1
|
Costalunga G, Kobylkov D, Rosa-Salva O, Morandi-Raikova A, Vallortigara G, Mayer U. Responses in the left and right entopallium are differently affected by light stimulation in embryo. iScience 2024; 27:109268. [PMID: 38439979 PMCID: PMC10910295 DOI: 10.1016/j.isci.2024.109268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/29/2023] [Accepted: 02/14/2024] [Indexed: 03/06/2024] Open
Abstract
Sensory stimulation during the prenatal period has been argued to be a main factor in establishing asymmetry in the vertebrate brain. However, though largely studied in behavior and neuroanatomy, nothing is known on the effects of light stimulation in embryo on the activities of single neurons. We performed single-unit recordings from the left and right entopallium of dark- and light-incubated chicks, following ipsi-, contra-, and bilateral visual stimulation. Light incubation increased the general responsiveness of visual neurons in both the left and the right entopallium. Entopallial responses were clearly lateralized in dark-incubated chicks, which showed a general right-hemispheric dominance. This could be suppressed or inverted after light incubation, revealing the presence of both spontaneous and light-dependent asymmetries. These results suggest that asymmetry in single-neuron activity is present at the onset and can be modulated by environmental stimuli such as light exposure in embryos.
Collapse
Affiliation(s)
- Giacomo Costalunga
- Center for Mind/Brain Science, University of Trento, Piazza Manifattura 1, Rovereto, 38068 TN, Italy
| | - Dmitry Kobylkov
- Center for Mind/Brain Science, University of Trento, Piazza Manifattura 1, Rovereto, 38068 TN, Italy
| | - Orsola Rosa-Salva
- Center for Mind/Brain Science, University of Trento, Piazza Manifattura 1, Rovereto, 38068 TN, Italy
| | - Anastasia Morandi-Raikova
- Center for Mind/Brain Science, University of Trento, Piazza Manifattura 1, Rovereto, 38068 TN, Italy
| | - Giorgio Vallortigara
- Center for Mind/Brain Science, University of Trento, Piazza Manifattura 1, Rovereto, 38068 TN, Italy
| | - Uwe Mayer
- Center for Mind/Brain Science, University of Trento, Piazza Manifattura 1, Rovereto, 38068 TN, Italy
| |
Collapse
|
2
|
Morandi-Raikova A, Rosa-Salva O, Simdianova A, Vallortigara G, Mayer U. Hierarchical processing of feature, egocentric and relational information for spatial orientation in domestic chicks. J Exp Biol 2024; 227:jeb246447. [PMID: 38323420 DOI: 10.1242/jeb.246447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024]
Abstract
Animals can use different types of information for navigation. Domestic chicks (Gallus gallus) prefer to use local features as a beacon over spatial relational information. However, the role of egocentric navigation strategies is less understood. Here, we tested domestic chicks' egocentric and allocentric orientation abilities in a large circular arena. In experiment 1, we investigated whether domestic chicks possess a side bias during viewpoint-dependent egocentric orientation, revealing facilitation for targets on the chicks' left side. Experiment 2 showed that local features are preferred over viewpoint-dependent egocentric information when the two conflict. Lastly, in experiment 3, we found that in a situation where there is a choice between egocentric and allocentric spatial relational information provided by free-standing objects, chicks preferentially rely on egocentric information. We conclude that chicks orient according to a hierarchy of cues, in which the use of the visual appearance of an object is the dominant strategy, followed by viewpoint-dependent egocentric information and finally by spatial relational information.
