1
|
Riley E, Cicero N, Mabry SA, Swallow KM, Anderson AK, De Rosa E. Age-related differences in locus coeruleus intensity across a demographically diverse sample. Neurobiol Aging 2025; 150:122-131. [PMID: 40101307 PMCID: PMC11981832 DOI: 10.1016/j.neurobiolaging.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
Understanding the trajectory of in vivo locus coeruleus (LC) signal intensity across the adult lifespan and among various demographic groups, particularly during middle age, may be crucial for early detection of neurodegenerative diseases, which begin in the LC decades before symptom onset. Even though pathological changes in the LC are thought to begin in middle age, its characteristics across the adult lifespan, and its consistency and variation across demographic groups, remain not well understood. Using T1-weighted turbo spin echo magnetic resonance (MRI) scans to characterize the LC, we measured LC signal intensity in 134 participants aged 19-86 years, with an effort to recruit a more racially diverse sample (41 % non-White). LC signal intensity was lowest in early adulthood, peaked around age 60, and then decreased again in the oldest adults, particularly in the caudal portion of the LC, which exhibited the greatest overall signal intensity; education, income, and history of early trauma did not alter this general pattern. Rostral LC signal intensity was further heightened in women and Black participants. In higher-performing older adults, increased rostral LC signal intensity was positively associated with higher fluid cognition. The potential accumulation of LC signal intensity across the adult lifespan and its possible dissipation in later life as well as its modification by demographic factors, may be associated with differential susceptibility to neurocognitive aging.
Collapse
Affiliation(s)
- Elizabeth Riley
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA.
| | - Nicholas Cicero
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA
| | | | - Khena M Swallow
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA
| | - Adam K Anderson
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA
| | - Eve De Rosa
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
2
|
McDermott KE, Barnes CA. Stability of locus coeruleus cell counts despite volume loss in cognitively impaired aged rhesus macaques. Neurobiol Aging 2025; 148:41-49. [PMID: 39908645 DOI: 10.1016/j.neurobiolaging.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/07/2025]
Abstract
The locus coeruleus (LC) is a brainstem nucleus that provides the primary source of noradrenaline (NA) in the nervous system and optimizes behavioral performance in mammals. In humans, the LC shows Alzheimer's disease (AD)-like pathology at its earliest stages, but little is known about LC integrity in normative, non-pathological aging. The present research addresses these gaps by investigating neuron numbers, densities of glia and vasculature, and volume of the LC itself in cognitively assessed adult and aged rhesus macaques. These primates do not spontaneously exhibit AD, and thus are an excellent model for normative human aging. Immunohistochemical methods were used to quantify noradrenaline-producing cells, total cells, and vascular and glial density in the LC, and use a recently developed alignment protocol to incorporate Nissl- and immunohistochemically stained tissue with previously collected magnetic resonance images to generate precise volumes of the LC and its' subcompartments. The medial LC subcompartment alone (not the lateral or compact regions) in aged animals showed significantly smaller volume than did the adult monkeys, however, there was no difference in NA-containing cell numbers, vascular or glial densities observed in any compartment between age groups. Additionally, volumes and cell counts were not significantly associated with performance on memory tasks, indicating that cell populations within the locus coeruleus nucleus itself are highly resistant to age-related change.
Collapse
Affiliation(s)
- Kelsey E McDermott
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85721, United States.
| | - Carol A Barnes
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85721, United States; Departments of Psychology, Neurology and Neuroscience, University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
3
|
Wiesman AI, Madge V, Fon EA, Dagher A, Collins DL, Baillet S. Associations between neuromelanin depletion and cortical rhythmic activity in Parkinson's disease. Brain 2025; 148:875-885. [PMID: 39282945 PMCID: PMC11884654 DOI: 10.1093/brain/awae295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/08/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Parkinson's disease (PD) is marked by the death of neuromelanin-rich dopaminergic and noradrenergic cells in the substantia nigra (SN) and the locus coeruleus (LC), respectively, resulting in motor and cognitive impairments. Although SN dopamine dysfunction has clear neurophysiological effects, the association of reduced LC norepinephrine signalling with brain activity in PD remains to be established. We used neuromelanin-sensitive T1-weighted MRI (PD, n = 58; healthy control, n = 27) and task-free magnetoencephalography (PD, n = 58; healthy control, n = 65) to identify neuropathophysiological factors related to the degeneration of the LC and SN in patients with PD. We found pathological increases in rhythmic alpha-band (8-12 Hz) activity in patients with decreased LC neuromelanin, which were more strongly associated in patients with worse attentional impairments. This negative alpha-band-LC neuromelanin relationship is strongest in fronto-motor cortices, where alpha-band activity is inversely related to attention scores. Using neurochemical co-localization analyses with normative atlases of neurotransmitter transporters, we also show that this effect is more pronounced in regions with high densities of norepinephrine transporters. These observations support a noradrenergic association between LC integrity and alpha-band activity. Our data also show that rhythmic beta-band (15-29 Hz) activity in the left somatomotor cortex decreases with lower levels of SN neuromelanin; the same regions where beta activity reflects axial motor symptoms. Together, our findings clarify the association of well-documented alterations of rhythmic neurophysiology in PD with cortical and subcortical neurochemical systems. Specifically, attention-related alpha-band activity is related to dysfunction of the noradrenergic system, and beta activity with relevance to motor impairments reflects dopaminergic dysfunction.
Collapse
Affiliation(s)
- Alex I Wiesman
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
- Department of Biomedical Physiology & Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Victoria Madge
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - Edward A Fon
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - Alain Dagher
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - D Louis Collins
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| |
Collapse
|
4
|
Dutt S, Bachman SL, Dahl MJ, Li Y, Yew B, Jang JY, Ho JK, Nashiro K, Min J, Yoo HJ, Gaubert A, Nguyen A, Blanken AE, Sible IJ, Marshall AJ, Kapoor A, Alitin JPM, Hoang K, Rouanet J, Sordo L, Head E, Shao X, Wang DJJ, Mather M, Nation DA. Locus coeruleus MRI contrast, cerebral perfusion, and plasma Alzheimer's disease biomarkers in older adults. Neurobiol Aging 2025; 147:12-21. [PMID: 39637519 PMCID: PMC11781958 DOI: 10.1016/j.neurobiolaging.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
The locus coeruleus (LC) is among the first brain structures impacted by Alzheimer's disease (AD), and noradrenergic denervation may contribute to early neurovascular dysfunction in AD. Mechanistic links between the LC and cerebral perfusion have been demonstrated in rodents, but there have been no similar studies in aging humans. Community-dwelling older adults with no history of stroke or dementia (N=66) underwent structural (T1-MPRAGE; T1-FSE) and perfusion (resting pCASL) MRI. Plasma AD biomarkers levels were evaluated for Aβ42/40 ratio (n=56) and pTau181 (n=60). Higher rostral LC structural MRI contrast was associated with lower perfusion in entorhinal and limbic regions but higher perfusion in lateral and medial orbitofrontal cortices. Relationships between LC structure and regional cerebral perfusion were attenuated in older adults with higher plasma pTau levels and lower plasma Aβ42/40 ratios. Previously unstudied links between LC structure and cerebral perfusion are detectible in older adults using MRI and are attenuated in those showing greater AD pathophysiologic change, suggesting an uncoupling of LC-cerebral perfusion relationships in older adults with aggregating AD-related pathophysiology.
Collapse
Affiliation(s)
- Shubir Dutt
- Department of Psychology, University of Southern California, Los Angeles, CA, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Shelby L Bachman
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Martin J Dahl
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Yanrong Li
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Belinda Yew
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jung Yun Jang
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Jean K Ho
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Kaoru Nashiro
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Jungwon Min
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Hyun Joo Yoo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Aimée Gaubert
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Amy Nguyen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Anna E Blanken
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA; San Francisco Veterans Affairs Health Care System, CA, USA
| | - Isabel J Sible
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Anisa J Marshall
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Arunima Kapoor
- Department of Psychological Science, University of California, Irvine, CA, USA
| | - John Paul M Alitin
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Kim Hoang
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Jeremy Rouanet
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA, USA
| | - Lorena Sordo
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA, USA
| | - Elizabeth Head
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA, USA
| | - Xingfeng Shao
- Laboratory of FMRI Technology, Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, CA, Los Angeles, USA
| | - Danny J J Wang
- Laboratory of FMRI Technology, Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, CA, Los Angeles, USA
| | - Mara Mather
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Daniel A Nation
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, CA, Los Angeles, USA.
| |
Collapse
|
5
|
Liu KY, Betts MJ, Hämmerer D, Düzel E, Mather M, Roiser JP, Schneider A, Spottke A, Rostamzadeh A, Schott BH, Rauchmann BS, Laske C, Janowitz D, Spruth EJ, Ersözlü E, Lüsebrink F, Jessen F, Frommann I, Kilimann I, Wiltfang J, Brustkern J, Priller J, Hellman-Regen J, Buerger K, Fliessbach K, Scheffler K, Kleineidam L, Stark M, Ewers M, Wagner M, Peters O, Dechent P, Perneczky R, Sodenkamp S, Hetzer S, Teipel S, Glanz W, Howard R. Locus coeruleus signal intensity and emotion regulation in agitation in Alzheimer's disease. Brain Commun 2024; 7:fcae457. [PMID: 39801712 PMCID: PMC11724426 DOI: 10.1093/braincomms/fcae457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/05/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Hyperphosphorylated tau accumulation is seen in the noradrenergic locus coeruleus from the earliest stages of Alzheimer's disease onwards and has been associated with symptoms of agitation. It is hypothesized that compensatory locus coeruleus-noradrenaline system overactivity and impaired emotion regulation could underlie agitation propensity, but to our knowledge this has not previously been investigated. A better understanding of the neurobiological underpinnings of agitation would help the development of targeted prevention and treatment strategies. Using a sample of individuals with amnestic mild cognitive impairment and probable mild Alzheimer's disease dementia from the German Center for Neurodegenerative Diseases (DZNE)-Longitudinal Cognitive Impairment and Dementia (DELCODE) study cohort (N = 309, aged 67-96 years, 51% female), we assessed cross-sectional relationships between a latent factor representing the functional integrity of an affect-related executive regulation network and agitation point prevalence and severity scores. In a subsample of individuals with locus coeruleus MRI imaging data (N = 37, aged 68-93 years, 49% female), we also investigated preliminary associations between locus coeruleus MRI contrast ratios (a measure of structural integrity, whole or divided into rostral, middle, and caudal thirds) and individual affect-related regulation network factor scores and agitation measures. Regression models controlled for effects of age and clinical disease severity and, for models including resting-state functional MRI connectivity variables, grey matter volume and education years. Agitation point prevalence showed a positive relationship with a latent factor representing the functional integrity (and a negative relationship with a corresponding structural measure) of the affect-related executive regulation network. Locus coeruleus MRI contrast ratios were positively associated with agitation severity (but only for the rostral third, in N = 13) and negatively associated with the functional affect-related executive regulation latent factor scores. Resting-state functional connectivity between a medial prefrontal cortex region and the left amygdala was related to locus coeruleus MRI contrast ratios. These findings implicate the involvement of locus coeruleus integrity and emotion dysregulation in agitation in Alzheimer's disease and support the presence of potential compensatory processes. At the neural level, there may be a dissociation between mechanisms underlying agitation risk per se and symptom severity. Further studies are needed to replicate and extend these findings, incorporating longitudinal designs, measures of autonomic function and non-linear modelling approaches to explore potential causal and context-dependent relationships across Alzheimer's disease stages.
