1
|
Read JE, Vasile‐Tudorache A, Newsome A, Lorente MJ, Agustín‐Pavón C, Howard SR. Disorders of puberty and neurodevelopment: A shared etiology? Ann N Y Acad Sci 2024; 1541:83-99. [PMID: 39431640 PMCID: PMC11580780 DOI: 10.1111/nyas.15246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
The neuroendocrine control of puberty and reproduction is fascinatingly complex, with up- and down-regulation of key reproductive hormones during fetal, infantile, and later childhood periods that determine the correct function of the hypothalamic-pituitary-gonadal axis and the timing of puberty. Neuronal development is a vital element of these processes, and multiple conditions of disordered puberty and reproduction have their etiology in abnormal neuronal migration or function. Although there are numerous documented cases across multiple conditions wherein patients have both neurodevelopmental disorders and pubertal abnormalities, this has mostly been described ad hoc and the associations are not clearly documented. In this review, we aim to describe the overlap between these two groups of conditions and to increase awareness to ensure that puberty and reproductive function are carefully monitored in patients with neurodevelopmental conditions, and vice versa. Moreover, this commonality can be explored for clues about the disease mechanisms in these patient groups and provide new avenues for therapeutic interventions for affected individuals.
Collapse
Affiliation(s)
- Jordan E. Read
- Centre for Endocrinology, William Harvey Research InstituteQueen Mary University of LondonLondonUK
| | - Alexandru Vasile‐Tudorache
- Department of Cell Biology, Functional Biology and Physical AnthropologyFaculty of Biological Sciences, University of ValenciaValenciaSpain
| | - Angel Newsome
- Centre for Endocrinology, William Harvey Research InstituteQueen Mary University of LondonLondonUK
| | - María José Lorente
- Department of Cell Biology, Functional Biology and Physical AnthropologyFaculty of Biological Sciences, University of ValenciaValenciaSpain
| | - Carmen Agustín‐Pavón
- Department of Cell Biology, Functional Biology and Physical AnthropologyFaculty of Biological Sciences, University of ValenciaValenciaSpain
| | - Sasha R. Howard
- Centre for Endocrinology, William Harvey Research InstituteQueen Mary University of LondonLondonUK
- Department of Paediatric EndocrinologyBarts Health NHS TrustLondonUK
| |
Collapse
|
2
|
László K, Vörös D, Correia P, Fazekas CL, Török B, Plangár I, Zelena D. Vasopressin as Possible Treatment Option in Autism Spectrum Disorder. Biomedicines 2023; 11:2603. [PMID: 37892977 PMCID: PMC10603886 DOI: 10.3390/biomedicines11102603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Autism spectrum disorder (ASD) is rather common, presenting with prevalent early problems in social communication and accompanied by repetitive behavior. As vasopressin was implicated not only in salt-water homeostasis and stress-axis regulation, but also in social behavior, its role in the development of ASD might be suggested. In this review, we summarized a wide range of problems associated with ASD to which vasopressin might contribute, from social skills to communication, motor function problems, autonomous nervous system alterations as well as sleep disturbances, and altered sensory information processing. Beside functional connections between vasopressin and ASD, we draw attention to the anatomical background, highlighting several brain areas, including the paraventricular nucleus of the hypothalamus, medial preoptic area, lateral septum, bed nucleus of stria terminalis, amygdala, hippocampus, olfactory bulb and even the cerebellum, either producing vasopressin or containing vasopressinergic receptors (presumably V1a). Sex differences in the vasopressinergic system might underline the male prevalence of ASD. Moreover, vasopressin might contribute to the effectiveness of available off-label therapies as well as serve as a possible target for intervention. In this sense, vasopressin, but paradoxically also V1a receptor antagonist, were found to be effective in some clinical trials. We concluded that although vasopressin might be an effective candidate for ASD treatment, we might assume that only a subgroup (e.g., with stress-axis disturbances), a certain sex (most probably males) and a certain brain area (targeting by means of virus vectors) would benefit from this therapy.