Collapse
Affiliation(s)
- Anastasia Morandi-Raikova
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068, Rovereto, TN, Italy
| | - Orsola Rosa-Salva
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068, Rovereto, TN, Italy
| | - Aleksandra Simdianova
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068, Rovereto, TN, Italy
| | - Giorgio Vallortigara
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068, Rovereto, TN, Italy
| | - Uwe Mayer
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068, Rovereto, TN, Italy
| |
Collapse
|
3
|
Rogers LJ. Unfolding a sequence of sensory influences and interactions in the development of functional brain laterality. Front Behav Neurosci 2023; 16:1103192. [PMID: 36688123 PMCID: PMC9852852 DOI: 10.3389/fnbeh.2022.1103192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/16/2022] [Indexed: 01/09/2023] Open
Abstract
Evidence of sensory experience influencing the development of lateralized brain and behavior is reviewed. The epigenetic role of light exposure during two specific stages of embryonic development of precocial avian species is a particular focus of the research discussed. Two specific periods of light sensitivity (in early versus late incubation), each depending on different subcellular and cellular processes, affect lateralized behavior after hatching. Auditory and olfactory stimulation during embryonic development is also discussed with consideration of interactions with light-generated visual lateralization.
Collapse
|
4
|
Pusch R, Clark W, Rose J, Güntürkün O. Visual categories and concepts in the avian brain. Anim Cogn 2023; 26:153-173. [PMID: 36352174 PMCID: PMC9877096 DOI: 10.1007/s10071-022-01711-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022]
Abstract
Birds are excellent model organisms to study perceptual categorization and concept formation. The renewed focus on avian neuroscience has sparked an explosion of new data in the field. At the same time, our understanding of sensory and particularly visual structures in the avian brain has shifted fundamentally. These recent discoveries have revealed how categorization is mediated in the avian brain and has generated a theoretical framework that goes beyond the realm of birds. We review the contribution of avian categorization research-at the methodical, behavioral, and neurobiological levels. To this end, we first introduce avian categorization from a behavioral perspective and the common elements model of categorization. Second, we describe the functional and structural organization of the avian visual system, followed by an overview of recent anatomical discoveries and the new perspective on the avian 'visual cortex'. Third, we focus on the neurocomputational basis of perceptual categorization in the bird's visual system. Fourth, an overview of the avian prefrontal cortex and the prefrontal contribution to perceptual categorization is provided. The fifth section outlines how asymmetries of the visual system contribute to categorization. Finally, we present a mechanistic view of the neural principles of avian visual categorization and its putative extension to concept learning.
Collapse
Affiliation(s)
- Roland Pusch
- Biopsychology, Faculty of Psychology, Ruhr University Bochum, 44780, Bochum, Germany
| | - William Clark
- Neural Basis of Learning, Faculty of Psychology, Ruhr University Bochum, 44780, Bochum, Germany
| | - Jonas Rose
- Neural Basis of Learning, Faculty of Psychology, Ruhr University Bochum, 44780, Bochum, Germany
| | - Onur Güntürkün
- Biopsychology, Faculty of Psychology, Ruhr University Bochum, 44780, Bochum, Germany.
| |
Collapse
|
5
|
Morandi-Raikova A, Mayer U. Spatial cognition and the avian hippocampus: Research in domestic chicks. Front Psychol 2022; 13:1005726. [PMID: 36211859 PMCID: PMC9539314 DOI: 10.3389/fpsyg.2022.1005726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
In this review, we discuss the functional equivalence of the avian and mammalian hippocampus, based mostly on our own research in domestic chicks, which provide an important developmental model (most research on spatial cognition in other birds relies on adult animals). In birds, like in mammals, the hippocampus plays a central role in processing spatial information. However, the structure of this homolog area shows remarkable differences between birds and mammals. To understand the evolutionary origin of the neural mechanisms for spatial navigation, it is important to test how far theories developed for the mammalian hippocampus can also be applied to the avian hippocampal formation. To address this issue, we present a brief overview of studies carried out in domestic chicks, investigating the direct involvement of chicks' hippocampus homolog in spatial navigation.