Collapse
Affiliation(s)
- Kathy Y Liu
- Division of Psychiatry, University College London, London W1T 7NF, UK
| | - Matthew J Betts
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, 39120 Magdeburg, Germany
- CBBS Center for Behavioral Brain Sciences, 39106 Magdeburg, Germany
| | - Dorothea Hämmerer
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, 39120 Magdeburg, Germany
- CBBS Center for Behavioral Brain Sciences, 39106 Magdeburg, Germany
- Department of Psychology, University of Innsbruck, 6020 Innsbruck, Austria
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, 39120 Magdeburg, Germany
- CBBS Center for Behavioral Brain Sciences, 39106 Magdeburg, Germany
| | - Mara Mather
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jonathan P Roiser
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Department for Cognitive Disorders and Old Age Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Department of Neurology, University of Bonn, 53127 Bonn, Germany
| | - Ayda Rostamzadeh
- Department of Psychiatry, University of Cologne, Medical Faculty, 50924 Cologne, Germany
| | - Björn H Schott
- CBBS Center for Behavioral Brain Sciences, 39106 Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), 37075 Goettingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, 37075 Goettingen, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Boris-Stephan Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, 80336 Munich, Germany
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK
- Department of Neuroradiology, University Hospital LMU, 81377 Munich, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital, 81377 Munich, Germany
| | - Eike J Spruth
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, 10117 Berlin, Germany
| | - Ersin Ersözlü
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin-Institute of Psychiatry and Psychotherapy, 10117 Berlin, Germany
| | - Falk Lüsebrink
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Department of Neurology, University of Bonn, 53127 Bonn, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Köln, Germany
| | - Ingo Frommann
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Department for Cognitive Disorders and Old Age Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE), 18147 Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, 18147 Rostock, Germany
| | - Jens Wiltfang
- German Center for Neurodegenerative Diseases (DZNE), 37075 Goettingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, 37075 Goettingen, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Johanna Brustkern
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, 10117 Berlin, Germany
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- University of Edinburgh and UK DRI, Edinburgh EH16 4SB, UK
| | - Julian Hellman-Regen
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Department of Psychiatry and Neurosciences, Charité Universitätsmedizin Berlin, 12203 Berlin, Germany
- German Center for Mental Health (DZPG), partner site Berlin, 10117 Berlin, Germany
| | - Katharina Buerger
- Institute for Stroke and Dementia Research (ISD), University Hospital, 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE, Munich), 81377 Munich, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Department for Cognitive Disorders and Old Age Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, 72076 Tübingen, Germany
| | - Luca Kleineidam
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Department for Cognitive Disorders and Old Age Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
| | - Melina Stark
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Department for Cognitive Disorders and Old Age Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
| | - Michael Ewers
- German Center for Neurodegenerative Diseases (DZNE, Munich), 81377 Munich, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Department for Cognitive Disorders and Old Age Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin-Institute of Psychiatry and Psychotherapy, 10117 Berlin, Germany
| | - Peter Dechent
- MR-Research in Neurosciences, Department of Cognitive Neurology, Georg-August-University Goettingen, 37075 Goettingen, Germany
| | - Robert Perneczky
- Department of Psychiatry and Psychotherapy, University Hospital, 80336 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE, Munich), 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy) Munich, 81377 Munich, Germany
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London W6 8RP, UK
| | - Sebastian Sodenkamp
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - Stefan Hetzer
- Berlin Center for Advanced Neuroimaging, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), 18147 Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, 18147 Rostock, Germany
| | - Wenzel Glanz
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - Robert Howard
- Division of Psychiatry, University College London, London W1T 7NF, UK
| |
Collapse
|
6
|
McCall A, Forouhandehpour R, Celebi S, Richard-Malenfant C, Hamati R, Guimond S, Tuominen L, Weinshenker D, Jaworska N, McQuaid RJ, Shlik J, Robillard R, Kaminsky Z, Cassidy CM. Evidence for Locus Coeruleus-Norepinephrine System Abnormality in Military Posttraumatic Stress Disorder Revealed by Neuromelanin-Sensitive Magnetic Resonance Imaging. Biol Psychiatry 2024; 96:268-277. [PMID: 38296219 DOI: 10.1016/j.biopsych.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 07/26/2024]
Abstract
BACKGROUND The complex neurobiology of posttraumatic stress disorder (PTSD) calls for the characterization of specific disruptions in brain functions that require targeted treatment. One such alteration could be an overactive locus coeruleus (LC)-norepinephrine system, which may be linked to hyperarousal symptoms, a characteristic and burdensome aspect of the disorder. METHODS Study participants were Canadian Armed Forces veterans with PTSD related to deployment to combat zones (n = 34) and age- and sex-matched healthy control participants (n = 32). Clinical measures included the Clinician-Administered PTSD Scale for DSM-5, and neuroimaging measures included a neuromelanin-sensitive magnetic resonance imaging scan to measure the LC signal. Robust linear regression analyses related the LC signal to clinical measures. RESULTS Compared with control participants, the LC signal was significantly elevated in the PTSD group (t62 = 2.64, p = .010), and this group difference was most pronounced in the caudal LC (t56 = 2.70, Cohen's d = 0.72). The caudal LC signal was also positively correlated with the severity of Clinician-Administered PTSD Scale for DSM-5 hyperarousal symptoms in the PTSD group (t26 = 2.16, p = .040). CONCLUSIONS These findings are consistent with a growing body of evidence indicative of elevated LC-norepinephrine system function in PTSD. Furthermore, they indicate the promise of neuromelanin-sensitive magnetic resonance imaging as a noninvasive method to probe the LC-norepinephrine system that has the potential to support subtyping and treatment of PTSD or other neuropsychiatric conditions.
Collapse
Affiliation(s)
- Adelina McCall
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | | | - Seyda Celebi
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | | | - Rami Hamati
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | - Synthia Guimond
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada; Département de psychoéducation et de psychologie, Université du Québec en Outaouais, Gatineau, Quebec, Canada
| | - Lauri Tuominen
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Natalia Jaworska
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Robyn J McQuaid
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Jakov Shlik
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | - Rebecca Robillard
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | - Zachary Kaminsky
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | - Clifford M Cassidy
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada; Renaissance School of Medicine at Stony Brook University, Stony Brook, New York.
| |
Collapse
|
7
|
Plini ERG, Melnychuk MC, Andrews R, Boyle R, Whelan R, Spence JS, Chapman SB, Robertson IH, Dockree PM. Greater physical fitness ( VO 2 max ) in healthy older adults associated with increased integrity of the locus coeruleus-noradrenergic system. Acta Physiol (Oxf) 2024; 240:e14191. [PMID: 38895950 PMCID: PMC11250687 DOI: 10.1111/apha.14191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
AIM Physical activity (PA) is a key component for brain health and Reserve, and it is among the main dementia protective factors. However, the neurobiological mechanisms underpinning Reserve are not fully understood. In this regard, a noradrenergic (NA) theory of cognitive reserve (Robertson, 2013) has proposed that the upregulation of NA system might be a key factor for building reserve and resilience to neurodegeneration because of the neuroprotective role of NA across the brain. PA elicits an enhanced catecholamine response, in particular for NA. By increasing physical commitment, a greater amount of NA is synthetised in response to higher oxygen demand. More physically trained individuals show greater capabilities to carry oxygen resulting in greaterVo 2 max - a measure of oxygen uptake and physical fitness (PF). METHODS We hypothesized that greaterVo 2 max would be related to greater Locus Coeruleus (LC) MRI signal intensity. In a sample of 41 healthy subjects, we performed Voxel-Based Morphometry analyses, then repeated for the other neuromodulators as a control procedure (Serotonin, Dopamine and Acetylcholine). RESULTS As hypothesized, greaterVo 2 max related to greater LC signal intensity, and weaker associations emerged for the other neuromodulators. CONCLUSION This newly established link betweenVo 2 max and LC-NA system offers further understanding of the neurobiology underpinning Reserve in relationship to PA. While this study supports Robertson's theory proposing the upregulation of the NA system as a possible key factor building Reserve, it also provides ground for increasing LC-NA system resilience to neurodegeneration viaVo 2 max enhancement.
Collapse
Affiliation(s)
- Emanuele R G Plini
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Michael C Melnychuk
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Ralph Andrews
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Rory Boyle
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Robert Whelan
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Jeffrey S Spence
- Center for BrainHealth, The University of Texas at Dallas, Dallas, Texas, USA
| | - Sandra B Chapman
- Center for BrainHealth, The University of Texas at Dallas, Dallas, Texas, USA
| | - Ian H Robertson
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- Department of Psychology, Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Paul M Dockree
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Engels-Domínguez N, Koops EA, Hsieh S, Wiklund EE, Schultz AP, Riphagen JM, Prokopiou PC, Hanseeuw BJ, Rentz DM, Sperling RA, Johnson KA, Jacobs HIL. Lower in vivo locus coeruleus integrity is associated with lower cortical thickness in older individuals with elevated Alzheimer's pathology: a cohort study. Alzheimers Res Ther 2024; 16:129. [PMID: 38886798 PMCID: PMC11181564 DOI: 10.1186/s13195-024-01500-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Autopsy work indicates that the widely-projecting noradrenergic pontine locus coeruleus (LC) is among the earliest regions to accumulate hyperphosphorylated tau, a neuropathological Alzheimer's disease (AD) hallmark. This early tau deposition is accompanied by a reduced density of LC projections and a reduction of norepinephrine's neuroprotective effects, potentially compromising the neuronal integrity of LC's cortical targets. Previous studies suggest that lower magnetic resonance imaging (MRI)-derived LC integrity may signal cortical tissue degeneration in cognitively healthy, older individuals. However, whether these observations are driven by underlying AD pathology remains unknown. To that end, we examined potential effect modifications by cortical beta-amyloid and tau pathology on the association between in vivo LC integrity, as quantified by LC MRI signal intensity, and cortical neurodegeneration, as indexed by cortical thickness. METHODS A total of 165 older individuals (74.24 ± 9.72 years, ~ 60% female, 10% cognitively impaired) underwent whole-brain and dedicated LC 3T-MRI, Pittsburgh Compound-B (PiB, beta-amyloid) and Flortaucipir (FTP, tau) positron emission tomography. Linear regression analyses with bootstrapped standard errors (n = 2000) assessed associations between bilateral cortical thickness and i) LC MRI signal intensity and, ii) LC MRI signal intensity interacted with cortical FTP or PiB (i.e., EC FTP, IT FTP, neocortical PiB) in the entire sample and a low beta-amyloid subsample. RESULTS Across the entire sample, we found a direct effect, where lower LC MRI signal intensity was associated with lower mediolateral temporal cortical thickness. Evaluation of potential effect modifications by FTP or PiB revealed that lower LC MRI signal intensity was related to lower cortical thickness, particularly in individuals with elevated (EC, IT) FTP or (neocortical) PiB. The latter result was present starting from subthreshold PiB values. In low PiB individuals, lower LC MRI signal intensity was related to lower EC cortical thickness in the context of elevated EC FTP. CONCLUSIONS Our findings suggest that LC-related cortical neurodegeneration patterns in older individuals correspond to regions representing early Braak stages and may reflect a combination of LC projection density loss and emergence of cortical AD pathology. This provides a novel understanding that LC-related cortical neurodegeneration may signal downstream consequences of AD-related pathology, rather than being exclusively a result of aging.
Collapse
Affiliation(s)
- Nina Engels-Domínguez
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - Elouise A Koops
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Stephanie Hsieh
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Emma E Wiklund
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Aaron P Schultz
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joost M Riphagen
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Prokopis C Prokopiou
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Bernard J Hanseeuw
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Dorene M Rentz
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Reisa A Sperling
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Keith A Johnson
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Heidi I L Jacobs
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA.
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
9
|
Beckers E, Van Egroo M, Ashton NJ, Blennow K, Vandewalle G, Zetterberg H, Poser BA, Jacobs HIL. Microstructural associations between locus coeruleus, cortical, and subcortical regions are modulated by astrocyte reactivity: a 7T MRI adult lifespan study. Cereb Cortex 2024; 34:bhae261. [PMID: 38904081 PMCID: PMC11190376 DOI: 10.1093/cercor/bhae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024] Open
Abstract
The locus coeruleus-norepinephrine system plays a key role in supporting brain health along the lifespan, notably through its modulatory effects on neuroinflammation. Using ultra-high field diffusion magnetic resonance imaging, we examined whether microstructural properties (neurite density index and orientation dispersion index) in the locus coeruleus were related to those in cortical and subcortical regions, and whether this was modulated by plasma glial fibrillary acidic protein levels, as a proxy of astrocyte reactivity. In our cohort of 60 healthy individuals (30 to 85 yr, 50% female), higher glial fibrillary acidic protein correlated with lower neurite density index in frontal cortical regions, the hippocampus, and the amygdala. Furthermore, under higher levels of glial fibrillary acidic protein (above ~ 150 pg/mL for cortical and ~ 145 pg/mL for subcortical regions), lower locus coeruleus orientation dispersion index was associated with lower orientation dispersion index in frontotemporal cortical regions and in subcortical regions. Interestingly, individuals with higher locus coeruleus orientation dispersion index exhibited higher orientation dispersion index in these (sub)cortical regions, despite having higher glial fibrillary acidic protein levels. Together, these results suggest that the interaction between locus coeruleus-norepinephrine cells and astrocytes can signal a detrimental or neuroprotective pathway for brain integrity and support the importance of maintaining locus coeruleus neuronal health in aging and in the prevention of age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Elise Beckers
- Faculty of Health, Medicine and Life Sciences, Mental Health and Neuroscience Research Institute, Alzheimer Centre Limburg, Maastricht University, 6229 ET Maastricht, The Netherlands
- GIGA-CRC Human Imaging, University of Liège, 4000 Liège, Belgium
| | - Maxime Van Egroo
- Faculty of Health, Medicine and Life Sciences, Mental Health and Neuroscience Research Institute, Alzheimer Centre Limburg, Maastricht University, 6229 ET Maastricht, The Netherlands
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Gothenburg, 431 41 Mölndal, Sweden
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London SE5 9RT, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London SE5 8AF, UK
- Centre for Age-Related Medicine, Stavanger University Hospital, 4011 Stavanger, Norway
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Gothenburg, 431 41 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, 75013 Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei 230036, China
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Gothenburg, 431 41 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1E 6BT, UK
- UK Dementia Research Institute at UCL, London W1T 7NF, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Benedikt A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Heidi I L Jacobs
- Faculty of Health, Medicine and Life Sciences, Mental Health and Neuroscience Research Institute, Alzheimer Centre Limburg, Maastricht University, 6229 ET Maastricht, The Netherlands
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Bueichekú E, Diez I, Kim CM, Becker JA, Koops EA, Kwong K, Papp KV, Salat DH, Bennett DA, Rentz DM, Sperling RA, Johnson KA, Sepulcre J, Jacobs HIL. Spatiotemporal patterns of locus coeruleus integrity predict cortical tau and cognition. NATURE AGING 2024; 4:625-637. [PMID: 38664576 PMCID: PMC11108787 DOI: 10.1038/s43587-024-00626-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Autopsy studies indicated that the locus coeruleus (LC) accumulates hyperphosphorylated tau before allocortical regions in Alzheimer's disease. By combining in vivo longitudinal magnetic resonance imaging measures of LC integrity, tau positron emission tomography imaging and cognition with autopsy data and transcriptomic information, we examined whether LC changes precede allocortical tau deposition and whether specific genetic features underlie LC's selective vulnerability to tau. We found that LC integrity changes preceded medial temporal lobe tau accumulation, and together these processes were associated with lower cognitive performance. Common gene expression profiles between LC-medial temporal lobe-limbic regions map to biological functions in protein transport regulation. These findings advance our understanding of the spatiotemporal patterns of initial tau spreading from the LC and LC's selective vulnerability to Alzheimer's disease pathology. LC integrity measures can be a promising indicator for identifying the time window when individuals are at risk of disease progression and underscore the importance of interventions mitigating initial tau spread.
