocol and brain atlas to improve diagnostic capabilities in bearded dragons presenting with neurologic dysfunction. Using a high-field 3T magnet, in vivo MRI of the brain was successfully performed in seven healthy bearded dragons utilizing an injectable anesthetic protocol utilizing intravenous alfaxalone. From this, we created an atlas of the brain in three planes, identifying nine regions of interest. A total scan time of 35 min allowed for the collection of a quality diagnostic scan and all lizards recovered without complication. This study provides practitioners a neuroanatomic reference when performing brain MRI on the bearded dragon along with a concise and rapid MRI protocol.
Collapse
Affiliation(s)
- Kari D. Foss
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Krista A. Keller
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Wildlife Epidemiology Laboratory, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Spencer P. Kehoe
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Bradley P. Sutton
- Department of Bioengineering, Beckman Institute for Advanced Science and Technology, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
6
|
MRI- and histologically derived neuroanatomical atlas of the Ambystoma mexicanum (axolotl). Sci Rep 2021; 11:9850. [PMID: 33972650 PMCID: PMC8110773 DOI: 10.1038/s41598-021-89357-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/12/2021] [Indexed: 02/03/2023] Open
Abstract
Amphibians are an important vertebrate model system to understand anatomy, genetics and physiology. Importantly, the brain and spinal cord of adult urodels (salamanders) have an incredible regeneration capacity, contrary to anurans (frogs) and the rest of adult vertebrates. Among these amphibians, the axolotl (Ambystoma mexicanum) has gained most attention because of the surge in the understanding of central nervous system (CNS) regeneration and the recent sequencing of its whole genome. However, a complete comprehension of the brain anatomy is not available. In the present study we created a magnetic resonance imaging (MRI) atlas of the in vivo neuroanatomy of the juvenile axolotl brain. This is the first MRI atlas for this species and includes three levels: (1) 82 regions of interest (ROIs) and a version with 64 ROIs; (2) a division of the brain according to the embryological origin of the neural tube, and (3) left and right hemispheres. Additionally, we localized the myelin rich regions of the juvenile brain. The atlas, the template that the atlas was derived from, and a masking file, can be found on Zenodo at https://doi.org/10.5281/zenodo.4595016 . This MRI brain atlas aims to be an important tool for future research of the axolotl brain and that of other amphibians.
Collapse
|
7
|
A fully segmented 3D anatomical atlas of a lizard brain. Brain Struct Funct 2021; 226:1727-1741. [PMID: 33929568 DOI: 10.1007/s00429-021-02282-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/18/2021] [Indexed: 10/21/2022]
Abstract
As the relevance of lizards in evolutionary neuroscience increases, so does the need for more accurate anatomical references. Moreover, the use of magnetic resonance imaging (MRI) in evolutionary neuroscience is becoming more widespread; this represents a fundamental methodological shift that opens new avenues of investigative possibility but also poses new challenges. Here, we aim to facilitate this shift by providing a three-dimensional segmentation atlas of the tawny dragon brain. The tawny dragon (Ctenophorus decresii) is an Australian lizard of increasing importance as a model system in ecology and, as a member of the agamid lizards, in evolution. Based on a consensus average 3D image generated from the MRIs of 13 male tawny dragon heads, we identify and segment 224 structures visible across the entire lizard brain. We describe the relevance of this atlas to the field of evolutionary neuroscience and propose further experiments for which this atlas can provide the foundation. This advance in defining lizard neuroanatomy will facilitate numerous studies in evolutionary neuroscience. The atlas is available for download as a supplementary material to this manuscript and through the Open Science Framework (OSF; https://doi.org/10.17605/OSF.IO/UJENQ ).
Collapse
|