1
|
Li A, Chen C, Feng Y, Hu R, Feng X, Yang J, Lin X, Mei L. Functional divisions of the left anterior and posterior temporoparietal junction for phonological and semantic processing in Chinese character reading. Neuroimage 2025; 311:121201. [PMID: 40216211 DOI: 10.1016/j.neuroimage.2025.121201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/27/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025] Open
Abstract
Previous studies have shown that the left temporoparietal junction (TPJ) plays a critical role in word reading. Nevertheless, there is still controversy surrounding the phonological and semantic functions of the left TPJ. The parietal unified connectivity-biased computation (PUCC) model posits that the function of the left TPJ depends on both the neurocomputation of this local area and its long-range connectivity. To clarify the specific roles of different TPJ subregions in phonological and semantic processing of Chinese characters, the present study used connectivity-based clustering to identify seven subdivisions within the left TPJ, and conducted comprehensive analyses including functional and structural connectivity, univariate and multivariate analyses (i.e., representational similarity analysis, RSA) on multimodal imaging data (task-state fMRI, resting-state fMRI, and diffusion-weighted imaging [DWI]). Functional and structural connectivity analyses revealed that the left anterior TPJ had stronger connections with the phonological network, while the left posterior TPJ had stronger connections with the semantic network. RSA revealed that the left anterior and posterior TPJ represented phonological and semantic information of Chinese characters, respectively. More importantly, the phonological and semantic representations of the left TPJ were respectively correlated with its functional connectivity to the phonological and semantic networks. Altogether, our results provide a more elaborate perspective on the functional dissociation of the left anterior and posterior TPJ in phonological and semantic processing of Chinese characters, and support the PUCC model.
Collapse
Affiliation(s)
- Aqian Li
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, CA, USA
| | - Yuan Feng
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Rui Hu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Xiaoxue Feng
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Jingyu Yang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Xingying Lin
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Leilei Mei
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
2
|
McCabe C, Cahalan S, Pincus M, Rosenberg-Lee M, Graves WW. Neural correlates of reading aloud on the autism spectrum. Sci Rep 2025; 15:8240. [PMID: 40064934 PMCID: PMC11894215 DOI: 10.1038/s41598-025-88903-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/31/2025] [Indexed: 03/14/2025] Open
Abstract
Individuals with autism can show intact decoding (i.e., ability to recognize and pronounce written words accurately). However, reading comprehension (i.e., ability to infer meaning from written text) in autistic individuals is often lower than expected based on age or grade level. Having intact decoding skills despite potentially atypical reading comprehension suggests altered reading pathways in autism, particularly when processing semantics (i.e., word meaning). To test for neural differences in word processing between autistic and non-autistic younger adults, we examined behavioral and neural responses to reading aloud words and pronounceable nonsense words (pseudowords). Additionally, we manipulated word imageability, word frequency, and word and pseudoword spelling-sound consistency as probes for different components (i.e., orthography, phonology and semantics) of the reading system. Behaviorally, the autistic group had a greater reduction in reaction time as word imageability increased. Neurally, pseudoword consistency effects, a probe of spelling-sound mappings without semantics, were only observed in the autistic group, where increased consistency was associated with decreased activity in bilateral intraparietal sulcus. Also compared to the non-autistic group, the autistic group showed greater effects of word consistency, where increasing word consistency was associated with increasing activation in the bilateral posterior superior temporal gyrus and ventral occipitotemporal cortex. Finally, the autistic group showed stronger effects of pseudoword consistency than the non-autistic group, that is increasing pseudoword consistency was associated with decreasing activation in the left ventral occipitotemporal cortex. Together, these results point to differences in how neural resources are used for reading, with more bilateral areas recruited during spelling-sound decoding in autistics to achieve comparable performance to non-autistics.
Collapse
Affiliation(s)
- Cory McCabe
- Department of Psychology, Rutgers University, Newark, NJ, 07102, USA.
| | - Shannon Cahalan
- Department of Psychological and Brain Sciences, George Washington University, Washington, DC, 20052, USA
| | - Melanie Pincus
- Department of Psychology, Rutgers University, Newark, NJ, 07102, USA
| | | | - William W Graves
- Department of Psychology, Rutgers University, Newark, NJ, 07102, USA.