Collapse
Affiliation(s)
- Elisenda Bueichekú
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ibai Diez
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Chan-Mi Kim
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - John Alex Becker
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Kenneth Kwong
- Harvard Medical School, Boston, MA, USA
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Kathryn V Papp
- Harvard Medical School, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - David H Salat
- Harvard Medical School, Boston, MA, USA
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, MA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Dorene M Rentz
- Harvard Medical School, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Reisa A Sperling
- Harvard Medical School, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Keith A Johnson
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Jorge Sepulcre
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Radiology, Yale PET Center, Yale Medical School, Yale University, New Haven, CT, USA.
| | - Heidi I L Jacobs
- Harvard Medical School, Boston, MA, USA.
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, Netherlands.
| |
Collapse
|
11
|
Lv Q, Wang X, Lin P, Wang X. Neuromelanin-sensitive magnetic resonance imaging in the study of mental disorder: A systematic review. Psychiatry Res Neuroimaging 2024; 339:111785. [PMID: 38325165 DOI: 10.1016/j.pscychresns.2024.111785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/26/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024]
Abstract
Dopamine and norepinephrine are implicated in the pathophysiology of mental disorders, but non-invasive study of their neuronal function remains challenging. Recent research suggests that neuromelanin-sensitive magnetic resonance imaging (NM-MRI) techniques may overcome this limitation by enabling the non-invasive imaging of the substantia nigra (SN)/ ventral tegmental area (VTA) dopaminergic and locus coeruleus (LC) noradrenergic systems. A review of 19 studies that met the criteria for NM-MRI application in mental disorders found that despite the use of heterogeneous sequence parameters and metrics, nearly all studies reported differences in contrast ratio (CNR) of LC or SN/VTA between patients with mental disorders and healthy controls. These findings suggest that NM-MRI is a valuable tool in psychiatry, but the differences in sequence parameters across studies hinder comparability, and a standardized analysis pipeline is needed to improve the reliability of results. Further research using standardized methods is needed to better understand the role of dopamine and norepinephrine in mental disorders.
Collapse
Affiliation(s)
- Qiuyu Lv
- Department of Psychology and Cognition and Human Behavior Key Laboratory of Hunan Province, Hunan Normal University, Changsha, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Xuanyi Wang
- Department of Psychology and Cognition and Human Behavior Key Laboratory of Hunan Province, Hunan Normal University, Changsha, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Pan Lin
- Department of Psychology and Cognition and Human Behavior Key Laboratory of Hunan Province, Hunan Normal University, Changsha, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Xiang Wang
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China.; China National Clinical Research Center for Mental Disorders (Xiangya), Changsha, Hunan, PR China..
| |
Collapse
|
12
|
Watanabe T. Neuromelanin? MRI of catecholaminergic neurons. Brain 2024; 147:e24-e26. [PMID: 37979198 DOI: 10.1093/brain/awad393] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023] Open
Affiliation(s)
- Takashi Watanabe
- Medical Scanning Musashikosugi Clinic, Jiaikai Healthcare Corporation, Yokohama, Kanagawa Prefecture 221-0835, Japan
| |
Collapse
|
13
|
Trujillo P, Aumann MA, Claassen DO. Reply: Neuromelanin? MRI of catecholaminergic neurons. Brain 2024; 147:e27-e28. [PMID: 37979197 DOI: 10.1093/brain/awad394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023] Open
Affiliation(s)
- Paula Trujillo
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, 37212, USA
| | - Megan A Aumann
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, 37212, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, 37212, USA
| |
Collapse
|
14
|
Trujillo P, Aumann MA, Claassen DO. Neuromelanin-sensitive MRI as a promising biomarker of catecholamine function. Brain 2024; 147:337-351. [PMID: 37669320 PMCID: PMC10834262 DOI: 10.1093/brain/awad300] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/17/2023] [Accepted: 08/20/2023] [Indexed: 09/07/2023] Open
Abstract
Disruptions to dopamine and noradrenergic neurotransmission are noted in several neurodegenerative and psychiatric disorders. Neuromelanin-sensitive (NM)-MRI offers a non-invasive approach to visualize and quantify the structural and functional integrity of the substantia nigra and locus coeruleus. This method may aid in the diagnosis and quantification of longitudinal changes of disease and could provide a stratification tool for predicting treatment success of pharmacological interventions targeting the dopaminergic and noradrenergic systems. Given the growing clinical interest in NM-MRI, understanding the contrast mechanisms that generate this signal is crucial for appropriate interpretation of NM-MRI outcomes and for the continued development of quantitative MRI biomarkers that assess disease severity and progression. To date, most studies associate NM-MRI measurements to the content of the neuromelanin pigment and/or density of neuromelanin-containing neurons, while recent studies suggest that the main source of the NM-MRI contrast is not the presence of neuromelanin but the high-water content in the dopaminergic and noradrenergic neurons. In this review, we consider the biological and physical basis for the NM-MRI contrast and discuss a wide range of interpretations of NM-MRI. We describe different acquisition and image processing approaches and discuss how these methods could be improved and standardized to facilitate large-scale multisite studies and translation into clinical use. We review the potential clinical applications in neurological and psychiatric disorders and the promise of NM-MRI as a biomarker of disease, and finally, we discuss the current limitations of NM-MRI that need to be addressed before this technique can be utilized as a biomarker and translated into clinical practice and offer suggestions for future research.
Collapse
Affiliation(s)
- Paula Trujillo
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Megan A Aumann
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| |
Collapse
|
15
|
Liu R, Guo Z, Li M, Liu S, Zhi Y, Jiang Z, Liang X, Hu H, Zhu J. Lower fractional dimension in Alzheimer's disease correlates with reduced locus coeruleus signal intensity. Magn Reson Imaging 2024; 106:24-30. [PMID: 37541457 DOI: 10.1016/j.mri.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/19/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
This study aimed to determine the pattern of fractional dimension (FD) in Alzheimer's disease (AD) patients, and investigate the relationship between FD and the locus coeruleus (LC) signal intensity.A total of 27 patients with AD and 25 healthy controls (HC) were collected to estimate the pattern of fractional dimension (FD) and cortical thickness (CT) using the Computational Anatomy Toolbox (CAT12), and statistically analyze between groups on a vertex level using statistical parametric mapping 12. In addition, they were examined by neuromelanin sensitive MRI(NM-MRI) technique to calculate the locus coeruleus signal contrast ratios (LC-CRs). Additionally, correlations between the pattern of FD and LC-CRs were further examined.Compared to HC, AD patients showed widespread lower CT and FD Furthermore, significant positive correlation was found between local fractional dimension (LFD) of the left rostral middle frontal cortex and LC-CRs. Results suggest lower cortical LFD is associated with LCCRs that may reflect a reduction due to broader neurodegenerative processes. This finding may highlight the potential utility for advanced measures of cortical complexity in assessing brain health and early identification of neurodegenerative processes.
Collapse
Affiliation(s)
- Rong Liu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215004, China
| | - Zhiwen Guo
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215004, China
| | - Meng Li
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215004, China
| | - Shanwen Liu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215004, China
| | - Yuqi Zhi
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215004, China
| | - Zhen Jiang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215004, China
| | - Xiaoyun Liang
- Institute of Artificial Intelligence and Clinical Innovation, Neusoft Medical Systems Co., Ltd., Shanghai 200241, China; Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC 3084, Australia
| | - Hua Hu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215004, China.
| | - Jiangtao Zhu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215004, China.
| |
Collapse
|
16
|
Lakhani DA, Zhou X, Tao S, Patel V, Wen S, Okromelidze L, Greco E, Lin C, Westerhold EM, Straub S, Wszolek ZK, Tipton PW, Uitti RJ, Grewal SS, Middlebrooks EH. Diagnostic utility of 7T neuromelanin imaging of the substantia nigra in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:13. [PMID: 38191546 PMCID: PMC10774294 DOI: 10.1038/s41531-024-00631-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder that presents a diagnostic challenge due to symptom overlap with other disorders. Neuromelanin (NM) imaging is a promising biomarker for PD, but adoption has been limited, in part due to subpar performance at standard MRI field strengths. We aimed to evaluate the diagnostic utility of ultra-high field 7T NM-sensitive imaging in the diagnosis of PD versus controls and essential tremor (ET), as well as NM differences among PD subtypes. A retrospective case-control study was conducted including PD patients, ET patients, and controls. 7T NM-sensitive 3D-GRE was acquired, and substantia nigra pars compacta (SNpc) volumes, contrast ratios, and asymmetry indices were calculated. Statistical analyses, including general linear models and ROC curves, were employed. Twenty-one PD patients, 13 ET patients, and 18 controls were assessed. PD patients exhibited significantly lower SNpc volumes compared to non-PD subjects. SNpc total volume showed 100% sensitivity and 96.8% specificity (AUC = 0.998) for differentiating PD from non-PD and 100% sensitivity and 95.2% specificity (AUC = 0.996) in differentiating PD from ET. Contrast ratio was not significantly different between PD and non-PD groups (p = 0.07). There was also significantly higher asymmetry index in SNpc volume in PD compared to non-PD cohorts (p < 0.001). NM signal loss in PD predominantly involved the inferior, posterior, and lateral aspects of SNpc. Akinetic-rigid subtype showed more significant NM signal loss compared to tremor dominant subtype (p < 0.001). 7T NM imaging demonstrates potential as a diagnostic tool for PD, including potential distinction between subtypes, allowing improved understanding of disease progression and subtype-related characteristics.
Collapse
Affiliation(s)
- Dhairya A Lakhani
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Xiangzhi Zhou
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Shengzhen Tao
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Vishal Patel
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Sijin Wen
- Department of Biostatistics, West Virginia University, Morgantown, WV, USA
| | | | - Elena Greco
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Chen Lin
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Sina Straub
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Ryan J Uitti
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Erik H Middlebrooks
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA.
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
17
|
Freeze WM, van Veluw SJ, Jansen WJ, Bennett DA, Jacobs HIL. Locus coeruleus pathology is associated with cerebral microangiopathy at autopsy. Alzheimers Dement 2023; 19:5023-5035. [PMID: 37095709 PMCID: PMC10593911 DOI: 10.1002/alz.13096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/10/2023] [Accepted: 03/27/2023] [Indexed: 04/26/2023]
Abstract
INTRODUCTION We investigated the link between locus coeruleus (LC) pathology and cerebral microangiopathy in two large neuropathology datasets. METHODS We included data from the National Alzheimer's Coordinating Center (NACC) database (n = 2197) and Religious Orders Study and Rush Memory and Aging Project (ROSMAP; n = 1637). Generalized estimating equations and logistic regression were used to examine associations between LC hypopigmentation and presence of cerebral amyloid angiopathy (CAA) or arteriolosclerosis, correcting for age at death, sex, cortical Alzheimer's disease (AD) pathology, ante mortem cognitive status, and presence of vascular and genetic risk factors. RESULTS LC hypopigmentation was associated with higher odds of overall CAA in the NACC dataset, leptomeningeal CAA in the ROSMAP dataset, and arteriolosclerosis in both datasets. DISCUSSION LC pathology is associated with cerebral microangiopathy, independent of cortical AD pathology. LC degeneration could potentially contribute to the pathways relating vascular pathology to AD. Future studies of the LC-norepinephrine system on cerebrovascular health are warranted. HIGHLIGHTS We associated locus coeruleus (LC) pathology and cerebral microangiopathy in two large autopsy datasets. LC hypopigmentation was consistently related to arteriolosclerosis in both datasets. LC hypopigmentation was related to cerebral amyloid angiopathy (CAA) presence in the National Alzheimer's Coordinating Center dataset. LC hypopigmentation was related to leptomeningeal CAA in the Religious Orders Study and Rush Memory and Aging Project dataset. LC degeneration may play a role in the pathways relating vascular pathology to Alzheimer's disease.
Collapse
Affiliation(s)
- WM Freeze
- Department of Radiology, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands
- Department of Psychiatry and Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, 6229 ET, Maastricht, the Netherlands
| | - SJ van Veluw
- Department of Radiology, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands
- Department of Neurology, J. Philip Kistler Stroke Research Center, MGH, Boston, MA 02114, USA
| | - WJ Jansen
- Department of Psychiatry and Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, 6229 ET, Maastricht, the Netherlands
- Banner Alzheimer’s Institute, Phoenix, AZ 85006, USA
| | - DA Bennett
- Department of Neurological Sciences, Rush Alzheimer’s Disease Center, Rush University Medical Center; Chicago, IL 60612, USA
| | - HIL Jacobs
- Department of Psychiatry and Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, 6229 ET, Maastricht, the Netherlands
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
18
|
Bachman SL, Cole S, Yoo HJ, Nashiro K, Min J, Mercer N, Nasseri P, Thayer JF, Lehrer P, Mather M. Daily heart rate variability biofeedback training decreases locus coeruleus MRI contrast in younger adults in a randomized clinical trial. Int J Psychophysiol 2023; 193:112241. [PMID: 37647944 PMCID: PMC10591988 DOI: 10.1016/j.ijpsycho.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
As an arousal hub region in the brain, the locus coeruleus (LC) has bidirectional connections with the autonomic nervous system. Magnetic resonance imaging (MRI)-based measures of LC structural integrity have been linked to cognition and arousal, but less is known about factors that influence LC structure and function across time. Here, we tested the effects of heart rate variability (HRV) biofeedback, an intervention targeting the autonomic nervous system, on LC MRI contrast and sympathetic activity. Younger and older participants completed daily HRV biofeedback training for five weeks. Those assigned to an experimental condition performed biofeedback involving slow, paced breathing designed to increase heart rate oscillations, whereas those assigned to a control condition performed biofeedback to decrease heart rate oscillations. At the pre- and post-training timepoints, LC contrast was assessed using turbo spin echo MRI scans, and RNA sequencing was used to assess cAMP-responsive element binding protein (CREB)-regulated gene expression in circulating blood cells, an index of sympathetic nervous system signaling. We found that left LC contrast decreased in younger participants in the experimental group, and across younger participants, decreases in left LC contrast were related to the extent to which participants increased their heart rate oscillations during training. Furthermore, decreases in left LC contrast were associated with decreased expression of CREB-associated gene transcripts. On the contrary, there were no effects of biofeedback on LC contrast among older participants in the experimental group. These findings provide novel evidence that in younger adults, HRV biofeedback involving slow, paced breathing can decrease both LC contrast and sympathetic nervous system signaling.