Collapse
Affiliation(s)
- Kristóf László
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
| | - Dávid Vörös
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
| | - Pedro Correia
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
- Hungarian Research Network, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Csilla Lea Fazekas
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
- Hungarian Research Network, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Bibiána Török
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
- Hungarian Research Network, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Imola Plangár
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
| | - Dóra Zelena
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
- Hungarian Research Network, Institute of Experimental Medicine, 1083 Budapest, Hungary
| |
Collapse
|
3
|
Gouveia FV, Ibrahim GM. Habenula as a Neural Substrate for Aggressive Behavior. Front Psychiatry 2022; 13:817302. [PMID: 35250669 PMCID: PMC8891498 DOI: 10.3389/fpsyt.2022.817302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/25/2022] [Indexed: 11/17/2022] Open
Abstract
Over the past decades, an ever growing body of literature has explored the anatomy, connections, and functions of the habenula (Hb). It has been postulated that the Hb plays a central role in the control of the monoaminergic system, thus influencing a wide range of behavioral responses, and participating in the pathophysiology of a number of psychiatric disorders and neuropsychiatric symptoms, such as aggressive behaviors. Aggressive behaviors are frequently accompanied by restlessness and agitation, and are commonly observed in patients with psychiatric disorders, intellectual disabilities, and neurodegenerative diseases of aging. Recently, the Hb has been explored as a new target for neuromodulation therapies, such as deep brain stimulation, with promising results. Here we review the anatomical organization of the habenula and discuss several distinct mechanisms by which the Hb is involved in the modulation of aggressive behaviors, and propose new investigations for the development of novel treatments targeting the habenula to reduce aggressive behaviors.
Collapse
Affiliation(s)
- Flavia Venetucci Gouveia
- Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - George M Ibrahim
- Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada.,Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Abellán-Álvaro M, Stork O, Agustín-Pavón C, Santos M. MeCP2 haplodeficiency and early-life stress interaction on anxiety-like behavior in adolescent female mice. J Neurodev Disord 2021; 13:59. [PMID: 34895132 PMCID: PMC8903671 DOI: 10.1186/s11689-021-09409-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Early-life stress can leave persistent epigenetic marks that may modulate vulnerability to psychiatric conditions later in life, including anxiety, depression and stress-related disorders. These are complex disorders with both environmental and genetic influences contributing to their etiology. Methyl-CpG Binding Protein 2 (MeCP2) has been attributed a key role in the control of neuronal activity-dependent gene expression and is a master regulator of experience-dependent epigenetic programming. Moreover, mutations in the MECP2 gene are the primary cause of Rett syndrome and, to a lesser extent, of a range of other major neurodevelopmental disorders. Here, we aim to study the interaction of MeCP2 with early-life stress in variables known to be affected by this environmental manipulation, namely anxiety-like behavior and activity of the underlying neural circuits. METHODS Using Mecp2 heterozygous and wild-type female mice we investigated the effects of the interaction of Mecp2 haplodeficiency with maternal separation later in life, by assessing anxiety-related behaviors and measuring concomitant c-FOS expression in stress- and anxiety-related brain regions of adolescent females. Moreover, arginine vasopressin and corticotropin-releasing hormone neurons of the paraventricular hypothalamic nucleus were analyzed for neuronal activation. RESULTS In wild-type mice, maternal separation caused a reduction in anxiety-like behavior and in the activation of the hypothalamic paraventricular nucleus, specifically in corticotropin-releasing hormone-positive cells, after the elevated plus maze. This effect of maternal separation was not observed in Mecp2 heterozygous females that per se show decreased anxiety-like behavior and concomitant decreased paraventricular nuclei activation. CONCLUSIONS Our data supports that MeCP2 is an essential component of HPA axis reprogramming and underlies the differential response to anxiogenic situations later in life.
Collapse
Affiliation(s)
- María Abellán-Álvaro
- Unitat Mixta d'Investigació en Neuroanatomia Funcional, Departamento de Biologia Cel·lular, Biologia Funcional i Antropologia Física, Universitat de València, 46100 Burjassot, València, Spain
| | - Oliver Stork
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University, 39120, Magdeburg, Germany
| | - Carmen Agustín-Pavón
- Unitat Mixta d'Investigació en Neuroanatomia Funcional, Departamento de Biologia Cel·lular, Biologia Funcional i Antropologia Física, Universitat de València, 46100 Burjassot, València, Spain
| | - Mónica Santos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.