| |
Collapse
|
3
|
Akhmadullina DR, Konovalov RN, Shpilyukova YA, Nevzorova KV, Fedotova EY, Illarioshkin SN. Neuroanatomical correlates of language impairment in non-fluent variant of primary progressive aphasia. Front Hum Neurosci 2024; 18:1486809. [PMID: 39698146 PMCID: PMC11652495 DOI: 10.3389/fnhum.2024.1486809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
Introduction Non-fluent variant of primary progressive aphasia (nfvPPA) is a neurodegenerative disorder with a predominantly speech and language impairment. Apraxia of speech and expressive agrammatisms along with decreased speech fluency and impaired grammar comprehension are the most typical disorder manifestations but with the course of the disease other language disturbances may also arise. Most studies have investigated these symptoms individually, and there is still no consensus on whether they have similar or different neuroanatomical foundations in nfvPPA. In addition, only few works have focused on the functional connectivity correlates. The aim of our study was to simultaneously investigate functional and structural brain-language associations in one group of nfvPPA. Methods Twenty eight patients were enrolled and underwent brain MRI and language assessment. Apraxia of speech, expressive and receptive agrammatisms, repetition, naming and single word comprehension correlates were identified using voxel-based morphometry and resting-state functional MRI (ROI-to-ROI analysis). Results and discussion Among the structural correlates, the most common were inferior frontal gyrus (was associated with fluency, both expressive and receptive agrammatisms) and supramarginal gyrus (apraxia of speech, receptive agrammatisms, naming and repetition). Apart from that, neuroanatomical foundations were different for each of the core nfvPPA language domains, including superior parietal lobule involvement in fluency, temporoparietal areas in receptive agrammatisms and supplemental motor area in apraxia of speech. Functional correlations were even more diverse. In general, connectivity decrease between temporoparietal structures was more typical for expressive and receptive agrammatisms, single word comprehension and naming, while apraxia of speech, fluency and repetition showed connectivity disruption mainly among the frontoparietal region and subcortical structures. Overall, extensive structural and functional changes are involved in the development of language and speech disturbances in nfvPPA with distinctive neuroanatomical foundations for each domain.
Collapse
|
4
|
Chen Y, Hou X, Zhou H, Han R, Lv T, Yang Z, Zheng W, Bai F. Distinguishable neural circuit mechanisms associated with the clinical efficacy of rTMS in aMCI patients. Cereb Cortex 2024; 34:bhae310. [PMID: 39077918 DOI: 10.1093/cercor/bhae310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/02/2024] [Accepted: 07/13/2024] [Indexed: 07/31/2024] Open
Abstract
Repetitive transcranial magnetic stimulation is used in early-stage Alzheimer's disease to slow progression, but heterogeneity in response results in different treatment outcomes. The mechanisms underlying this heterogeneity are unclear. This study used resting-state neuroimaging to investigate the variability in episodic memory improvement from angular gyrus repetitive transcranial magnetic stimulation and tracked the neural circuits involved. Thirty-four amnestic mild cognitive impairment patients underwent angular gyrus repetitive transcranial magnetic stimulation (4 weeks, 20 Hz, 100% resting motor threshold) and were divided into high-response and low-response groups based on minimal clinically important differences in auditory verbal learning test scores. Baseline and pre/post-treatment neural circuit activities were compared. Results indicated that the orbital middle frontal gyrus in the orbitofrontal cortex network and the precuneus in the default mode network had higher local activity in the low-response group. After treatment, changes in local and remote connectivity within brain regions of the orbitofrontal cortex, default mode network, visual network, and sensorimotor network showed opposite trends and were related to treatment effects. This suggests that the activity states of brain regions within the orbitofrontal cortex and default mode network could serve as imaging markers for early cognitive compensation in amnestic mild cognitive impairment patients and predict the aftereffects of repetitive transcranial magnetic stimulation response.
