1
|
Su Y, Ma G, Zheng Y, Qin J, Li X, Ge Q, Sun H, Liu B. Neonatal Meningitis-Causing Escherichia coli Induces Microglia Activation which Acts as a Double-Edged Sword in Bacterial Meningitis. Int J Mol Sci 2023; 24:9915. [PMID: 37373064 DOI: 10.3390/ijms24129915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Bacterial meningitis is a devastating disease occurring worldwide, with up to half of survivors left with permanent neurological sequelae. Neonatal meningitis-causing Escherichia coli (NMEC) is the most common Gram-negative bacillary organism that causes meningitis, particularly during the neonatal period. Here, RNA-seq transcriptional profiles of microglia in response to NMEC infection show that microglia are activated to produce inflammatory factors. In addition, we found that the secretion of inflammatory factors is a double-edged sword that promotes polymorphonuclear neutrophil (PMN) recruitment to the brain to clear the pathogens but, at the same time, induces neuronal damage, which may be related to the neurological sequelae. New neuroprotective therapeutic strategies must be developed for the treatment of acute bacterial meningitis. We found that transforming growth factor-β (TGF-β) may be a strong candidate in the treatment of acute bacterial meningitis, as it shows a therapeutic effect on bacterial-meningitis-induced brain damage. Prevention of disease and early initiation of the appropriate treatment in patients with suspected or proven bacterial meningitis are the key factors in reducing morbidity and mortality. Novel antibiotic and adjuvant treatment strategies must be developed, and the main goal for new therapies will be dampening the inflammatory response. Based on this view, our findings may help develop novel strategies for bacterial meningitis treatment.
Collapse
Affiliation(s)
- Yingying Su
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Guozhen Ma
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Yangyang Zheng
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Jingliang Qin
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Xiaoya Li
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Qianwen Ge
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Hao Sun
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Bin Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| |
Collapse
|
2
|
Identification of novel genes involved in the biofilm formation process of Avian Pathogenic Escherichia coli (APEC). PLoS One 2022; 17:e0279206. [PMID: 36534660 PMCID: PMC9762606 DOI: 10.1371/journal.pone.0279206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is the etiological agent of avian colibacillosis, a leading cause of economic loss to the poultry industry worldwide. APEC causes disease using a diverse repertoire of virulence factors and has the ability to form biofilms, which contributes to the survival and persistence of APEC in harsh environments. The objective of this study was to identify genes most widespread and important in APEC that contribute to APEC biofilm formation. Using the characterized APEC O18 as the template strain, a total of 15,660 mutants were randomly generated using signature tagged mutagenesis and evaluated for decreased biofilm formation ability using the crystal violet assay. Biofilm deficient mutants were sequenced, and a total of 547 putative biofilm formation genes were identified. Thirty of these genes were analyzed by PCR for prevalence among 109 APEC isolates and 104 avian fecal E. coli (AFEC) isolates, resulting in nine genes with significantly greater prevalence in APEC than AFEC. The expression of these genes was evaluated in the wild-type APEC O18 strain using quantitative real-time PCR (qPCR) in both the exponential growth phase and the mature biofilm phase. To investigate the role of these genes in biofilm formation, isogenic mutants were constructed and evaluated for their biofilm production and planktonic growth abilities. Four of the mutants (rfaY, rfaI, and two uncharacterized genes) displayed significantly decreased biofilm formation, and of those four, one (rfaI) displayed significantly decreased growth compared to the wild type. Overall, this study identified novel genes that may be important in APEC and its biofilm formation. The data generated from this study will benefit further investigation into the mechanisms of APEC biofilm formation.
Collapse
|
3
|
The role of major virulence factors and pathogenicity of adherent-invasive Escherichia coli in patients with Crohn's disease. GASTROENTEROLOGY REVIEW 2020; 15:279-288. [PMID: 33777266 PMCID: PMC7988836 DOI: 10.5114/pg.2020.93235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD) is a term that describes Crohn's disease (CD) and ulcerative colitis (UC), and these two conditions are characterised by chronic inflammation of the gastrointestinal tract. Dysbiosis of intestinal microbiota has been consistently linked to patients with IBD. In the last two decades, the progressive implication of adherent-invasive Escherichia coli (AIEC) pathogenesis in patients with CD has been increasing. Here we discuss recent findings that indicate the role and mechanisms of AIEC in IBD. We also highlight AIEC virulence factor genes and mechanisms that suggest an important role in the severity of inflammation in CD patients. Finally, we emphasise data on the prevalence of AIEC in CD patients.