| |
Collapse
|
5
|
Gigliucci V, Teutsch J, Woodbury-Smith M, Luoni M, Busnelli M, Chini B, Banerjee A. Region-Specific KCC2 Rescue by rhIGF-1 and Oxytocin in a Mouse Model of Rett Syndrome. Cereb Cortex 2021; 32:2885-2894. [PMID: 34791112 DOI: 10.1093/cercor/bhab388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/17/2023] Open
Abstract
Rett syndrome (RTT) is characterized by dysfunction in neuronal excitation/inhibition (E/I) balance, potentially impacting seizure susceptibility via deficits in K+/Cl- cotransporter 2 (KCC2) function. Mice lacking the Methyl-CpG binding protein 2 (MeCP2) recapitulate many symptoms of RTT, and recombinant human insulin-like growth factor-1 (rhIGF-1) restores KCC2 expression and E/I balance in MeCP2 KO mice. However, clinical trial outcomes of rhIGF-1 in RTT have been variable, and increasing its therapeutic efficacy is highly desirable. To this end, the neuropeptide oxytocin (OXT) is promising, as it also critically modulates KCC2 function during early postnatal development. We measured basal KCC2 expression levels in MeCP2 KO mice and identified 3 key frontal brain regions showing KCC2 alterations in young adult mice, but not in postnatal P10 animals. We hypothesized that deficits in an IGF-1/OXT signaling crosstalk modulating KCC2 may occur in RTT during postnatal development. Consistently, we detected alterations of IGF-1 receptor and OXT receptor levels in those brain areas. rhIGF-1 and OXT treatments in KO mice rescued KCC2 expression in a region-specific and complementary manner. These results suggest that region-selective combinatorial pharmacotherapeutic strategies could be most effective at normalizing E/I balance in key brain regions subtending the RTT pathophysiology.
Collapse
Affiliation(s)
| | - Jasper Teutsch
- Neuroscience Theme, Biosciences Institute, Newcastle University, United Kingdom.,Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Marc Woodbury-Smith
- Neuroscience Theme, Biosciences Institute, Newcastle University, United Kingdom
| | - Mirko Luoni
- Stem Cells and Neurogenesis Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Marta Busnelli
- Institute of Neuroscience, CNR, Milan, Italy.,NeuroMi Milan Center for Neuroscience, Milan, Italy
| | - Bice Chini
- Institute of Neuroscience, CNR, Milan, Italy.,NeuroMi Milan Center for Neuroscience, Milan, Italy
| | - Abhishek Banerjee
- Neuroscience Theme, Biosciences Institute, Newcastle University, United Kingdom.,Brain Research Institute, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Germann J, Gouveia FV, Brentani H, Bedford SA, Tullo S, Chakravarty MM, Devenyi GA. Involvement of the habenula in the pathophysiology of autism spectrum disorder. Sci Rep 2021; 11:21168. [PMID: 34707133 PMCID: PMC8551275 DOI: 10.1038/s41598-021-00603-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 10/13/2021] [Indexed: 11/09/2022] Open
Abstract
The habenula is a small epithalamic structure with widespread connections to multiple cortical, subcortical and brainstem regions. It has been identified as the central structure modulating the reward value of social interactions, behavioral adaptation, sensory integration and circadian rhythm. Autism spectrum disorder (ASD) is characterized by social communication deficits, restricted interests, repetitive behaviors, and is frequently associated with altered sensory perception and mood and sleep disorders. The habenula is implicated in all these behaviors and results of preclinical studies suggest a possible involvement of the habenula in the pathophysiology of this disorder. Using anatomical magnetic resonance imaging and automated segmentation we show that the habenula is significantly enlarged in ASD subjects compared to controls across the entire age range studied (6-30 years). No differences were observed between sexes. Furthermore, support-vector machine modeling classified ASD with 85% accuracy (model using habenula volume, age and sex) and 64% accuracy in cross validation. The Social Responsiveness Scale (SRS) significantly differed between groups, however, it was not related to individual habenula volume. The present study is the first to provide evidence in human subjects of an involvement of the habenula in the pathophysiology of ASD.
Collapse
Affiliation(s)
- Jürgen Germann
- grid.231844.80000 0004 0474 0428University Health Network, 399 Bathurst Street, Toronto, ON Canada ,grid.14709.3b0000 0004 1936 8649Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC Canada
| | - Flavia Venetucci Gouveia
- grid.42327.300000 0004 0473 9646Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON Canada
| | - Helena Brentani
- grid.11899.380000 0004 1937 0722Department of Psychiatry, University of Sao Paulo, Medical School, São Paulo, São Paulo Brazil ,grid.500696.cNational Institute of Developmental Psychiatry for Children and Adolescents, CNPq, São Paulo, São Paulo Brazil
| | - Saashi A. Bedford
- grid.14709.3b0000 0004 1936 8649Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC Canada ,grid.5335.00000000121885934Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Stephanie Tullo
- grid.14709.3b0000 0004 1936 8649Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Integrated Program in Neuroscience, McGill University, Montreal, QC Canada
| | - M. Mallar Chakravarty
- grid.14709.3b0000 0004 1936 8649Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Biomedical Engineering, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Psychiatry, McGill University, Montreal, QC Canada
| | - Gabriel A. Devenyi
- grid.14709.3b0000 0004 1936 8649Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Psychiatry, McGill University, Montreal, QC Canada
| |
Collapse
|