Collapse
Affiliation(s)
- Shelby L Bachman
- University of Southern California, Los Angeles, CA 90089, United States of America
| | - Steve Cole
- University of California Los Angeles, Los Angeles, CA 90095, United States of America
| | - Hyun Joo Yoo
- University of Southern California, Los Angeles, CA 90089, United States of America
| | - Kaoru Nashiro
- University of Southern California, Los Angeles, CA 90089, United States of America
| | - Jungwon Min
- University of Southern California, Los Angeles, CA 90089, United States of America
| | - Noah Mercer
- University of Southern California, Los Angeles, CA 90089, United States of America
| | - Padideh Nasseri
- University of Southern California, Los Angeles, CA 90089, United States of America
| | - Julian F Thayer
- University of California Irvine, Irvine, CA 92697, United States of America
| | - Paul Lehrer
- Rutgers University, Piscataway, NJ 08852, United States of America
| | - Mara Mather
- University of Southern California, Los Angeles, CA 90089, United States of America.
| |
Collapse
|
19
|
Koshmanova E, Berger A, Beckers E, Campbell I, Mortazavi N, Sharifpour R, Paparella I, Balda F, Berthomier C, Degueldre C, Salmon E, Lamalle L, Bastin C, Van Egroo M, Phillips C, Maquet P, Collette F, Muto V, Chylinski D, Jacobs HI, Talwar P, Sherif S, Vandewalle G. Locus coeruleus activity while awake is associated with REM sleep quality in older individuals. JCI Insight 2023; 8:e172008. [PMID: 37698926 PMCID: PMC10619502 DOI: 10.1172/jci.insight.172008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUNDThe locus coeruleus (LC) is the primary source of norepinephrine in the brain and regulates arousal and sleep. Animal research shows that it plays important roles in the transition between sleep and wakefulness, and between slow wave sleep and rapid eye movement sleep (REMS). It is unclear, however, whether the activity of the LC predicts sleep variability in humans.METHODSWe used 7-Tesla functional MRI, sleep electroencephalography (EEG), and a sleep questionnaire to test whether the LC activity during wakefulness was associated with sleep quality in 33 healthy younger (~22 years old; 28 women, 5 men) and 19 older (~61 years old; 14 women, 5 men) individuals.RESULTSWe found that, in older but not in younger participants, higher LC activity, as probed during an auditory attentional task, was associated with worse subjective sleep quality and with lower power over the EEG theta band during REMS. The results remained robust even when accounting for the age-related changes in the integrity of the LC.CONCLUSIONThese findings suggest that LC activity correlates with the perception of the sleep quality and an essential oscillatory mode of REMS, and we found that the LC may be an important target in the treatment of sleep- and age-related diseases.FUNDINGThis work was supported by Fonds National de la Recherche Scientifique (FRS-FNRS, T.0242.19 & J. 0222.20), Action de Recherche Concertée - Fédération Wallonie-Bruxelles (ARC SLEEPDEM 17/27-09), Fondation Recherche Alzheimer (SAO-FRA 2019/0025), ULiège, and European Regional Development Fund (Radiomed & Biomed-Hub).
Collapse
Affiliation(s)
- Ekaterina Koshmanova
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Alexandre Berger
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
- Institute of Neuroscience (IoNS), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
- Synergia Medical SA, Mont-Saint-Guibert, Belgium
| | - Elise Beckers
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
- Alzheimer Centre Limburg, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Islay Campbell
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Nasrin Mortazavi
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Roya Sharifpour
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Ilenia Paparella
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Fermin Balda
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | | | - Christian Degueldre
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Eric Salmon
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
- Neurology Department, Centre Hospitalier Universitaire de Liège, Liège, Belgium
- PsyNCog and
| | - Laurent Lamalle
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Christine Bastin
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
- PsyNCog and
| | - Maxime Van Egroo
- Alzheimer Centre Limburg, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Christophe Phillips
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
- In Silico Medicine Unit, GIGA-Institute, ULiège, Liège, Belgium
| | - Pierre Maquet
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
- Neurology Department, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Fabienne Collette
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
- PsyNCog and
| | - Vincenzo Muto
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Daphne Chylinski
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Heidi I.L. Jacobs
- Alzheimer Centre Limburg, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Puneet Talwar
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Siya Sherif
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Gilles Vandewalle
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| |
Collapse
|
20
|
Hussain S, Menchaca I, Shalchy MA, Yaghoubi K, Langley J, Seitz AR, Hu XP, Peters MAK. Locus coeruleus integrity predicts ease of attaining and maintaining neural states of high attentiveness. Brain Res Bull 2023; 202:110733. [PMID: 37586427 DOI: 10.1016/j.brainresbull.2023.110733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
The locus coeruleus (LC), a small subcortical structure in the brainstem, is the brain's principal source of norepinephrine. It plays a primary role in regulating stress, the sleep-wake cycle, and attention, and its degradation is associated with aging and neurodegenerative diseases associated with cognitive deficits (e.g., Parkinson's, Alzheimer's). Yet precisely how norepinephrine drives brain networks to support healthy cognitive function remains poorly understood - partly because LC's small size makes it difficult to study noninvasively in humans. Here, we characterized LC's influence on brain dynamics using a hidden Markov model fitted to functional neuroimaging data from healthy young adults across four attention-related brain networks and LC. We modulated LC activity using a behavioral paradigm and measured individual differences in LC magnetization transfer contrast. The model revealed five hidden states, including a stable state dominated by salience-network activity that occurred when subjects actively engaged with the task. LC magnetization transfer contrast correlated with this state's stability across experimental manipulations and with subjects' propensity to enter into and remain in this state. These results provide new insight into LC's role in driving spatiotemporal neural patterns associated with attention, and demonstrate that variation in LC integrity can explain individual differences in these patterns even in healthy young adults.
Collapse
Affiliation(s)
- Sana Hussain
- Department of Bioengineering, University of California Riverside, Riverside, CA, USA
| | - Isaac Menchaca
- Department of Bioengineering, University of California Riverside, Riverside, CA, USA
| | | | - Kimia Yaghoubi
- Department of Psychology, University of California Riverside, Riverside, CA, USA
| | - Jason Langley
- Center for Advanced Neuroimaging, University of California, Riverside, CA, USA
| | - Aaron R Seitz
- Department of Psychology, University of California Riverside, Riverside, CA, USA; Department of Psychology, Northeastern University, Boston, MA, USA
| | - Xiaoping P Hu
- Department of Bioengineering, University of California Riverside, Riverside, CA, USA; Center for Advanced Neuroimaging, University of California, Riverside, CA, USA.
| | - Megan A K Peters
- Department of Bioengineering, University of California Riverside, Riverside, CA, USA; Department of Cognitive Sciences, University of California Irvine, Irvine, CA, USA; Program in Brain, Mind, & Consciousness, Canadian Institute for Advanced Research, Toronto, Ontario, Canada.
| |
Collapse
|
21
|
Bell TR, Elman JA, Beck A, Fennema-Notestine C, Gustavson DE, Hagler DJ, Jak AJ, Lyons MJ, Puckett OK, Toomey R, Franz CE, Kremen WS. Rostral-middle locus coeruleus integrity and subjective cognitive decline in early old age. J Int Neuropsychol Soc 2023; 29:763-774. [PMID: 36524301 PMCID: PMC10272292 DOI: 10.1017/s1355617722000881] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Abnormal tau, a hallmark Alzheimer's disease (AD) pathology, may appear in the locus coeruleus (LC) decades before AD symptom onset. Reports of subjective cognitive decline are also often present prior to formal diagnosis. Yet, the relationship between LC structural integrity and subjective cognitive decline has remained unexplored. Here, we aimed to explore these potential associations. METHODS We examined 381 community-dwelling men (mean age = 67.58; SD = 2.62) in the Vietnam Era Twin Study of Aging who underwent LC-sensitive magnetic resonance imaging and completed the Everyday Cognition scale to measure subjective cognitive decline along with their selected informants. Mixed models examined the associations between rostral-middle and caudal LC integrity and subjective cognitive decline after adjusting for depressive symptoms, physical morbidities, and family. Models also adjusted for current objective cognitive performance and objective cognitive decline to explore attenuation. RESULTS For participant ratings, lower rostral-middle LC contrast to noise ratio (LCCNR) was associated with significantly greater subjective decline in memory, executive function, and visuospatial abilities. For informant ratings, lower rostral-middle LCCNR was associated with significantly greater subjective decline in memory only. Associations remained after adjusting for current objective cognition and objective cognitive decline in respective domains. CONCLUSIONS Lower rostral-middle LC integrity is associated with greater subjective cognitive decline. Although not explained by objective cognitive performance, such a relationship may explain increased AD risk in people with subjective cognitive decline as the LC is an important neural substrate important for higher order cognitive processing, attention, and arousal and one of the first sites of AD pathology.
Collapse
Affiliation(s)
- Tyler R. Bell
- Department of Psychiatry, University of California San Diego, San Diego, La Jolla, CA, 92093
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, 92093
| | - Jeremy A. Elman
- Department of Psychiatry, University of California San Diego, San Diego, La Jolla, CA, 92093
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, 92093
| | - Asad Beck
- Center for Neurotechnology, University of Washington, Seattle, WA, USA
| | - Christine Fennema-Notestine
- Department of Psychiatry, University of California San Diego, San Diego, La Jolla, CA, 92093
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, 92093
- Department of Radiology, University of California San Diego, San Diego, La Jolla, CA, 92093
| | - Daniel E. Gustavson
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO
| | - Donald J. Hagler
- Department of Psychiatry, University of California San Diego, San Diego, La Jolla, CA, 92093
- Department of Radiology, University of California San Diego, San Diego, La Jolla, CA, 92093
| | - Amy J. Jak
- Department of Psychiatry, University of California San Diego, San Diego, La Jolla, CA, 92093
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, 92093
| | - Michael J Lyons
- Department of Psychology, Boston University, Boston, MA, USA, 02215
| | - Olivia K. Puckett
- Department of Psychiatry, University of California San Diego, San Diego, La Jolla, CA, 92093
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, 92093
| | - Rosemary Toomey
- Department of Psychology, Boston University, Boston, MA, USA, 02215
| | - Carol E. Franz
- Department of Psychiatry, University of California San Diego, San Diego, La Jolla, CA, 92093
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, 92093
| | - William S. Kremen
- Department of Psychiatry, University of California San Diego, San Diego, La Jolla, CA, 92093
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, 92093
| |
Collapse
|
22
|
Dahl MJ, Bachman SL, Dutt S, Düzel S, Bodammer NC, Lindenberger U, Kühn S, Werkle-Bergner M, Mather M. The integrity of dopaminergic and noradrenergic brain regions is associated with different aspects of late-life memory performance. NATURE AGING 2023; 3:1128-1143. [PMID: 37653256 PMCID: PMC10501910 DOI: 10.1038/s43587-023-00469-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 07/14/2023] [Indexed: 09/02/2023]
Abstract
Changes in dopaminergic neuromodulation play a key role in adult memory decline. Recent research has also implicated noradrenaline in shaping late-life memory. However, it is unclear whether these two neuromodulators have distinct roles in age-related cognitive changes. Here, combining longitudinal MRI of the dopaminergic substantia nigra-ventral tegmental area (SN-VTA) and noradrenergic locus coeruleus (LC) in younger (n = 69) and older (n = 251) adults, we found that dopaminergic and noradrenergic integrity are differentially associated with memory performance. While LC integrity was related to better episodic memory across several tasks, SN-VTA integrity was linked to working memory. Longitudinally, we found that older age was associated with more negative change in SN-VTA and LC integrity. Notably, changes in LC integrity reliably predicted future episodic memory. These differential associations of dopaminergic and noradrenergic nuclei with late-life cognitive decline have potential clinical utility, given their degeneration in several age-associated diseases.
Collapse
Affiliation(s)
- Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| | - Shelby L Bachman
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Shubir Dutt
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Sandra Düzel
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Nils C Bodammer
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Simone Kühn
- Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany
- Department of Psychiatry and Psychotherapy, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Mara Mather
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
23
|
Wolters AF, Heijmans M, Priovoulos N, Jacobs HIL, Postma AA, Temel Y, Kuijf ML, Michielse S. Neuromelanin related ultra-high field signal intensity of the locus coeruleus differs between Parkinson's disease and controls. Neuroimage Clin 2023; 39:103479. [PMID: 37494758 PMCID: PMC10394012 DOI: 10.1016/j.nicl.2023.103479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023]
Abstract
INTRODUCTION Neuromelanin related signal changes in catecholaminergic nuclei are considered as a promising MRI biomarker in Parkinson's disease (PD). Until now, most studies have investigated the substantia nigra (SN), while signal changes might be more prominent in the locus coeruleus (LC). Ultra-high field MRI improves the visualisation of these small brainstem regions and might support the development of imaging biomarkers in PD. OBJECTIVES To compare signal intensity of the SN and LC on Magnetization Transfer MRI between PD patients and healthy controls (HC) and to explore its association with cognitive performance in PD. METHODS This study was conducted using data from the TRACK-PD study, a longitudinal 7T MRI study. A total of 78 early-stage PD patients and 36 HC were included. A mask for the SN and LC was automatically segmented and manually corrected. Neuromelanin related signal intensity of the SN and LC was compared between PD and HC. RESULTS PD participants showed a lower contrast-to-noise ratio (CNR) in the right SN (p = 0.029) and left LC (p = 0.027). After adding age as a confounder, the CNR of the right SN did not significantly differ anymore between PD and HC (p = 0.055). Additionally, a significant positive correlation was found between the SN CNR and memory function. DISCUSSION This study confirms that neuromelanin related signal intensity of the LC differs between early-stage PD patients and HC. No significant difference was found in the SN. This supports the theory of bottom-up disease progression in PD. Furthermore, loss of SN integrity might influence working memory or learning capabilities in PD patients.