Collapse
Affiliation(s)
- Ya Chen
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Xinle Hou
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, China
| | - Huijuan Zhou
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - RuiChen Han
- Department of Neurology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing 210000, China
| | - Tingyu Lv
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, China
- Geriatric Medicine Center, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210023, China
| | - Zhiyuan Yang
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, China
| | - Wenao Zheng
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, China
| | - Feng Bai
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210000, China
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, China
- Department of Neurology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing 210000, China
- Geriatric Medicine Center, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210023, China
- Institute of Geriatric Medicine, Medical School of Nanjing University, Nanjing 210000, China
| |
Collapse
|
5
|
Graves WW, Levinson HJ, Staples R, Boukrina O, Rothlein D, Purcell J. An inclusive multivariate approach to neural localization of language components. Brain Struct Funct 2024; 229:1243-1263. [PMID: 38693340 PMCID: PMC11147878 DOI: 10.1007/s00429-024-02800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
To determine how language is implemented in the brain, it is important to know which brain areas are primarily engaged in language processing and which are not. Existing protocols for localizing language are typically univariate, treating each small unit of brain volume as independent. One prominent example that focuses on the overall language network in functional magnetic resonance imaging (fMRI) uses a contrast between neural responses to sentences and sets of pseudowords (pronounceable nonwords). This contrast reliably activates peri-sylvian language areas but is less sensitive to extra-sylvian areas that are also known to support aspects of language such as word meanings (semantics). In this study, we assess areas where a multivariate, pattern-based approach shows high reproducibility across multiple measurements and participants, identifying these areas as multivariate regions of interest (mROI). We then perform a representational similarity analysis (RSA) of an fMRI dataset where participants made familiarity judgments on written words. We also compare those results to univariate regions of interest (uROI) taken from previous sentences > pseudowords contrasts. RSA with word stimuli defined in terms of their semantic distance showed greater correspondence with neural patterns in mROI than uROI. This was confirmed in two independent datasets, one involving single-word recognition, and the other focused on the meaning of noun-noun phrases by contrasting meaningful phrases > pseudowords. In all cases, areas of spatial overlap between mROI and uROI showed the greatest neural association. This suggests that ROIs defined in terms of multivariate reproducibility can help localize components of language such as semantics. The multivariate approach can also be extended to focus on other aspects of language such as phonology, and can be used along with the univariate approach for inclusively mapping language cortex.
Collapse
Affiliation(s)
- William W Graves
- Department of Psychology, Rutgers University, Smith Hall, Room 301, 101 Warren Street, Newark, NJ, 07102, USA.
| | - Hillary J Levinson
- Department of Psychology, Rutgers University, Smith Hall, Room 301, 101 Warren Street, Newark, NJ, 07102, USA
| | - Ryan Staples
- Georgetown University Medical Center, Washington, DC, USA
| | | | | | | |
Collapse
|
6
|
Liuzzi AG, Meersmans K, Peeters R, De Deyne S, Dupont P, Vandenberghe R. Semantic representations in inferior frontal and lateral temporal cortex during picture naming, reading, and repetition. Hum Brain Mapp 2024; 45:e26603. [PMID: 38339900 PMCID: PMC10836176 DOI: 10.1002/hbm.26603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/12/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024] Open
Abstract
Reading, naming, and repetition are classical neuropsychological tasks widely used in the clinic and psycholinguistic research. While reading and repetition can be accomplished by following a direct or an indirect route, pictures can be named only by means of semantic mediation. By means of fMRI multivariate pattern analysis, we evaluated whether this well-established fundamental difference at the cognitive level is associated at the brain level with a difference in the degree to which semantic representations are activated during these tasks. Semantic similarity between words was estimated based on a word association model. Twenty subjects participated in an event-related fMRI study where the three tasks were presented in pseudo-random order. Linear discriminant analysis of fMRI patterns identified a set of regions that allow to discriminate between words at a high level of word-specificity across tasks. Representational similarity analysis was used to determine whether semantic similarity was represented in these regions and whether this depended on the task performed. The similarity between neural patterns of the left Brodmann area 45 (BA45) and of the superior portion of the left supramarginal gyrus correlated with the similarity in meaning between entities during picture naming. In both regions, no significant effects were seen for repetition or reading. The semantic similarity effect during picture naming was significantly larger than the similarity effect during the two other tasks. In contrast, several regions including left anterior superior temporal gyrus and left ventral BA44/frontal operculum, among others, coded for semantic similarity in a task-independent manner. These findings provide new evidence for the dynamic, task-dependent nature of semantic representations in the left BA45 and a more task-independent nature of the representational activation in the lateral temporal cortex and ventral BA44/frontal operculum.