Collapse
Affiliation(s)
| | - Uwe Mayer
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| |
Collapse
|
6
|
Morandi-Raikova A, Mayer U. Active exploration of an environment drives the activation of the hippocampus-amygdala complex of domestic chicks. J Exp Biol 2022; 225:275962. [PMID: 35815434 DOI: 10.1242/jeb.244190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022]
Abstract
In birds, like in mammals, the hippocampus critically mediates spatial navigation through the formation of a spatial map. This study investigates the impact of active exploration of an environment on the hippocampus of young domestic chicks. Chicks that were free to actively explore the environment exhibited a significantly higher neural activation (measured by c-Fos expression), compared to those that passively observed the same environment from a restricted area. The difference was limited to the anterior and the dorsolateral parts of the intermediate hippocampus. Furthermore, the nucleus taeniae of the amygdala showed a higher c-Fos expression in the active exploration group than the passive observation group. In both brain regions, brain activation correlated with the number of locations that chicks visited during the test. This suggest that the increase of c-Fos expression in the hippocampus is related to increased firing rates of spatially coding neurons. Furthermore, our study indicates a functional linkage of the hippocampus and nucleus taeniae of the amygdala in processing spatial information. Overall, with the present study, we confirm that, in birds like in mammals, hippocampus and amygdala functions are linked and likely related to spatial representations.
Collapse
Affiliation(s)
- Anastasia Morandi-Raikova
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068, Rovereto (TN), Italy
| | - Uwe Mayer
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068, Rovereto (TN), Italy
| |
Collapse
|
7
|
Protti-Sánchez F, Corrales Parada CD, Mayer U, Rowland HM. Activation of the Nucleus Taeniae of the Amygdala by Umami Taste in Domestic Chicks ( Gallus gallus). Front Physiol 2022; 13:897931. [PMID: 35694389 PMCID: PMC9178096 DOI: 10.3389/fphys.2022.897931] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
In chickens, the sense of taste plays an important role in detecting nutrients and choosing feed. The molecular mechanisms underlying the taste-sensing system of chickens are well studied, but the neural mechanisms underlying taste reactivity have received less attention. Here we report the short-term taste behaviour of chickens towards umami and bitter (quinine) taste solutions and the associated neural activity in the nucleus taeniae of the amygdala, nucleus accumbens and lateral septum. We found that chickens had more contact with and drank greater volumes of umami than bitter or a water control, and that chicks displayed increased head shaking in response to bitter compared to the other tastes. We found that there was a higher neural activity, measured as c-Fos activation, in response to umami taste in the right hemisphere of the nucleus taeniae of the amygdala. In the left hemisphere, there was a higher c-Fos activation of the nucleus taeniae of the amygdala in response to bitter than in the right hemisphere. Our findings provide clear evidence that chickens respond differently to umami and bitter tastes, that there is a lateralised response to tastes at the neural level, and reveals a new function of the avian nucleus taeniae of the amygdala as a region processing reward information.
Collapse
Affiliation(s)
| | | | - Uwe Mayer
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | | |
Collapse
|
8
|
Xiao Q, Güntürkün O. “Prefrontal” Neuronal Foundations of Visual Asymmetries in Pigeons. Front Physiol 2022; 13:882597. [PMID: 35586719 PMCID: PMC9108483 DOI: 10.3389/fphys.2022.882597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
This study was conducted in order to reveal the possibly lateralized processes in the avian nidopallium caudolaterale (NCL), a functional analogue to the mammalian prefrontal cortex, during a color discrimination task. Pigeons are known to be visually lateralized with a superiority of the left hemisphere/right eye for visual feature discriminations. While animals were working on a color discrimination task, we recorded single visuomotor neurons in left and right NCL. As expected, pigeons learned faster and responded more quickly when seeing the stimuli with their right eyes. Our electrophysiological recordings discovered several neuronal properties of NCL neurons that possibly contributed to this behavioral asymmetry. We found that the speed of stimulus encoding was identical between left and right NCL but action generation was different. Here, most left hemispheric NCL neurons reached their peak activities shortly before response execution. In contrast, the majority of right hemispheric neurons lagged behind and came too late to control the response. Thus, the left NCL dominated the animals’ behavior not by a higher efficacy of encoding, but by being faster in monopolizing the operant response. A further asymmetry concerned the hemisphere-specific integration of input from the contra- and ipsilateral eye. The left NCL was able to integrate and process visual input from the ipsilateral eye to a higher degree and thus achieved a more bilateral representation of two visual fields. We combine these novel findings with those from previous publications to come up with a working hypothesis that could explain how hemispheric asymmetries for visual feature discrimination in birds are realized by a sequential buildup of lateralized neuronal response properties in the avian forebrain.