Collapse
Affiliation(s)
- Amée F Wolters
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - Margot Heijmans
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Nikos Priovoulos
- Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands; Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Heidi I L Jacobs
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Alida A Postma
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, The Netherlands
| | - Yasin Temel
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Mark L Kuijf
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Stijn Michielse
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
24
|
Berger A, Koshmanova E, Beckers E, Sharifpour R, Paparella I, Campbell I, Mortazavi N, Balda F, Yi YJ, Lamalle L, Dricot L, Phillips C, Jacobs HIL, Talwar P, El Tahry R, Sherif S, Vandewalle G. Structural and functional characterization of the locus coeruleus in young and late middle-aged individuals. FRONTIERS IN NEUROIMAGING 2023; 2:1207844. [PMID: 37554637 PMCID: PMC10406214 DOI: 10.3389/fnimg.2023.1207844] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/05/2023] [Indexed: 08/10/2023]
Abstract
INTRODUCTION The brainstem locus coeruleus (LC) influences a broad range of brain processes, including cognition. The so-called LC contrast is an accepted marker of the integrity of the LC that consists of a local hyperintensity on specific Magnetic Resonance Imaging (MRI) structural images. The small size of the LC has, however, rendered its functional characterization difficult in humans, including in aging. A full characterization of the structural and functional characteristics of the LC in healthy young and late middle-aged individuals is needed to determine the potential roles of the LC in different medical conditions. Here, we wanted to determine whether the activation of the LC in a mismatch negativity task changes in aging and whether the LC functional response was associated to the LC contrast. METHODS We used Ultra-High Field (UHF) 7-Tesla functional MRI (fMRI) to record brain response during an auditory oddball task in 53 healthy volunteers, including 34 younger (age: 22.15y ± 3.27; 29 women) and 19 late middle-aged (age: 61.05y ± 5.3; 14 women) individuals. RESULTS Whole-brain analyses confirmed brain responses in the typical cortical and subcortical regions previously associated with mismatch negativity. When focusing on the brainstem, we found a significant response in the rostral part of the LC probability mask generated based on individual LC images. Although bilateral, the activation was more extensive in the left LC. Individual LC activity was not significantly different between young and late middle-aged individuals. Importantly, while the LC contrast was higher in older individuals, the functional response of the LC was not significantly associated with its contrast. DISCUSSION These findings may suggest that the age-related alterations of the LC structural integrity may not be related to changes in its functional response. The results further suggest that LC responses may remain stable in healthy individuals aged 20 to 70.
Collapse
Affiliation(s)
- Alexandre Berger
- Sleep and Chronobiology Lab, GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
- Institute of Neuroscience (IoNS), Department of Clinical Neuroscience, Catholic University of Louvain, Brussels, Belgium
- Synergia Medical SA, Mont-Saint-Guibert, Belgium
| | - Ekaterina Koshmanova
- Sleep and Chronobiology Lab, GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Elise Beckers
- Sleep and Chronobiology Lab, GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
- Alzheimer Centre Limburg, Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Roya Sharifpour
- Sleep and Chronobiology Lab, GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Ilenia Paparella
- Sleep and Chronobiology Lab, GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Islay Campbell
- Sleep and Chronobiology Lab, GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Nasrin Mortazavi
- Sleep and Chronobiology Lab, GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Fermin Balda
- Sleep and Chronobiology Lab, GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Yeo-Jin Yi
- Institute of Cognitive Neurology and Dementia Research, Department of Natural Sciences, Faculty of Medicine, Otto-von-Guericke-University, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Laurent Lamalle
- Sleep and Chronobiology Lab, GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Laurence Dricot
- Institute of Neuroscience (IoNS), Department of Clinical Neuroscience, Catholic University of Louvain, Brussels, Belgium
| | - Christophe Phillips
- Sleep and Chronobiology Lab, GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Heidi I. L. Jacobs
- Alzheimer Centre Limburg, Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Puneet Talwar
- Sleep and Chronobiology Lab, GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Riëm El Tahry
- Institute of Neuroscience (IoNS), Department of Clinical Neuroscience, Catholic University of Louvain, Brussels, Belgium
- Center for Refractory Epilepsy, Department of Neurology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Siya Sherif
- Sleep and Chronobiology Lab, GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Gilles Vandewalle
- Sleep and Chronobiology Lab, GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| |
Collapse
|
25
|
Sibahi A, Gandhi R, Al-Haddad R, Therriault J, Pascoal T, Chamoun M, Boutin-Miller K, Tardif C, Rosa-Neto P, Cassidy CM. Characterization of an automated method to segment the human locus coeruleus. Hum Brain Mapp 2023; 44:3913-3925. [PMID: 37126580 DOI: 10.1002/hbm.26324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/17/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023] Open
Abstract
Following the development of magnetic resonance imaging (MRI) methods to assay the integrity of catecholamine nuclei, including the locus coeruleus (LC), there has been an effort to develop automated methods that can accurately segment this small structure in an automated manner to promote its widespread use and overcome limitations of manual segmentation. Here we characterize an automated LC segmentation approach (referred to as the funnel-tip [FT] method) in healthy individuals and individuals with LC degeneration in the context of Alzheimer's disease (AD, confirmed with tau-PET imaging using [18F]MK6240). The first sample included n = 190 individuals across the AD spectrum from cognitively normal to moderate AD. LC signal assayed with FT segmentation showed excellent agreement with manual segmentation (intraclass correlation coefficient [ICC] = 0.91). Compared to other methods, the FT method showed numerically higher correlation to AD status (defined by presence of tau: Cohen's d = 0.64) and AD severity (Braak stage: Pearson R = -.35, cognitive function: R = .25). In a separate sample of n = 12 control participants, the FT method showed excellent scan-rescan reliability (ICC = 0.82). In another sample of n = 30 control participants, we found that the structure of the LC defined by FT segmentation approximated its expected shape as a contiguous line: <5% of LC voxels strayed >1 voxel (0.69 mm) from this line. The FT LC segmentation shows high agreement with manual segmentation and captures LC degeneration in AD. This practical method may facilitate larger research studies of the human LC-norepinephrine system and has potential to support future use of neuromelanin-sensitive MRI as a clinical biomarker.
Collapse
Affiliation(s)
- Ahmad Sibahi
- Institute of Mental Health Research at the Royal, University of Ottawa, Ottawa, Ontario, Canada
| | - Rushali Gandhi
- Institute of Mental Health Research at the Royal, University of Ottawa, Ottawa, Ontario, Canada
| | - Rami Al-Haddad
- Institute of Mental Health Research at the Royal, University of Ottawa, Ottawa, Ontario, Canada
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada
- Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Tharick Pascoal
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada
- Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry and Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mira Chamoun
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada
- Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Krysta Boutin-Miller
- Institute of Mental Health Research at the Royal, University of Ottawa, Ottawa, Ontario, Canada
| | - Christine Tardif
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada
- Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Clifford M Cassidy
- Institute of Mental Health Research at the Royal, University of Ottawa, Ottawa, Ontario, Canada
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada
- Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
26
|
Wang X, Huang P, Haacke EM, Liu Y, Zhang Y, Jin Z, Li Y, Xu Q, Liu P, Chen S, He N, Yan F. Locus coeruleus and substantia nigra neuromelanin magnetic resonance imaging differentiates Parkinson's disease and essential tremor. Neuroimage Clin 2023; 38:103420. [PMID: 37141646 PMCID: PMC10176060 DOI: 10.1016/j.nicl.2023.103420] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/04/2023] [Accepted: 04/23/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Differential diagnosis of essential tremor (ET) and Parkinson's disease (PD) can still be a challenge in clinical practice. These two tremor disorders may have different pathogenesis related to the substantia nigra (SN) and locus coeruleus (LC). Characterizing neuromelanin (NM) in these structures may help improve the differential diagnosis. METHODS Forty-three subjects with tremor-dominant PD (PDTD), 31 subjects with ET, and 30 age- and sex-matched healthy controls were included. All subjects were scanned with NM magnetic resonance imaging (NM-MRI). NM volume and contrast measures for the SN and contrast for the LC were evaluated. Logistic regression was used to calculate predicted probabilities by using the combination of SN and LC NM measures. The discriminative power of the NM measures in detecting subjects with PDTD from ET was assessed with a receiver operative characteristic curve, and the area under the curve (AUC) was calculated. RESULTS The NM contrast-to-noise ratio (CNR) of the LC, the NM volume, and CNR of the SN on the right and left sides were significantly lower in PDTD subjects than in ET subjects or healthy controls (all P < 0.05). Furthermore, when combining the best model constructed from the NM measures, the AUC reached 0.92 in differentiating PDTD from ET. CONCLUSION The NM volume and contrast measures of the SN and contrast for the LC provided a new perspective on the differential diagnosis of PDTD and ET, and the investigation of the underlying pathophysiology.
Collapse
Affiliation(s)
- Xinhui Wang
- From the Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai 200025, China
| | - Pei Huang
- From the Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai 200025, China
| | - Ewart Mark Haacke
- From the Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai 200025, China; Department of Biomedical Engineering, Wayne State University, 3990 John R, Detroit, MI, USA; Department of Radiology, Wayne State University, 3990 John R, Detroit, MI, USA; Department of Neurology, Wayne State University, 3990 John R, Detroit, MI, USA
| | - Yu Liu
- From the Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai 200025, China
| | - Youmin Zhang
- From the Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai 200025, China
| | - Zhijia Jin
- From the Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai 200025, China
| | - Yan Li
- From the Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai 200025, China
| | - Qiuyun Xu
- Department of Biomedical Engineering, Wayne State University, 3990 John R, Detroit, MI, USA
| | - Peng Liu
- From the Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai 200025, China
| | - Shengdi Chen
- From the Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai 200025, China.
| | - Naying He
- From the Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai 200025, China.
| | - Fuhua Yan
- From the Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai 200025, China.
| |
Collapse
|
27
|
Koshmanova E, Berger A, Beckers E, Campbell I, Mortazavi N, Sharifpour R, Paparella I, Balda F, Berthomier C, Degueldre C, Salmon E, Lamalle L, Bastin C, Egroo MV, Phillips C, Maquet P, Collette F, Muto V, Chylinski D, Jacobs HI, Talwar P, Sherif S, Vandewalle G. In vivo Locus Coeruleus activity while awake is associated with REM sleep quality in healthy older individuals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.527974. [PMID: 36993680 PMCID: PMC10054994 DOI: 10.1101/2023.02.10.527974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The locus coeruleus (LC) is the primary source of norepinephrine (NE) in the brain, and the LC-NE system is involved in regulating arousal and sleep. It plays key roles in the transition between sleep and wakefulness, and between slow wave sleep (SWS) and rapid eye movement sleep (REMS). However, it is not clear whether the LC activity during the day predicts sleep quality and sleep properties during the night, and how this varies as a function of age. Here, we used 7 Tesla functional Magnetic Resonance Imaging (7T fMRI), sleep electroencephalography (EEG) and a sleep questionnaire to test whether the LC activity during wakefulness was associated with sleep quality in 52 healthy younger (N=33; ~22y; 28 women) and older (N=19; ~61y; 14 women) individuals. We find that, in older, but not in younger participants, higher LC activity, as probed during an auditory mismatch negativity task, is associated with worse subjective sleep quality and with lower power over the EEG theta band during REMS (4-8Hz), which are two sleep parameters significantly correlated in our sample of older individuals. The results remain robust even when accounting for the age-related changes in the integrity of the LC. These findings suggest that the activity of the LC may contribute to the perception of the sleep quality and to an essential oscillatory mode of REMS, and that the LC may be an important target in the treatment of sleep disorders and age-related diseases.
Collapse
|
28
|
Engels-Domínguez N, Koops EA, Prokopiou PC, Van Egroo M, Schneider C, Riphagen JM, Singhal T, Jacobs HIL. State-of-the-art imaging of neuromodulatory subcortical systems in aging and Alzheimer's disease: Challenges and opportunities. Neurosci Biobehav Rev 2023; 144:104998. [PMID: 36526031 PMCID: PMC9805533 DOI: 10.1016/j.neubiorev.2022.104998] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/30/2022] [Accepted: 11/07/2022] [Indexed: 12/14/2022]
Abstract
Primary prevention trials have shifted their focus to the earliest stages of Alzheimer's disease (AD). Autopsy data indicates that the neuromodulatory subcortical systems' (NSS) nuclei are specifically vulnerable to initial tau pathology, indicating that these nuclei hold great promise for early detection of AD in the context of the aging brain. The increasing availability of new imaging methods, ultra-high field scanners, new radioligands, and routine deep brain stimulation implants has led to a growing number of NSS neuroimaging studies on aging and neurodegeneration. Here, we review findings of current state-of-the-art imaging studies assessing the structure, function, and molecular changes of these nuclei during aging and AD. Furthermore, we identify the challenges associated with these imaging methods, important pathophysiologic gaps to fill for the AD NSS neuroimaging field, and provide future directions to improve our assessment, understanding, and clinical use of in vivo imaging of the NSS.
