1
|
Allison-Walker T, Hagan MA, Meikle SJ, Price NSC, Wong YT. Local field potential phase modulates the evoked response to electrical stimulation in visual cortex. J Neural Eng 2025; 22:016009. [PMID: 39787710 DOI: 10.1088/1741-2552/ada828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/09/2025] [Indexed: 01/12/2025]
Abstract
Objective.Development of cortical visual prostheses requires optimization of evoked responses to electrical stimulation to reduce charge requirements and improve safety, efficiency, and efficacy. One promising approach is timing stimulation to the local field potential (LFP), where action potentials have been found to occur preferentially at specific phases. To assess the relationship between electrical stimulation and the phase of the LFP, we recorded action potentials from primary (V1) and secondary (V2) visual cortex in marmosets while delivering single-pulse electrical microstimulation at different phases of the LFP.Approach.A 64-channel 4 shank probe was inserted into V1 and V2. Microstimulation (single biphasic pulse, 10µA and 200µs per phase) was applied to selected channels in V1, and action potentials recorded simultaneously in V1 and V2. Microstimulation pulses were jittered in time to randomize the phase of the LFP at the time of stimulation.Results.We found frequency-specific phase modulation in a subset of units, where microstimulation in V1 evokes a higher firing rate in both V1 and V2 when delivered at specific phases of the LFP. We characterize phase modulation in terms of the preferred phase and frequency of V1 stimulation for responses in both V1 and V2, and effect size as a function of phase estimation accuracy.Significance.Phase modulation could reduce charge requirements for neural activation, reducing the volume of activated tissue and improving the safety, efficacy, and specificity of cortical visual prostheses. Phase modulation could allow cortical visual prostheses to stimulate using more simultaneous electrodes, with improved neural specificity, and, potentially, targeting downstream cortical activation.
Collapse
Affiliation(s)
- Tim Allison-Walker
- School of Science, RMIT University, Melbourne, Australia
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Maureen A Hagan
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Sabrina J Meikle
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Australia
| | - Nicholas S C Price
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Yan T Wong
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Australia
| |
Collapse
|
2
|
Wang J, Azimi H, Zhao Y, Kaeser M, Vaca Sánchez P, Vazquez-Guardado A, Rogers JA, Harvey M, Rainer G. Optogenetic activation of visual thalamus generates artificial visual percepts. eLife 2023; 12:e90431. [PMID: 37791662 PMCID: PMC10593406 DOI: 10.7554/elife.90431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/03/2023] [Indexed: 10/05/2023] Open
Abstract
The lateral geniculate nucleus (LGN), a retinotopic relay center where visual inputs from the retina are processed and relayed to the visual cortex, has been proposed as a potential target for artificial vision. At present, it is unknown whether optogenetic LGN stimulation is sufficient to elicit behaviorally relevant percepts, and the properties of LGN neural responses relevant for artificial vision have not been thoroughly characterized. Here, we demonstrate that tree shrews pretrained on a visual detection task can detect optogenetic LGN activation using an AAV2-CamKIIα-ChR2 construct and readily generalize from visual to optogenetic detection. Simultaneous recordings of LGN spiking activity and primary visual cortex (V1) local field potentials (LFPs) during optogenetic LGN stimulation show that LGN neurons reliably follow optogenetic stimulation at frequencies up to 60 Hz and uncovered a striking phase locking between the V1 LFP and the evoked spiking activity in LGN. These phase relationships were maintained over a broad range of LGN stimulation frequencies, up to 80 Hz, with spike field coherence values favoring higher frequencies, indicating the ability to relay temporally precise information to V1 using light activation of the LGN. Finally, V1 LFP responses showed sensitivity values to LGN optogenetic activation that were similar to the animal's behavioral performance. Taken together, our findings confirm the LGN as a potential target for visual prosthetics in a highly visual mammal closely related to primates.