Collapse
Affiliation(s)
- Qian Xiao
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
- Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Qian Xiao, ; Onur Güntürkün, , https://orcid.org/0000-0003-4173-5233
| | - Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
- *Correspondence: Qian Xiao, ; Onur Güntürkün, , https://orcid.org/0000-0003-4173-5233
| |
Collapse
|
9
|
Yebga Hot R, Siwiaszczyk M, Love SA, Andersson F, Calandreau L, Poupon F, Beaujoin J, Herlin B, Boumezbeur F, Mulot B, Chaillou E, Uszynski I, Poupon C. A novel male Japanese quail structural connectivity atlas using ultra-high field diffusion MRI at 11.7 T. Brain Struct Funct 2022; 227:1577-1597. [PMID: 35355136 PMCID: PMC9098543 DOI: 10.1007/s00429-022-02457-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 01/10/2022] [Indexed: 12/27/2022]
Abstract
The structural connectivity of animal brains can be revealed using post-mortem diffusion-weighted magnetic resonance imaging (MRI). Despite the existence of several structural atlases of avian brains, few of them address the bird’s structural connectivity. In this study, a novel atlas of the structural connectivity is proposed for the male Japanese quail (Coturnix japonica), aiming at investigating two lines divergent on their emotionality trait: the short tonic immobility (STI) and the long tonic immobility (LTI) lines. The STI line presents a low emotionality trait, while the LTI line expresses a high emotionality trait. 21 male Japanese quail brains from both lines were scanned post-mortem for this study, using a preclinical Bruker 11.7 T MRI scanner. Diffusion-weighted MRI was performed using a 3D segmented echo planar imaging (EPI) pulsed gradient spin-echo (PGSE) sequence with a 200 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upmu$$\end{document}μm isotropic resolution, 75 diffusion-encoding directions and a b-value fixed at 4500 s/mm2. Anatomical MRI was likewise performed using a 2D anatomical T2-weighted spin-echo (SE) sequence with a 150 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upmu$$\end{document}μm isotropic resolution. This very first anatomical connectivity atlas of the male Japanese quail reveals 34 labeled fiber tracts and the existence of structural differences between the connectivity patterns characterizing the two lines. Thus, the link between the male Japanese quail’s connectivity and its underlying anatomical structures has reached a better understanding.
Collapse
Affiliation(s)
- Raïssa Yebga Hot
- Unité BAOBAB, NeuroSpin, Université Paris-Saclay, CNRS, CEA, 91191, Gif-sur-Yvette, France
| | - Marine Siwiaszczyk
- Unité de Physiologie de la Reproduction et des Comportements (PRC), INRAE, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Scott A Love
- Unité de Physiologie de la Reproduction et des Comportements (PRC), INRAE, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | | | - Ludovic Calandreau
- Unité de Physiologie de la Reproduction et des Comportements (PRC), INRAE, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Fabrice Poupon
- Unité BAOBAB, NeuroSpin, Université Paris-Saclay, CNRS, CEA, 91191, Gif-sur-Yvette, France
| | - Justine Beaujoin
- Unité BAOBAB, NeuroSpin, Université Paris-Saclay, CNRS, CEA, 91191, Gif-sur-Yvette, France
| | - Bastien Herlin
- Unité BAOBAB, NeuroSpin, Université Paris-Saclay, CNRS, CEA, 91191, Gif-sur-Yvette, France
| | - Fawzi Boumezbeur
- Unité BAOBAB, NeuroSpin, Université Paris-Saclay, CNRS, CEA, 91191, Gif-sur-Yvette, France
| | - Baptiste Mulot
- Zooparc de Beauval & Beauval Nature, 41110, Saint-Aignan, France
| | - Elodie Chaillou
- Unité de Physiologie de la Reproduction et des Comportements (PRC), INRAE, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Ivy Uszynski
- Unité BAOBAB, NeuroSpin, Université Paris-Saclay, CNRS, CEA, 91191, Gif-sur-Yvette, France
| | - Cyril Poupon
- Unité BAOBAB, NeuroSpin, Université Paris-Saclay, CNRS, CEA, 91191, Gif-sur-Yvette, France.