Collapse
Affiliation(s)
- Nina Engels-Domínguez
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands
| | - Elouise A Koops
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Prokopis C Prokopiou
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Maxime Van Egroo
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands
| | - Christoph Schneider
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joost M Riphagen
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tarun Singhal
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Heidi I L Jacobs
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
29
|
Liebe T, Dordevic M, Kaufmann J, Avetisyan A, Skalej M, Müller N. Investigation of the functional pathogenesis of mild cognitive impairment by localisation-based locus coeruleus resting-state fMRI. Hum Brain Mapp 2022; 43:5630-5642. [PMID: 36441846 PMCID: PMC9704796 DOI: 10.1002/hbm.26039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/27/2022] [Accepted: 07/25/2022] [Indexed: 01/15/2023] Open
Abstract
Dementia as one of the most prevalent diseases urges for a better understanding of the central mechanisms responsible for clinical symptoms, and necessitates improvement of actual diagnostic capabilities. The brainstem nucleus locus coeruleus (LC) is a promising target for early diagnosis because of its early structural alterations and its relationship to the functional disturbances in the patients. In this study, we applied our improved method of localisation-based LC resting-state fMRI to investigate the differences in central sensory signal processing when comparing functional connectivity (fc) of a patient group with mild cognitive impairment (MCI, n = 28) and an age-matched healthy control group (n = 29). MCI and control participants could be differentiated in their Mini-Mental-State-Examination (MMSE) scores (p < .001) and LC intensity ratio (p = .010). In the fMRI, LC fc to anterior cingulate cortex (FDR p < .001) and left anterior insula (FDR p = .012) was elevated, and LC fc to right temporoparietal junction (rTPJ, FDR p = .012) and posterior cingulate cortex (PCC, FDR p = .021) was decreased in the patient group. Importantly, LC to rTPJ connectivity was also positively correlated to MMSE scores in MCI patients (p = .017). Furthermore, we found a hyperactivation of the left-insula salience network in the MCI patients. Our results and our proposed disease model shed new light on the functional pathogenesis of MCI by directing to attentional network disturbances, which could aid new therapeutic strategies and provide a marker for diagnosis and prediction of disease progression.
Collapse
Affiliation(s)
- Thomas Liebe
- Department of PsychiatryMedical University of ViennaViennaAustria
- Department of RadiologyUniversity Hospital JenaJenaGermany
- Department of PsychiatryUniversity Hospital JenaJenaGermany
- Clinical Affective Neuroimaging LaboratoryLeibniz Institute for NeurobiologyMagdeburgGermany
| | - Milos Dordevic
- Department of Degenerative and Chronic DiseasesUniversity PotsdamPotsdamGermany
| | - Jörn Kaufmann
- Department of NeurologyUniversity Hospital MagdeburgMagdeburgGermany
| | - Araks Avetisyan
- Neuroprotection LabGerman Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| | - Martin Skalej
- Department of Neuroradiology, Clinic and Policlinic of RadiologyUniversity Hospital HalleHalleGermany
| | - Notger Müller
- Department of Degenerative and Chronic DiseasesUniversity PotsdamPotsdamGermany
| |
Collapse
|
30
|
Berman S, Drori E, Mezer AA. Spatial profiles provide sensitive MRI measures of the midbrain micro- and macrostructure. Neuroimage 2022; 264:119660. [PMID: 36220534 DOI: 10.1016/j.neuroimage.2022.119660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/15/2022] [Accepted: 09/30/2022] [Indexed: 11/09/2022] Open
Abstract
The midbrain is the rostral-most part of the brainstem. It contains numerous nuclei and white matter tracts, which are involved in motor, auditory and visual processing, and changes in their structure and function have been associated with aging, as well as neurodegenerative disorders. Current tools for estimating midbrain subregions and their structure with MRI require high resolution and multi-parametric quantitative MRI measures. We propose an approach that relies on morphology to calculate profiles along the midbrain and show these profiles are sensitive to the underlying macrostructure of the midbrain. First, we show that the midbrain structure can be sampled, within subject space, along three main axes of the left and right midbrain, producing profiles that are similar across subjects. We use two data sets with different field strengths, that contain R1, R2* and QSM maps and show that the profiles are highly correlated both across subjects and between datasets. Next, we compare profiles of the midbrain that sample ROIs, and show that the profiles along the first two axes sample the midbrain in a way that reliably separates the main structures, i.e., the substantia nigra, the red nucleus, and periaqueductal gray. We further show that age differences which are localized to specific nuclei, are reflected in the profiles. Finally, we generalize the same approach to calculate midbrain profiles on a third clinically relevant dataset using HCP subjects, with metrics such as the diffusion tensor and semi-quantitative data such as T1w/T2w maps. Our results suggest that midbrain profiles, both of quantitative and semi-quantitative estimates are sensitive to the underlying macrostructure of the midbrain. The midbrain profiles are calculated in native space, and rely on simple measurements. We show that it is robust and can be easily expanded to different datasets, and as such we hope that it will be of great use to the community and to the study of the midbrain in particular.
Collapse
Affiliation(s)
- Shai Berman
- The Edmond and Lily Safra Center for Brain Science, the Hebrew University of Jerusalem, Israel; Mortimer B. Zuckerman Mind, Brain, Behavior Institute, Columbia University, New York, NY, United States.
| | - Elior Drori
- The Edmond and Lily Safra Center for Brain Science, the Hebrew University of Jerusalem, Israel
| | - Aviv A Mezer
- The Edmond and Lily Safra Center for Brain Science, the Hebrew University of Jerusalem, Israel
| |
Collapse
|
31
|
Morris LS, Mehta M, Ahn C, Corniquel M, Verma G, Delman B, Hof PR, Jacob Y, Balchandani P, Murrough JW. Ventral tegmental area integrity measured with high-resolution 7-Tesla MRI relates to motivation across depression and anxiety diagnoses. Neuroimage 2022; 264:119704. [PMID: 36349598 PMCID: PMC9801251 DOI: 10.1016/j.neuroimage.2022.119704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/25/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
The ventral tegmental area (VTA) is one of the major sources of dopamine in the brain and has been associated with reward prediction, error-based reward learning, volitional drive and anhedonia. However, precise anatomical investigations of the VTA have been prevented by the use of standard-resolution MRI, reliance on subjective manual tracings, and lack of quantitative measures of dopamine-related signal. Here, we combine ultra-high field 400 µm3 quantitative MRI with dopamine-related signal mapping, and a mixture of machine learning and supervised computational techniques to delineate the VTA in a transdiagnostic sample of subjects with and without depression and anxiety disorders. Subjects also underwent cognitive testing to measure intrinsic and extrinsic motivational tone. Fifty-one subjects were scanned in total, including healthy control (HC) and mood/anxiety (MA) disorder subjects. MA subjects had significantly larger VTA volumes compared to HC but significantly lower signal intensity within VTA compared to HC, indicating reduced structural integrity of the dopaminergic VTA. Interestingly, while VTA integrity did not significantly correlate with self-reported depression or anxiety symptoms, it was correlated with an objective cognitive measure of extrinsic motivation, whereby lower VTA integrity was associated with lower motivation. This is the first study to demonstrate a computational pipeline for detecting and delineating the VTA in human subjects with 400 μm3 resolution. We highlight the use of objective transdiagnostic measures of cognitive function that link neural integrity to behavior across clinical and non-clinical groups.
Collapse
Affiliation(s)
- Laurel S Morris
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA; BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA.
| | - Marishka Mehta
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Christopher Ahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Morgan Corniquel
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Gaurav Verma
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Bradley Delman
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Yael Jacob
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA; BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Priti Balchandani
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - James W Murrough
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA; Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
32
|
He N, Chen Y, LeWitt PA, Yan F, Haacke EM. Response to “Neuromelanin?
MRI
of Noradrenergic and Dopaminergic Neurons”. J Magn Reson Imaging 2022. [DOI: 10.1002/jmri.28481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
- Naying He
- Department of Radiology Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yongsheng Chen
- Department of Neurology Wayne State University School of Medicine Detroit Michigan USA
| | - Peter A. LeWitt
- Department of Neurology Wayne State University School of Medicine Detroit Michigan USA
- Department of Neurology Henry Ford Hospital, Parkinson's Disease and Movement Disorders Program Detroit Michigan USA
| | - Fuhua Yan
- Department of Radiology Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Ewart Mark Haacke
- Department of Radiology Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
- Department of Neurology Wayne State University School of Medicine Detroit Michigan USA
- Department of Radiology Wayne State University School of Medicine Detroit Michigan USA
- SpinTech, Inc Bingham Farms Michigan USA
| |
Collapse
|
33
|
Al Haddad R, Chamoun M, Tardif CL, Guimond S, Horga G, Rosa‐Neto P, Cassidy CM. Normative Values of Neuromelanin‐Sensitive
MRI
Signal in Older Adults Obtained Using a Turbo Spin Echo Sequence. J Magn Reson Imaging 2022. [DOI: 10.1002/jmri.28530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Rami Al Haddad
- The Institute of Mental Health Research University of Ottawa Ottawa Ontario Canada
| | - Mira Chamoun
- McGill University Research Centre for Studies in Aging Montreal Quebec Canada
| | | | - Synthia Guimond
- The Institute of Mental Health Research University of Ottawa Ottawa Ontario Canada
| | - Guillermo Horga
- Department of Psychiatry Columbia University New York City New York USA
| | - Pedro Rosa‐Neto
- McGill University Research Centre for Studies in Aging Montreal Quebec Canada
- Montreal Neurological Institute McGill University Montreal Quebec Canada
| | - Clifford M. Cassidy
- The Institute of Mental Health Research University of Ottawa Ottawa Ontario Canada
- McGill University Research Centre for Studies in Aging Montreal Quebec Canada
| |
Collapse
|
34
|
Neuromelanin?
MRI
of Noradrenergic and Dopaminergic Neurons. J Magn Reson Imaging 2022. [DOI: 10.1002/jmri.28479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
|
35
|
Elman JA, Puckett OK, Hagler DJ, Pearce RC, Fennema-Notestine C, Hatton SN, Lyons MJ, McEvoy LK, Panizzon MS, Reas ET, Dale AM, Franz CE, Kremen WS. Associations between MRI-assessed locus coeruleus integrity and cortical gray matter microstructure. Cereb Cortex 2022; 32:4191-4203. [PMID: 34969072 PMCID: PMC9528780 DOI: 10.1093/cercor/bhab475] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 01/27/2023] Open
Abstract
The locus coeruleus (LC) is one of the earliest sites of tau pathology, making it a key structure in early Alzheimer's disease (AD) progression. As the primary source of norepinephrine for the brain, reduced LC integrity may have negative consequences for brain health, yet macrostructural brain measures (e.g. cortical thickness) may not be sensitive to early stages of neurodegeneration. We therefore examined whether LC integrity was associated with differences in cortical gray matter microstructure among 435 men (mean age = 67.5; range = 62-71.7). LC structural integrity was indexed by contrast-to-noise ratio (LCCNR) from a neuromelanin-sensitive MRI scan. Restriction spectrum imaging (RSI), an advanced multi-shell diffusion technique, was used to characterize cortical microstructure, modeling total diffusion in restricted, hindered, and free water compartments. Higher LCCNR (greater integrity) was associated with higher hindered and lower free water diffusion in multiple cortical regions. In contrast, no associations between LCCNR and cortical thickness survived correction. Results suggest lower LC integrity is associated with patterns of cortical microstructure that may reflect a reduction in cytoarchitectural barriers due to broader neurodegenerative processes. These findings highlight the potential utility for LC imaging and advanced diffusion measures of cortical microstructure in assessing brain health and early identification of neurodegenerative processes.
Collapse
Affiliation(s)
- Jeremy A Elman
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA 92093, USA
| | - Olivia K Puckett
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA 92093, USA
| | - Donald J Hagler
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Rahul C Pearce
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA 92093, USA
| | - Christine Fennema-Notestine
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Sean N Hatton
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA 92093, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Michael J Lyons
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| | - Linda K McEvoy
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA 92093, USA
| | - Matthew S Panizzon
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA 92093, USA
| | - Emilie T Reas
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Anders M Dale
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Carol E Franz
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA 92093, USA
| | - William S Kremen
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA 92093, USA
- Center of Excellence for Stress and Mental Health, VA San Diego Health Care System, La Jolla, CA 92161, USA
| |
Collapse
|
36
|
Calarco N, Cassidy CM, Selby B, Hawco C, Voineskos AN, Diniz BS, Nikolova YS. Associations between locus coeruleus integrity and diagnosis, age, and cognitive performance in older adults with and without late-life depression: An exploratory study. Neuroimage Clin 2022; 36:103182. [PMID: 36088841 PMCID: PMC9474922 DOI: 10.1016/j.nicl.2022.103182] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 12/14/2022]
Abstract
Late-life depression (LLD) is a risk factor for age-dependent cognitive deterioration. Norepinephrine-related degeneration in the locus coeruleus (LC) may explain this link. To examine the LC norepinephrine system in vivo, we acquired neuromelanin-sensitive MRI (NM-MRI) in a sample of 48 participants, including 25 with LLD (18 women, age 68.08 ± 5.41) and 23 never-depressed comparison participants (ND, 12 women, age 70 ± 8.02), matched on age and cognitive status. We employed a semi-automated procedure to segment the LC into three bilateral sections along its rostro-caudal extent, and calculated relative contrast as a proxy of integrity. Then, we examined associations between integrity and LLD diagnosis, age, and cognition, as measured via the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and the Delis-Kaplan Executive Function System (D-KEFS). We did not identify an effect of LLD diagnosis nor age on LC integrity, but exploratory canonical correlation analysis across the combined participant sample revealed a strong (Rc = 0.853) and significant multivariate relationship between integrity and cognition (Wilks' λ = 0.03, F(84, 162.44) = 1.66, p = <.01). The first and only significant variate explained 72.83% model variance, and linked better attention and delayed memory performance, faster processing speed, and lower verbal fluency performance with higher integrity in the right rostral but lower integrity in the left caudal LC. Our results complement prior evidence of LC involvement in cognition in healthy older adults, and extend this association to individuals with LLD.