Collapse
Affiliation(s)
- Jing Wang
- Department of Medicine, University of FribourgFribourgSwitzerland
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical UniversityNanjingChina
| | - Hamid Azimi
- Department of Medicine, University of FribourgFribourgSwitzerland
| | - Yilei Zhao
- Department of Medicine, University of FribourgFribourgSwitzerland
| | - Melanie Kaeser
- Department of Medicine, University of FribourgFribourgSwitzerland
| | | | | | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern UniversityEvanstonUnited States
| | - Michael Harvey
- Department of Medicine, University of FribourgFribourgSwitzerland
| | - Gregor Rainer
- Department of Medicine, University of FribourgFribourgSwitzerland
| |
Collapse
|
3
|
Meikle SJ, Allison-Walker TJ, Hagan MA, Price NSC, Wong YT. Electrical stimulation thresholds differ between V1 and V2. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082908 DOI: 10.1109/embc40787.2023.10340103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Cortical visual prostheses are designed to treat blindness by restoring visual perceptions through artificial electrical stimulation of the primary visual cortex (V1). Intracortical microelectrodes produce the smallest visual percepts and thus higher resolution vision - like a higher density of pixels on a monitor. However, intracortical microelectrodes must maintain a minimum spacing to preserve tissue integrity. One solution to increase the density of percepts is to implant and stimulate multiple visual areas, such as V1 and V2, although the properties of microstimulation in V2 remain largely unexplored. We provide a direct comparison of V1 and V2 microstimulation in two common marmoset monkeys. We find similarities in response trends between V1 and V2 but differences in threshold, neural activity duration, and spread of activity at the threshold current. This has implications for using multi-area stimulation to increase the resolution of cortical visual prostheses.
Collapse
|
4
|
Meikle SJ, Hagan MA, Price NSC, Wong YT. Intracortical current steering shifts the location of evoked neural activity. J Neural Eng 2022; 19. [PMID: 35688125 DOI: 10.1088/1741-2552/ac77bf] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/10/2022] [Indexed: 11/12/2022]
Abstract
Objective.Intracortical visual prostheses are being developed to restore sight in people who are blind. The resolution of artificial vision is dictated by the location, proximity and number of electrodes implanted in the brain. However, increasing electrode count and proximity is traded off against tissue damage. Hence, new stimulation methods are needed that can improve the resolution of artificial vision without increasing the number of electrodes. We investigated whether a technique known as current steering can improve the resolution of artificial vision provided by intracortical prostheses without increasing the number of physical electrodes in the brain.Approach.We explored how the locus of neuronal activation could be steered when low amplitude microstimulation was applied simultaneously to two intracortical electrodes. A 64-channel, four-shank electrode array was implanted into the visual cortex of rats (n= 7). The distribution of charge ranged from single-electrode stimulation (100%:0%) to an equal distribution between the two electrodes (50%:50%), thereby steering the current between the physical electrodes. The stimulating electrode separation varied between 300 and 500μm. The peak of the evoked activity was defined as the 'virtual electrode' location.Main results.Current steering systematically shifted the virtual electrode on average between the stimulating electrodes as the distribution of charge was moved from one stimulating electrode to another. This effect was unclear in single trials due to the limited sampling of neurons. A model that scales the cortical response to each physical electrode when stimulated in isolation predicts the evoked virtual electrode response. Virtual electrodes were found to elicit a neural response as effectively and predictably as physical electrodes within cortical tissue on average.Significance.Current steering could be used to increase the resolution of intracortical electrode arrays without altering the number of physical electrodes which will reduce neural tissue damage, power consumption and potential heat dispersion issues.
Collapse
Affiliation(s)
- Sabrina J Meikle
- Department of Physiology and Biomedicine Discovery Institute, Monash University, Clayton, Vic 3800, Australia.,ARC Centre of Excellence for Integrative Brain Function, Clayton, Vic, 3800, Australia.,Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Vic, 3800, Australia.,Monash Vision Group, Monash University, Clayton, Vic 3800, Australia
| | - Maureen A Hagan
- Department of Physiology and Biomedicine Discovery Institute, Monash University, Clayton, Vic 3800, Australia.,ARC Centre of Excellence for Integrative Brain Function, Clayton, Vic, 3800, Australia
| | - Nicholas S C Price
- Department of Physiology and Biomedicine Discovery Institute, Monash University, Clayton, Vic 3800, Australia.,ARC Centre of Excellence for Integrative Brain Function, Clayton, Vic, 3800, Australia
| | - Yan T Wong
- Department of Physiology and Biomedicine Discovery Institute, Monash University, Clayton, Vic 3800, Australia.,ARC Centre of Excellence for Integrative Brain Function, Clayton, Vic, 3800, Australia.,Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Vic, 3800, Australia.,Monash Vision Group, Monash University, Clayton, Vic 3800, Australia
| |
Collapse
|
5
|
Takemura H, Rosa MGP. Understanding structure-function relationships in the mammalian visual system: part two. Brain Struct Funct 2022; 227:1167-1170. [PMID: 35419751 DOI: 10.1007/s00429-022-02495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Hiromasa Takemura
- Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Japan. .,Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan. .,Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Japan.
| | - Marcello G P Rosa
- Biomedicine Discovery Institute, Neuroscience Program, Monash University, Clayton, VIC, 3800, Australia.,Department of Physiology, Monash University, Clayton, VIC, 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Melbourne, VIC, 3800, Australia
| |
Collapse
|