| |
Collapse
|
10
|
Asymmetry of brain structure and function: 40 years after Sperry's Nobel Prize. Brain Struct Funct 2021; 227:421-424. [PMID: 34779912 DOI: 10.1007/s00429-021-02426-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Abstract
Asymmetries in the functional and structural organization of the nervous system are widespread in the animal kingdom and especially characterize the human brain. Although there is little doubt that asymmetries arise through genetic and nongenetic factors, an overarching model to explain the development of functional lateralization patterns is still lacking. Current genetic psychology collects data on genes relevant to brain lateralizations, while animal research provides information on the cellular mechanisms mediating the effects of not only genetic but also environmental factors. This review combines data from human and animal research (especially on birds) and outlines a multi-level model for asymmetry formation. The relative impact of genetic and nongenetic factors varies between different developmental phases and neuronal structures. The basic lateralized organization of a brain is already established through genetically controlled embryonic events. During ongoing development, hemispheric specialization increases for specific functions and subsystems interact to shape the final functional organization of a brain. In particular, these developmental steps are influenced by environmental experiences, which regulate the fine-tuning of neural networks via processes that are referred to as ontogenetic plasticity. The plastic potential of the nervous system could be decisive for the evolutionary success of lateralized brains.
Collapse
|
12
|
Rogers LJ. Brain Lateralization and Cognitive Capacity. Animals (Basel) 2021; 11:1996. [PMID: 34359124 PMCID: PMC8300231 DOI: 10.3390/ani11071996] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 12/29/2022] Open
Abstract
One way to increase cognitive capacity is to avoid duplication of functions on the left and right sides of the brain. There is a convincing body of evidence showing that such asymmetry, or lateralization, occurs in a wide range of both vertebrate and invertebrate species. Each hemisphere of the brain can attend to different types of stimuli or to different aspects of the same stimulus and each hemisphere analyses information using different neural processes. A brain can engage in more than one task at the same time, as in monitoring for predators (right hemisphere) while searching for food (left hemisphere). Increased cognitive capacity is achieved if individuals are lateralized in one direction or the other. The advantages and disadvantages of individual lateralization are discussed. This paper argues that directional, or population-level, lateralization, which occurs when most individuals in a species have the same direction of lateralization, provides no additional increase in cognitive capacity compared to individual lateralization although directional lateralization is advantageous in social interactions. Strength of lateralization is considered, including the disadvantage of being very strongly lateralized. The role of brain commissures is also discussed with consideration of cognitive capacity.
Collapse
Affiliation(s)
- Lesley J Rogers
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
13
|
Abstract
Since foot preference of cockatoos and parrots to hold and manipulate food and other objects has been associated with better ability to perform certain tasks, we predicted that either strength or direction of foot preference would correlate with brain size. Our study of 25 psittacine species of Australia found that species with larger absolute brain mass have stronger foot preferences and that percent left-footedness is correlated positively with brain mass. In a sub-sample of 11 species, we found an association between foot preference and size of the nidopallial region of the telencephalon, an area equivalent to the mammalian cortex and including regions with executive function and other higher-level functions. Our analysis showed that percent left-foot use correlates positively and significantly with size of the nidopallium relative to the whole brain, but not with the relative size of the optic tecta. Psittacine species with stronger left-foot preferences have larger brains, with the nidopallium making up a greater proportion of those brains. Our results are the first to show an association between brain size and asymmetrical limb use by parrots and cockatoos. Our results support the hypothesis that limb preference enhances brain capacity and higher (nidopallial) functioning.
Collapse
|