Collapse
|
4
|
Genomic Comparison of Translocating and Non-Translocating Escherichia coli. PLoS One 2015; 10:e0137131. [PMID: 26317913 PMCID: PMC4552563 DOI: 10.1371/journal.pone.0137131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/12/2015] [Indexed: 11/19/2022] Open
Abstract
Translocation of E. coli across the gut epithelium can result in fatal sepsis in post-surgical patients. In vitro and in vivo experiments have identified the existence of a novel pathotype of translocating E. coli (TEC) that employs an unknown mechanism for translocating across epithelial cells to the mesenteric lymph nodes and the blood stream in both humans and animal models. In this study the genomes of four TEC strains isolated from the mesenteric lymph nodes of a fatal case of hospitalised patient (HMLN-1), blood of pigs after experimental shock (PC-1) and after non-lethal haemorrhage in rats (KIC-1 and KIC-2) were sequenced in order to identify the genes associated with their adhesion and/or translocation. To facilitate the comparison, the genomes of a non-adhering, non-translocating E. coli (46–4) and adhering but non-translocating E. coli (73–89) were also sequenced and compared. Whole genome comparison revealed that three (HMLN-1, PC-1 and KIC-2) of the four TEC strains carried a genomic island that encodes a Type 6 Secretion System that may contribute to adhesion of the bacteria to gut epithelial cells. The human TEC strain HMLN-1 also carried the invasion ibeA gene, which was absent in the animal TEC strains and is likely to be associated with host-specific translocation. Phylogenetic analysis revealed that the four TEC strains were distributed amongst three distinct E. coli phylogroups, which was supported by the presence of phylogroup specific fimbriae gene clusters. The genomic comparison has identified potential genes that can be targeted with knock-out experiments to further characterise the mechanisms of E. coli translocation.
Collapse
|
5
|
The IbeA invasin of adherent-invasive Escherichia coli mediates interaction with intestinal epithelia and macrophages. Infect Immun 2015; 83:1904-18. [PMID: 25712929 DOI: 10.1128/iai.03003-14] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/15/2015] [Indexed: 12/22/2022] Open
Abstract
Adherent-invasive Escherichia coli (AIEC) pathogroup isolates are a group of isolates from the intestinal mucosa of Crohn's disease patients that can invade intestinal epithelial cells (IECs) or macrophages and survive and/or replicate within. We have identified the ibeA gene in the genome of AIEC strain NRG857c and report the contribution of IbeA to the interaction of AIEC with IECs and macrophages and colonization of the mouse intestine. An ibeA deletion mutant strain (NRG857cΔibeA) was constructed, and the in vitro effect on AIEC adhesion and invasion of nonpolarized and polarized Caco-2 cells, the adhesion and transcytosis of M-like cells, the intracellular survival in THP-1 macrophages, and the contribution to intestinal colonization of the CD-1 murine model of infection were evaluated. A significant reduction in invasion was observed with the ibeA mutant in Caco-2 and M-like cells, whereas adhesion was not affected. Complementation of the mutant reestablished Caco-2 invasive phenotype to wild-type levels. Reduction in invasion did not significantly affect transcytosis through M-like cells at early time points. The absence of ibeA significantly affected AIEC intramacrophage survival up to 24 h postinfection. No significant changes associated with IbeA were found in AIEC colonization across the murine gastrointestinal tract, but a slight reduction of gamma interferon was observed in the ceca of mice infected with the ibeA mutant. In addition, a decrease in the pathology scores was observed in the ilea and ceca of mice infected with the ibeA mutant. Our data support the function of IbeA in the AIEC invasion process, macrophage survival, and inflammatory response in the murine intestine.