Collapse
Affiliation(s)
- Navona Calarco
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Clifford M. Cassidy
- The University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, ON, Canada
| | - Ben Selby
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Colin Hawco
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Aristotle N. Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Breno S. Diniz
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA,Department of Psychiatry, School of Medicine, University of Connecticut, Farmington, CT, USA
| | - Yuliya S. Nikolova
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada,Corresponding author at: Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), 250 College Street, Toronto, ON M5T 1L8, Canada.
| |
Collapse
|
37
|
Suárez-Pereira I, Llorca-Torralba M, Bravo L, Camarena-Delgado C, Soriano-Mas C, Berrocoso E. The Role of the Locus Coeruleus in Pain and Associated Stress-Related Disorders. Biol Psychiatry 2022; 91:786-797. [PMID: 35164940 DOI: 10.1016/j.biopsych.2021.11.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/26/2022]
Abstract
The locus coeruleus (LC)-noradrenergic system is the main source of noradrenaline in the central nervous system and is involved intensively in modulating pain and stress-related disorders (e.g., major depressive disorder and anxiety) and in their comorbidity. However, the mechanisms involving the LC that underlie these effects have not been fully elucidated, in part owing to the technical difficulties inherent in exploring such a tiny nucleus. However, novel research tools are now available that have helped redefine the LC system, moving away from the traditional view of LC as a homogeneous structure that exerts a uniform influence on neural activity. Indeed, innovative techniques such as DREADDs (designer receptors exclusively activated by designer drugs) and optogenetics have demonstrated the functional heterogeneity of LC, and novel magnetic resonance imaging applications combined with pupillometry have opened the way to evaluate LC activity in vivo. This review aims to bring together the data available on the efferent activity of the LC-noradrenergic system in relation to pain and its comorbidity with anxiodepressive disorders. Acute pain triggers a robust LC stress response, producing spinal cord-mediated endogenous analgesia while promoting aversion, vigilance, and threat detection through its ascending efferents. However, this protective biological system fails in chronic pain, and LC activity produces pain facilitation, anxiety, increased aversive memory, and behavioral despair, acting at the medulla, prefrontal cortex, and amygdala levels. Thus, the activation/deactivation of specific LC projections contributes to different behavioral outcomes in the shift from acute to chronic pain.
Collapse
Affiliation(s)
- Irene Suárez-Pereira
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Meritxell Llorca-Torralba
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Lidia Bravo
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Camarena-Delgado
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Carles Soriano-Mas
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute, Barcelona, Spain; Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Esther Berrocoso
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
38
|
Cassidy CM, Therriault J, Pascoal TA, Cheung V, Savard M, Tuominen L, Chamoun M, McCall A, Celebi S, Lussier F, Massarweh G, Soucy JP, Weinshenker D, Tardif C, Ismail Z, Gauthier S, Rosa-Neto P. Association of locus coeruleus integrity with Braak stage and neuropsychiatric symptom severity in Alzheimer's disease. Neuropsychopharmacology 2022; 47:1128-1136. [PMID: 35177805 PMCID: PMC8938499 DOI: 10.1038/s41386-022-01293-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/07/2022] [Accepted: 02/02/2022] [Indexed: 12/16/2022]
Abstract
The clinical and pathophysiological correlates of locus coeruleus (LC) degeneration in Alzheimer's disease (AD) could be clarified using a method to index LC integrity in vivo, neuromelanin-sensitive MRI (NM-MRI). We examined whether integrity of the LC-norepinephrine system, assessed with NM-MRI, is associated with stage of AD and with neuropsychiatric symptoms (NPS), independent of cortical pathophysiology (amyloid-β and tau burden). Cognitively normal older adults (n = 118), and individuals with mild cognitive impairment (MCI, n = 44), and AD (n = 28) underwent MR imaging and tau and amyloid-β positron emission tomography (with [18F]MK6240 and [18F]AZD4694, respectively). Integrity of the LC-norepinephrine system was assessed based on contrast-to-noise ratio of the LC on NM-MRI images. Braak stage of AD was derived from regional binding of [18F]MK6240. NPS were assessed with the Mild Behavioral Impairment Checklist (MBI-C). LC signal contrast was decreased in tau-positive participants (t186 = -4.00, p = 0.0001) and negatively correlated to Braak stage (Spearman ρ = -0.31, p = 0.00006). In tau-positive participants (n = 51), higher LC signal predicted NPS severity (ρ = 0.35, p = 0.019) independently of tau burden, amyloid-β burden, and cortical gray matter volume. This relationship appeared to be driven by the impulse dyscontrol domain of NPS, which was highly correlated to LC signal (ρ = 0.44, p = 0.0027). NM-MRI reveals loss of LC integrity that correlates to severity of AD. However, LC preservation in AD may also have negative consequences by conferring risk for impulse control symptoms. NM-MRI shows promise as a practical biomarker that could have utility in predicting the risk of NPS or guiding their treatment in AD.
Collapse
Affiliation(s)
- Clifford M. Cassidy
- grid.28046.380000 0001 2182 2255Institute of Mental Health Research, University of Ottawa, Ottawa, ON Canada ,grid.14709.3b0000 0004 1936 8649Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, McGill University, Montreal, QC Canada
| | - Joseph Therriault
- grid.14709.3b0000 0004 1936 8649Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Neurology and Neurosurgery, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Psychiatry, McGill University, Montreal, QC Canada
| | - Tharick A. Pascoal
- grid.14709.3b0000 0004 1936 8649Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Neurology and Neurosurgery, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Psychiatry, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Montreal Neurological Institute, McGill University, Montreal, QC Canada
| | - Victoria Cheung
- grid.28046.380000 0001 2182 2255Institute of Mental Health Research, University of Ottawa, Ottawa, ON Canada
| | - Melissa Savard
- grid.14709.3b0000 0004 1936 8649Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Neurology and Neurosurgery, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Psychiatry, McGill University, Montreal, QC Canada
| | - Lauri Tuominen
- grid.28046.380000 0001 2182 2255Institute of Mental Health Research, University of Ottawa, Ottawa, ON Canada
| | - Mira Chamoun
- grid.14709.3b0000 0004 1936 8649Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Neurology and Neurosurgery, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Psychiatry, McGill University, Montreal, QC Canada
| | - Adelina McCall
- grid.28046.380000 0001 2182 2255Institute of Mental Health Research, University of Ottawa, Ottawa, ON Canada
| | - Seyda Celebi
- grid.28046.380000 0001 2182 2255Institute of Mental Health Research, University of Ottawa, Ottawa, ON Canada
| | - Firoza Lussier
- grid.14709.3b0000 0004 1936 8649Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Neurology and Neurosurgery, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Psychiatry, McGill University, Montreal, QC Canada
| | - Gassan Massarweh
- grid.14709.3b0000 0004 1936 8649Department of Neurology and Neurosurgery, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Montreal Neurological Institute, McGill University, Montreal, QC Canada
| | - Jean-Paul Soucy
- grid.14709.3b0000 0004 1936 8649Department of Neurology and Neurosurgery, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Montreal Neurological Institute, McGill University, Montreal, QC Canada
| | - David Weinshenker
- grid.189967.80000 0001 0941 6502Department of Human Genetics, Emory University School of Medicine, Atlanta, GA USA
| | - Christine Tardif
- grid.14709.3b0000 0004 1936 8649Department of Neurology and Neurosurgery, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Montreal Neurological Institute, McGill University, Montreal, QC Canada
| | - Zahinoor Ismail
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada
| | - Serge Gauthier
- grid.14709.3b0000 0004 1936 8649Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Alzheimer’s Disease Research Unit, The McGill University Research Centre for Studies in Aging, McGill University, Montréal, QC Canada
| | - Pedro Rosa-Neto
- grid.14709.3b0000 0004 1936 8649Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Neurology and Neurosurgery, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Psychiatry, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Montreal Neurological Institute, McGill University, Montreal, QC Canada
| |
Collapse
|
39
|
Pagen LHG, Poser BA, van Boxtel MPJ, Priovoulos N, van Hooren RWE, Verhey FRJ, Jacobs HIL. Worry Modifies the Relationship between Locus Coeruleus Activity and Emotional Mnemonic Discrimination. Brain Sci 2022; 12:brainsci12030381. [PMID: 35326337 PMCID: PMC8946181 DOI: 10.3390/brainsci12030381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 12/10/2022] Open
Abstract
Background: The locus coeruleus (LC) plays a critical role in modulating emotional memory performance via widespread connections to the medial temporal lobe (MTL). Interestingly, both the LC and MTL are affected during aging. Therefore, we aimed to investigate whether worry during cognitive aging changes the relationship between memory performance and the neural activity patterns during an emotional memory task. Methods: Twenty-eight participants aged 60–83 years from the Maastricht Aging study conducted an emotional mnemonic discrimination task during a 7T fMRI-scan. We performed a robust multiple linear regression to examine the association between worry and mnemonic memory performance under different levels of arousal. Subsequently, we examined if worry modifies the relationship between neuronal activity and mnemonic memory performance. Results: We observed that under low arousal, only participants with low compared to high levels of worry benefitted from additional LC activity. Under high arousal, additional LC activity was associated with lower mnemonic memory performance. Conclusion: Our results suggest there might be an optimal involvement of the NA-system for optimal memory discrimination performance, as we observed that under low levels of worry and with lower levels of arousal, higher LC activity might be needed to achieve similar levels of optimal memory performance as achieved under higher arousal when LC activity remained lower.
Collapse
Affiliation(s)
- Linda H. G. Pagen
- Alzheimer Centre Limburg, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (L.H.G.P.); (M.P.J.v.B.); (N.P.); (R.W.E.v.H.); (F.R.J.V.)
- Centre for Integrative Neuroscience, School for Mental Health and Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Benedikt A. Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Martin P. J. van Boxtel
- Alzheimer Centre Limburg, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (L.H.G.P.); (M.P.J.v.B.); (N.P.); (R.W.E.v.H.); (F.R.J.V.)
| | - Nikos Priovoulos
- Alzheimer Centre Limburg, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (L.H.G.P.); (M.P.J.v.B.); (N.P.); (R.W.E.v.H.); (F.R.J.V.)
| | - Roy W. E. van Hooren
- Alzheimer Centre Limburg, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (L.H.G.P.); (M.P.J.v.B.); (N.P.); (R.W.E.v.H.); (F.R.J.V.)
| | - Frans R. J. Verhey
- Alzheimer Centre Limburg, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (L.H.G.P.); (M.P.J.v.B.); (N.P.); (R.W.E.v.H.); (F.R.J.V.)
| | - Heidi I. L. Jacobs
- Alzheimer Centre Limburg, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (L.H.G.P.); (M.P.J.v.B.); (N.P.); (R.W.E.v.H.); (F.R.J.V.)
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands;
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Correspondence:
| |
Collapse
|
40
|
Porat S, Sibilia F, Yoon J, Shi Y, Dahl MJ, Werkle-Bergner M, Düzel S, Bodammer N, Lindenberger U, Kühn S, Mather M. Age Differences in Diffusivity in the Locus Coeruleus and its Ascending Noradrenergic Tract. Neuroimage 2022; 251:119022. [PMID: 35192943 PMCID: PMC9183949 DOI: 10.1016/j.neuroimage.2022.119022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/11/2022] Open
Abstract
The noradrenergic locus coeruleus (LC) is a small brainstem nucleus that promotes arousal and attention. Recent studies have examined the microstructural properties of the LC using diffusion-weighted magnetic resonance imaging and found unexpected age-related differences in fractional anisotropy - a measure of white matter integrity. Here, we used two datasets (Berlin Aging Study-II, N = 301, the Leipzig Study for Mind-Body-Emotion Interactions, N = 220), to replicate published findings and expand them by investigating diffusivity in the LC’s ascending noradrenergic bundle. In younger adults, LC fractional anisotropy was significantly lower, compared to older adults. However, in the LC’s ascending noradrenergic bundle, we observed significantly higher fractional anisotropy in younger adults, relative to older adults. These findings indicate that diffusivity in the LC versus the ascending noradrenergic bundle are both susceptible to structural changes in aging that have opposing effects on fractional anisotropy.
Collapse
|
41
|
Van Egroo M, Koshmanova E, Vandewalle G, Jacobs HI. Importance of the locus coeruleus-norepinephrine system in sleep-wake regulation: implications for aging and Alzheimer’s disease. Sleep Med Rev 2022; 62:101592. [PMID: 35124476 PMCID: PMC9064973 DOI: 10.1016/j.smrv.2022.101592] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/24/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022]
Abstract
Five decades ago, seminal studies positioned the brainstem locus coeruleus (LC) norepinephrine (NE) system as a key substrate for the regulation of wakefulness and sleep, and this picture has recently been elaborated thanks to methodological advances in the precise investigation and experimental modulation of LC structure and functions. This review presents and discusses findings that support the major role of the LC-NE system at different levels of sleep-wake organization, ranging from its involvement in the overall architecture of the sleep-wake cycle to its associations with sleep microstructure, while accounting for the intricate neuroanatomy surrounding the LC. Given the particular position held by the LC-NE system by being at the intersection of sleep-wake dysregulation and initial pathophysiological processes of Alzheimer's disease (AD), we conclude by examining emerging opportunities to investigate LC-NE mediated relationships between sleep-wake alteration and AD in human aging. We further propose several research perspectives that could support the LC-NE system as a promising target for the identification of at-risk individuals in the preclinical stages of AD, and for the development of novel preventive interventions.