Collapse
Affiliation(s)
- Antonietta Gabriella Liuzzi
- Laboratory for Cognitive Neurology, Department of NeurosciencesLeuven Brain Institute, KU LeuvenLeuvenBelgium
| | - Karen Meersmans
- Laboratory for Cognitive Neurology, Department of NeurosciencesLeuven Brain Institute, KU LeuvenLeuvenBelgium
| | - Ronald Peeters
- Radiology DepartmentUniversity Hospitals LeuvenLeuvenBelgium
| | - Simon De Deyne
- School of Psychological SciencesUniversity of MelbourneMelbourneAustralia
| | - Patrick Dupont
- Laboratory for Cognitive Neurology, Department of NeurosciencesLeuven Brain Institute, KU LeuvenLeuvenBelgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of NeurosciencesLeuven Brain Institute, KU LeuvenLeuvenBelgium
- Neurology DepartmentUniversity Hospitals LeuvenLeuvenBelgium
| |
Collapse
|
7
|
Zhang G, Xu Y, Wang X, Li J, Shi W, Bi Y, Lin N. A social-semantic working-memory account for two canonical language areas. Nat Hum Behav 2023; 7:1980-1997. [PMID: 37735521 DOI: 10.1038/s41562-023-01704-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023]
Abstract
Language and social cognition are traditionally studied as separate cognitive domains, yet accumulative studies reveal overlapping neural correlates at the left ventral temporoparietal junction (vTPJ) and the left lateral anterior temporal lobe (lATL), which have been attributed to sentence processing and social concept activation. We propose a common cognitive component underlying both effects: social-semantic working memory. We confirmed two key predictions of our hypothesis using functional MRI. First, the left vTPJ and lATL showed sensitivity to sentences only when the sentences conveyed social meaning; second, these regions showed persistent social-semantic-selective activity after the linguistic stimuli disappeared. We additionally found that both regions were sensitive to the socialness of non-linguistic stimuli and were more tightly connected with the social-semantic-processing areas than with the sentence-processing areas. The converging evidence indicates the social-semantic working-memory function of the left vTPJ and lATL and challenges the general-semantic and/or syntactic accounts for the neural activity of these regions.
Collapse
Affiliation(s)
- Guangyao Zhang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Yangwen Xu
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | - Xiuyi Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jixing Li
- Department of Linguistics and Translation, City University of Hong Kong, Hong Kong SAR, China
| | - Weiting Shi
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yanchao Bi
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Nan Lin
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Xu Y, Vignali L, Sigismondi F, Crepaldi D, Bottini R, Collignon O. Similar object shape representation encoded in the inferolateral occipitotemporal cortex of sighted and early blind people. PLoS Biol 2023; 21:e3001930. [PMID: 37490508 PMCID: PMC10368275 DOI: 10.1371/journal.pbio.3001930] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 06/23/2023] [Indexed: 07/27/2023] Open
Abstract
We can sense an object's shape by vision or touch. Previous studies suggested that the inferolateral occipitotemporal cortex (ILOTC) implements supramodal shape representations as it responds more to seeing or touching objects than shapeless textures. However, such activation in the anterior portion of the ventral visual pathway could be due to the conceptual representation of an object or visual imagery triggered by touching an object. We addressed these possibilities by directly comparing shape and conceptual representations of objects in early blind (who lack visual experience/imagery) and sighted participants. We found that bilateral ILOTC in both groups showed stronger activation during a shape verification task than during a conceptual verification task made on the names of the same manmade objects. Moreover, the distributed activity in the ILOTC encoded shape similarity but not conceptual association among objects. Besides the ILOTC, we also found shape representation in both groups' bilateral ventral premotor cortices and intraparietal sulcus (IPS), a frontoparietal circuit relating to object grasping and haptic processing. In contrast, the conceptual verification task activated both groups' left perisylvian brain network relating to language processing and, interestingly, the cuneus in early blind participants only. The ILOTC had stronger functional connectivity to the frontoparietal circuit than to the left perisylvian network, forming a modular structure specialized in shape representation. Our results conclusively support that the ILOTC selectively implements shape representation independently of visual experience, and this unique functionality likely comes from its privileged connection to the frontoparietal haptic circuit.
Collapse
Affiliation(s)
- Yangwen Xu
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| | - Lorenzo Vignali
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
- International School for Advanced Studies (SISSA), Trieste, Italy
| | | | - Davide Crepaldi
- International School for Advanced Studies (SISSA), Trieste, Italy
| | - Roberto Bottini
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| | - Olivier Collignon
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
- Psychological Sciences Research Institute (IPSY) and Institute of NeuroScience (IoNS), University of Louvain, Louvain-la-Neuve, Belgium
- School of Health Sciences, HES-SO Valais-Wallis, The Sense Innovation and Research Center, Lausanne and Sion, Switzerland
| |
Collapse
|
9
|
Rockland KS, Graves WW. The angular gyrus: a special issue on its complex anatomy and function. Brain Struct Funct 2023; 228:1-5. [PMID: 36369274 DOI: 10.1007/s00429-022-02596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Kathleen S Rockland
- Department of Anatomy and Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, USA
| | | |
Collapse
|