Collapse
|
6
|
Peng L, Luo WY, Zhao T, Wan CS, Jiang Y, Chi F, Zhao W, Cao H, Huang SH. Polyphosphate kinase 1 is required for the pathogenesis process of meningitic Escherichia coli K1 (RS218). Future Microbiol 2012; 7:411-23. [DOI: 10.2217/fmb.12.3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aim: Polyphosphate kinase 1 (PPK1), encoded by the ppk1 gene, is one of the major enzymes to reversibly catalyze the synthesis of polyphosphate (poly P) from the terminal phosphate of ATP. Poly P confers resistance to stress in a number of bacterial species but its role in the virulence of meningitic bacterial pathogens is unknown. The aim of this study was to determine the role of PPK1 in the pathogenesis of Escherichia coli meningitis. Materials & methods: An isogenic in-frame ppk1 deletion mutant (PD44) of E. coli K1 strain E44 was constructed and characterized. Human brain microvascular endothelial cells and neonatal rats were used as the in vitro and in vivo models, respectively, to evaluate bacterial adhesion/invasion and the abilities of bacteria crossing the blood–brain barrier (BBB) to cause meningitis. The survival of PD44 and E44 under osmotic and acid stress conditions were also examined. Results: Poly P levels in E44 were clearly higher than those in PD44, especially at the stationary phase (SP). The ppk1 deletion mutant PD44 also showed poor survival rates during osmotic shock and acidic challenge, which the bacteria would face during pathogenesis. In vitro and in vivo assays revealed that PD44 was defective in bacterial adhesion and translocation across the BBB. By using the Evans blue method, we found that E44-induced permeability of the BBB in neonatal rats was significantly higher than that of the animals infected with PD44. Cytokine ELISA results showed that the TNF-α and IL-1β levels in the serum and brain tissues of the neonatal rats infected with PD44 were lower than that of the E44 group. A more obvious meningeal inflammation could be observed in the brain tissues of the rats infected with E44 when compared with that of the PD44 group by histopathological examination. Furthermore, the mRNA expression of IbeR, which is an RpoS-like regulator contributing to the SP regulation in E44, was found to be decreased in PD44 when compared with the parent strain. PD44 was also deficient in mRNA expression of the invasin IbeA, the adhesin FimH and the outer member protein A, which contributes to E44 penetration across BBB and resistance to the stimulations of low pH and high osmolarity. Conclusion: These results indicate that ppk1 plays an important role in stress adaption and virulence in meningitic E. coli K1 strain E44, and controls the relevant phenotypes by modulating the expression of the SP regulatory gene ibeR and the virulence genes ibeA, fimH and ompA.
Collapse
Affiliation(s)
- Liang Peng
- Department of Microbiology, School of Public Health & Tropical Medicine, Southern Medical University, Tonghe, Guangzhou, 510515, China
| | - Wen-Ying Luo
- Department of Microbiology, School of Public Health & Tropical Medicine, Southern Medical University, Tonghe, Guangzhou, 510515, China
| | - Tie Zhao
- Department of Microbiology, School of Public Health & Tropical Medicine, Southern Medical University, Tonghe, Guangzhou, 510515, China
| | - Cheng-Song Wan
- Department of Microbiology, School of Public Health & Tropical Medicine, Southern Medical University, Tonghe, Guangzhou, 510515, China
| | - Yong Jiang
- Department of Pathophysiology, Southern Medical University, Guangzhou, 510515, China
| | - Feng Chi
- Saban Research Institute, Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Wei Zhao
- Department of Microbiology, School of Public Health & Tropical Medicine, Southern Medical University, Tonghe, Guangzhou, 510515, China
| | - Hong Cao
- Department of Microbiology, School of Public Health & Tropical Medicine, Southern Medical University, Tonghe, Guangzhou, 510515, China
| | - Sheng-He Huang
- Department of Microbiology, School of Public Health & Tropical Medicine, Southern Medical University, Tonghe, Guangzhou, 510515, China
- Saban Research Institute, Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA
| |
Collapse
|
7
|
Yang W. Some research advances of immune mechanism during infection in China. SCIENCE CHINA LIFE SCIENCES 2011; 54:1153-5. [PMID: 22227909 PMCID: PMC7099174 DOI: 10.1007/s11427-011-4258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 10/30/2011] [Indexed: 11/26/2022]
Affiliation(s)
- Wei Yang
- Institute of Biophyisics, Chinese Academy of Sciences, Beijing 100001, China.