Collapse
|
42
|
Riederer P, Monoranu C, Strobel S, Iordache T, Sian-Hülsmann J. Iron as the concert master in the pathogenic orchestra playing in sporadic Parkinson's disease. J Neural Transm (Vienna) 2021; 128:1577-1598. [PMID: 34636961 PMCID: PMC8507512 DOI: 10.1007/s00702-021-02414-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/29/2021] [Indexed: 02/07/2023]
Abstract
About 60 years ago, the discovery of a deficiency of dopamine in the nigro-striatal system led to a variety of symptomatic therapeutic strategies to supplement dopamine and to substantially improve the quality of life of patients with Parkinson's disease (PD). Since these seminal developments, neuropathological, neurochemical, molecular biological and genetic discoveries contributed to elucidate the pathology of PD. Oxidative stress, the consequences of reactive oxidative species, reduced antioxidative capacity including loss of glutathione, excitotoxicity, mitochondrial dysfunction, proteasomal dysfunction, apoptosis, lysosomal dysfunction, autophagy, suggested to be causal for ɑ-synuclein fibril formation and aggregation and contributing to neuroinflammation and neural cell death underlying this devastating disorder. However, there are no final conclusions about the triggered pathological mechanism(s) and the follow-up of pathological dysfunctions. Nevertheless, it is a fact, that iron, a major component of oxidative reactions, as well as neuromelanin, the major intraneuronal chelator of iron, undergo an age-dependent increase. And ageing is a major risk factor for PD. Iron is significantly increased in the substantia nigra pars compacta (SNpc) of PD. Reasons for this finding include disturbances in iron-related import and export mechanisms across the blood-brain barrier (BBB), localized opening of the BBB at the nigro-striatal tract including brain vessel pathology. Whether this pathology is of primary or secondary importance is not known. We assume that there is a better fit to the top-down hypotheses and pathogens entering the brain via the olfactory system, then to the bottom-up (gut-brain) hypothesis of PD pathology. Triggers for the bottom-up, the dual-hit and the top-down pathologies include chemicals, viruses and bacteria. If so, hepcidin, a regulator of iron absorption and its distribution into tissues, is suggested to play a major role in the pathogenesis of iron dyshomeostasis and risk for initiating and progressing ɑ-synuclein pathology. The role of glial components to the pathology of PD is still unknown. However, the dramatic loss of glutathione (GSH), which is mainly synthesized in glia, suggests dysfunction of this process, or GSH uptake into neurons. Loss of GSH and increase in SNpc iron concentration have been suggested to be early, may be even pre-symptomatic processes in the pathology of PD, despite the fact that they are progression factors. The role of glial ferritin isoforms has not been studied so far in detail in human post-mortem brain tissue and a close insight into their role in PD is called upon. In conclusion, "iron" is a major player in the pathology of PD. Selective chelation of excess iron at the site of the substantia nigra, where a dysfunction of the BBB is suggested, with peripherally acting iron chelators is suggested to contribute to the portfolio and therapeutic armamentarium of anti-Parkinson medications.
Collapse
Affiliation(s)
- P Riederer
- Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Wuerzburg, University of Wuerzburg, Wuerzburg, Germany. .,Department of Psychiatry, University of Southern Denmark, Odense, Denmark.
| | - C Monoranu
- Institute of Pathology, Department of Neuropathology, University of Wuerzburg, Wuerzburg, Germany
| | - S Strobel
- Institute of Pathology, Department of Neuropathology, University of Wuerzburg, Wuerzburg, Germany
| | - T Iordache
- George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Târgu Mureș, Romania
| | - J Sian-Hülsmann
- Department of Medical Physiology, University of Nairobi, P.O. Box 30197, Nairobi, 00100, Kenya
| |
Collapse
|
43
|
Van Egroo M, van Hooren RWE, Jacobs HIL. Associations between locus coeruleus integrity and nocturnal awakenings in the context of Alzheimer's disease plasma biomarkers: a 7T MRI study. ALZHEIMERS RESEARCH & THERAPY 2021; 13:159. [PMID: 34560904 PMCID: PMC8464124 DOI: 10.1186/s13195-021-00902-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/12/2021] [Indexed: 12/12/2022]
Abstract
Background The brainstem locus coeruleus (LC) constitutes the intersection of the initial pathophysiological processes of Alzheimer’s disease (AD) and sleep-wake dysregulation in the preclinical stages of the disease. However, the interplay between in vivo assessment of LC degeneration and AD-related sleep alterations remains unknown. Here, we sought to investigate whether MRI-assessed LC structural integrity relates to subjective sleep-wake measures in the context of AD plasma biomarkers, in cognitively unimpaired older individuals. Methods Seventy-two cognitively unimpaired older individuals aged 50–85 years (mean age = 65.2 ± 8.2 years, 37 women, 21 APOE ε4 carriers) underwent high-resolution imaging of the LC at 7 Tesla, and LC structural integrity was quantified using a data-driven approach. Reports on habitual sleep quality and nocturnal awakenings were collected using sleep questionnaires. Plasma levels of total tau, p-tau181, Aβ40, and Aβ42 were measured using single-molecule array technology. Results Intensity-based cluster analyses indicated two distinct LC segments, with one covering the middle-to-caudal LC and displaying lower intensity compared to the middle-to-rostral cluster (t70 = −5.12, p < 0.0001). After correction for age, sex, depression, and APOE status, lower MRI signal intensity within the middle-to-caudal LC was associated with a higher number of self-reported nocturnal awakenings (F1,63 = 6.73, pFDR = 0.03). Furthermore, this association was mostly evident in individuals with elevated levels of total tau in the plasma (F1,61 = 4.26, p = 0.04). Conclusion Our findings provide in vivo evidence that worse LC structural integrity is associated with more frequent nocturnal awakenings in the context of neurodegeneration, in cognitively unimpaired older individuals. These results support the critical role of the LC for sleep-wake regulation in the preclinical stages of AD and hold promises for the identification of at-risk populations for preventive interventions. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00902-8.
Collapse
Affiliation(s)
- Maxime Van Egroo
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, UNS40 box 34, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | - Roy W E van Hooren
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, UNS40 box 34, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Heidi I L Jacobs
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, UNS40 box 34, P.O. Box 616, 6200 MD, Maastricht, The Netherlands. .,Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands. .,Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
44
|
Jacobs HI, Becker JA, Kwong K, Engels-Domínguez N, Prokopiou PC, Papp KV, Properzi M, Hampton OL, Uquillas FD, Sanchez JS, Rentz DM, Fakhri GE, Normandin MD, Price JC, Bennett DA, Sperling RA, Johnson KA. In vivo and neuropathology data support locus coeruleus integrity as indicator of Alzheimer's disease pathology and cognitive decline. Sci Transl Med 2021; 13:eabj2511. [PMID: 34550726 PMCID: PMC8641759 DOI: 10.1126/scitranslmed.abj2511] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several autopsy studies recognize the locus coeruleus (LC) as the initial site of hyperphosphorylated TAU aggregation, and as the number of LC neurons harboring TAU increases, TAU pathology emerges throughout the cortex. By conjointly using dedicated MRI measures of LC integrity and TAU and amyloid PET imaging, we aimed to address the question whether in vivo LC measures relate to initial cortical patterns of Alzheimer’s disease (AD) fibrillar proteinopathies or cognitive dysfunction in 174 cognitively unimpaired and impaired older individuals with longitudinal cognitive measures. To guide our interpretations, we verified these associations in autopsy data from 1524 Religious Orders Study and Rush Memory and Aging Project and 2145 National Alzheimer’s Coordinating Center cases providing three different LC measures (pigmentation, tangle density, and neuronal density), Braak staging, β-amyloid, and longitudinal cognitive measures. Lower LC integrity was associated with elevated TAU deposition in the entorhinal cortex among unimpaired individuals consistent with postmortem correlations between LC tangle density and successive Braak staging. LC pigmentation ratings correlated with LC neuronal density but not with LC tangle density and were particularly worse at advanced Braak stages. In the context of elevated β-amyloid, lower LC integrity and greater cortical tangle density were associated with greater TAU burden beyond the medial temporal lobe and retrospective memory decline. These findings support neuropathologic data in which early LC TAU accumulation relates to disease progression and identify LC integrity as a promising indicator of initial AD-related processes and subtle changes in cognitive trajectories of preclinical AD.
Collapse
Affiliation(s)
- Heidi I.L. Jacobs
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital; Boston, MA, 02114, USA
- Harvard Medical School; Boston, MA, 02115, USA
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University; 6200MD Maastricht, The Netherlands
| | - John A. Becker
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital; Boston, MA, 02114, USA
- Harvard Medical School; Boston, MA, 02115, USA
| | - Kenneth Kwong
- Harvard Medical School; Boston, MA, 02115, USA
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital; Boston, MA, 02129, USA
| | - Nina Engels-Domínguez
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital; Boston, MA, 02114, USA
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University; 6200MD Maastricht, The Netherlands
| | - Prokopis C. Prokopiou
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital; Boston, MA, 02114, USA
- Harvard Medical School; Boston, MA, 02115, USA
| | - Kathryn V. Papp
- Harvard Medical School; Boston, MA, 02115, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital; Boston, MA,02115, USA
| | - Michael Properzi
- Harvard Medical School; Boston, MA, 02115, USA
- Department of Neurology, Massachusetts General Hospital; Boston, MA, 02114, USA
| | - Olivia L. Hampton
- Department of Neurology, Massachusetts General Hospital; Boston, MA, 02114, USA
| | | | - Justin S. Sanchez
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital; Boston, MA, 02114, USA
| | - Dorene M. Rentz
- Harvard Medical School; Boston, MA, 02115, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital; Boston, MA,02115, USA
- Department of Neurology, Massachusetts General Hospital; Boston, MA, 02114, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital; Boston, MA, 02114, USA
- Harvard Medical School; Boston, MA, 02115, USA
| | - Marc D. Normandin
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital; Boston, MA, 02114, USA
- Harvard Medical School; Boston, MA, 02115, USA
| | - Julie C. Price
- Harvard Medical School; Boston, MA, 02115, USA
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital; Boston, MA, 02129, USA
| | - David A. Bennett
- Department of Neurological Sciences, Rush Alzheimer’s Disease Center, Rush University Medical Center; Chicago, Illinois, 60612, USA
| | - Reisa A. Sperling
- Harvard Medical School; Boston, MA, 02115, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital; Boston, MA,02115, USA
- Department of Neurology, Massachusetts General Hospital; Boston, MA, 02114, USA
| | - Keith A. Johnson
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital; Boston, MA, 02114, USA
- Harvard Medical School; Boston, MA, 02115, USA
- Department of Neurology, Massachusetts General Hospital; Boston, MA, 02114, USA
| |
Collapse
|
45
|
Horga G, Wengler K, Cassidy CM. Neuromelanin-Sensitive Magnetic Resonance Imaging as a Proxy Marker for Catecholamine Function in Psychiatry. JAMA Psychiatry 2021; 78:788-789. [PMID: 34009285 PMCID: PMC9060608 DOI: 10.1001/jamapsychiatry.2021.0927] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Guillermo Horga
- Department of Psychiatry, Columbia University, and New York State Psychiatric Institute,Corresponding author: Guillermo Horga, MD, PhD, Florence Irving Associate Professor of Psychiatry, Columbia University, Division of Translational Imaging, New York State Psychiatric Institute, 1051 Riverside Dr., 10032, Unit 31, Telephone: 646-774-5810,
| | - Kenneth Wengler
- Department of Psychiatry, Columbia University, and New York State Psychiatric Institute
| | - Clifford M. Cassidy
- University of Ottawa Institute of Mental Health Research, affiliated with The Royal
| |
Collapse
|
46
|
Imaging of the dopamine system with focus on pharmacological MRI and neuromelanin imaging. Eur J Radiol 2021; 140:109752. [PMID: 34004428 DOI: 10.1016/j.ejrad.2021.109752] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/26/2021] [Accepted: 04/29/2021] [Indexed: 11/21/2022]
Abstract
The dopamine system in the brain is involved in a variety of neurologic and psychiatric disorders, such as Parkinson's disease, attention-deficit/hyperactivity disorder and psychosis. Different aspects of the dopamine system can be visualized and measured with positron emission tomography (PET) and single photon emission computed tomography (SPECT), including dopamine receptors, dopamine transporters, and dopamine release. New developments in MR imaging also provide proxy measures of the dopamine system in the brain, offering alternatives with the advantages MR imaging, i.e. no radiation, lower costs, usually less invasive and time consuming. This review will give an overview of these developments with a focus on the most developed techniques: pharmacological MRI (phMRI) and neuromelanin sensitive MRI (NM-MRI). PhMRI is a collective term for functional MRI techniques that administer a pharmacological challenge to assess its effects on brain hemodynamics. By doing so, it indirectly assesses brain neurotransmitter function such as dopamine function. NM-MRI is an upcoming MRI technique that enables in vivo visualization and semi-quantification of neuromelanin in the substantia nigra. Neuromelanin is located in the cell bodies of dopaminergic neurons of the nigrostriatal pathway and can be used as a proxy measure for long term dopamine function or degeneration of dopaminergic neurons. Both techniques are still primarily used in clinical research, but there is promise for clinical application, in particular for NM-MRI in dopaminergic neurodegenerative diseases like Parkinson's disease.
Collapse
|
47
|
Watanabe T. MRI of noradrenergic and dopaminergic neurons. Brain Struct Funct 2021; 226:311-312. [PMID: 33560481 DOI: 10.1007/s00429-020-02195-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022]
|