| |
Collapse
|
8
|
Heringa S, Kim J, Shepherd MW, Singh R, Jiang X. The Presence of Antibiotic Resistance and Integrons inEscherichia coliIsolated from Compost. Foodborne Pathog Dis 2010; 7:1297-304. [DOI: 10.1089/fpd.2010.0544] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Spencer Heringa
- Department of Food Science and Human Nutrition, Clemson University, Clemson, South Carolina
| | - Jinkyung Kim
- Department of Food Science and Human Nutrition, Clemson University, Clemson, South Carolina
| | - Marion W. Shepherd
- Department of Food Science and Human Nutrition, Clemson University, Clemson, South Carolina
| | - Randhir Singh
- Department of Food Science and Human Nutrition, Clemson University, Clemson, South Carolina
| | - Xiuping Jiang
- Department of Food Science and Human Nutrition, Clemson University, Clemson, South Carolina
| |
Collapse
|
9
|
Effects of ibeA deletion on virulence and biofilm formation of avian pathogenic Escherichia coli. Infect Immun 2010; 79:279-87. [PMID: 20974831 DOI: 10.1128/iai.00821-10] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ibeA gene is located on a genomic island, GimA, which is involved in the pathogenesis of neonatal meningitis Escherichia coli (NMEC) and avian pathogenic E. coli (APEC). The prevalence of ibeA in the APEC collection in China was investigated, and 20 of 467 strains (4.3%) were positive. In addition, analysis of the association of the E. coli reference (ECOR) groups with positive strains revealed that ibeA was linked to group B2. The ibeA gene in DE205B was analyzed and compared to those of APEC and NMEC, which indicated that the specificity of ibeA was not consistent along pathotypes. The invasion of chicken embryo fibroblast DF-1 cells by APEC DE205B and RS218 was observed, which suggested that DF-1 cells could be a model to study the mechanism of APEC invasion. The inactivation of ibeA in APEC DE205B led to the reduced capacity to invade DF-1 cells, defective virulence in vivo, and decreased biofilm formation compared to the wild-type strain. In addition, strain AAEC189 expressing ibeA exhibited enhanced invasion capacity and biofilm formation. The results of the quantitative real-time reverse transcription-PCR (qRT-PCR) analysis and animal system infection experiments indicated that the loss of ibeA decreased the colonization and proliferation capacities of APEC in the brain during system infection.
Collapse
|
10
|
The GimA locus of extraintestinal pathogenic E. coli: does reductive evolution correlate with habitat and pathotype? PLoS One 2010; 5:e10877. [PMID: 20526361 PMCID: PMC2878320 DOI: 10.1371/journal.pone.0010877] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 05/06/2010] [Indexed: 11/19/2022] Open
Abstract
IbeA (invasion of brain endothelium), which is located on a genomic island termed GimA, is involved in the pathogenesis of several extraintestinal pathogenic E. coli (ExPEC) pathotypes, including newborn meningitic E. coli (NMEC) and avian pathogenic E. coli (APEC). To unravel the phylogeny of GimA and to investigate its island character, the putative insertion locus of GimA was determined via Long Range PCR and DNA-DNA hybridization in 410 E. coli isolates, including APEC, NMEC, uropathogenic (UPEC), septicemia-associated E. coli (SEPEC), and human and animal fecal isolates as well as in 72 strains of the E. coli reference (ECOR) collection. In addition to a complete GimA (∼20.3 kb) and a locus lacking GimA we found a third pattern containing a 342 bp remnant of GimA in this strain collection. The presence of GimA was almost exclusively detected in strains belonging to phylogenetic group B2. In addition, the complete GimA was significantly more frequent in APEC and NMEC strains while the GimA remnant showed a higher association with UPEC strains. A detailed analysis of the ibeA sequences revealed the phylogeny of this gene to be consistent with that obtained by Multi Locus Sequence Typing of the strains. Although common criteria for genomic islands are partially fulfilled, GimA rather seems to be an ancestral part of phylogenetic group B2, and it would therefore be more appropriate to term this genomic region GimA locus instead of genomic island. The existence of two other patterns reflects a genomic rearrangement in a reductive evolution-like manner.
Collapse
|
11
|
Identification of protective and broadly conserved vaccine antigens from the genome of extraintestinal pathogenic Escherichia coli. Proc Natl Acad Sci U S A 2010; 107:9072-7. [PMID: 20439758 DOI: 10.1073/pnas.0915077107] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) are a common cause of disease in both mammals and birds. A vaccine to prevent such infections would be desirable given the increasing antibiotic resistance of these bacteria. We have determined the genome sequence of ExPEC IHE3034 (ST95) isolated from a case of neonatal meningitis and compared this to available genome sequences of other ExPEC strains and a few nonpathogenic E. coli. We found 19 genomic islands present in the genome of IHE3034, which are absent in the nonpathogenic E. coli isolates. By using subtractive reverse vaccinology we identified 230 antigens present in ExPEC but absent (or present with low similarity) in nonpathogenic strains. Nine antigens were protective in a mouse challenge model. Some of them were also present in other pathogenic non-ExPEC strains, suggesting that a broadly protective E. coli vaccine may be possible. The gene encoding the most protective antigen was detected in most of the E. coli isolates, highly conserved in sequence and found to be exported by a type II secretion system which seems to be nonfunctional in nonpathogenic strains.
Collapse
|
12
|
Zhang K, Zhao WD, Li Q, Fang WG, Zhu L, Shang DS, Chen YH. Tentative identification of glycerol dehydrogenase as Escherichia coli K1 virulence factor cglD and its involvement in the pathogenesis of experimental neonatal meningitis. Med Microbiol Immunol 2009; 198:195-204. [PMID: 19597841 DOI: 10.1007/s00430-009-0119-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Indexed: 12/17/2022]
Abstract
Escherichia coli (E. coli) is the most common gram-negative organism causing meningitis during the neonatal period. The mechanism involved in the pathogenesis of E. coli meningitis remains unclear. We previously identified a pathogenicity island GimA (genetic island of meningitic E. coli containing ibeA) from the genomic DNA library of E. coli K1, which may contribute to the E. coli invasion of the blood-brain barrier (BBB). CglD is one of the genes in GimA, and its function remains unknown. In order to characterize the role of cglD in the E. coli meningitis, an isogenic in-frame cglD deletion mutant of E. coli K1 was generated. The results showed that the median lethal dose of the cglD deletion mutant strain was significant higher than that of parent E. coli K1 strain, and the cglD deletion in E. coli K1 prolonged survival of the neonatal rats in experimental meningitis. However, deletion of cglD has no effect on the penetration of E. coli K1 through BBB in vitro and in vivo. Furthermore, our results showed that deletion of cglD in E. coli K1 attenuated cerebrospinal fluid changes, meningeal thickening, and neutrophil infiltration in the cerebral cortex in the neonatal rats with experimental meningitis. Additional results showed that the role of CglD in neonatal meningitis may be associated with its activity of glycerol dehydrogenase. Taken together, our study suggested that CglD is a virulence factor of E. coli K1 contributed to the development of neonatal meningitis.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Developmental Biology, Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
13
|
Identification of IbeR as a stationary-phase regulator in meningitic Escherichia coli K1 that carries a loss-of-function mutation in rpoS. J Biomed Biotechnol 2009; 2009:520283. [PMID: 19300523 PMCID: PMC2655632 DOI: 10.1155/2009/520283] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Accepted: 12/01/2008] [Indexed: 11/23/2022] Open
Abstract
IbeR is a regulator present in meningitic Escherichia coli strain E44 that carries a loss-of-function mutation in the stationary-phase (SP) regulatory gene rpoS. In order to determine whether IbeR is an SP regulator in E44, two-dimensional gel electrophoresis and LC-MS were used to compare the proteomes of a noninvasive ibeR deletion mutant BR2 and its parent strain E44 in the SP. Four up-regulated (TufB, GapA, OmpA, AhpC) and three down-regulated (LpdA, TnaA, OpmC) proteins in BR2 were identified when compared to E44. All these proteins contribute to energy metabolism or stress resistance, which is related to SP regulation. One of the down-regulated proteins, tryptophanase (TnaA), which is regulated by RpoS in other E. coli strains, is associated with SP regulation via production of a signal molecule indole. Our studies demonstrated that TnaA was required for E44 invasion, and that indole was able to restore the noninvasive phenotype of the tnaA mutant. The production of indole was significantly reduced in BR2, indicating that ibeR is required for the indole production via tnaA. Survival studies under different stress conditions indicated that IbeR contributed to bacteria stress resistance in the SP. Taken together, IbeR is a novel regulator contributing to the SP regulation.
Collapse
|
14
|
Cortes MAM, Gibon J, Chanteloup NK, Moulin-Schouleur M, Gilot P, Germon P. Inactivation of ibeA and ibeT results in decreased expression of type 1 fimbriae in extraintestinal pathogenic Escherichia coli strain BEN2908. Infect Immun 2008; 76:4129-36. [PMID: 18591231 PMCID: PMC2519445 DOI: 10.1128/iai.00334-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 04/25/2008] [Accepted: 06/21/2008] [Indexed: 12/21/2022] Open
Abstract
IbeA in extraintestinal pathogenic Escherichia coli (ExPEC) strains was previously described for its role in invasion. Here we investigated the role of IbeA and IbeT, encoded by a gene located downstream of ibeA, in the adhesion of the avian ExPEC strain BEN2908 to human brain microvascular endothelial cells (HBMEC). The DeltaibeA mutant was less adhesive to HBMEC than the wild-type strain BEN2908 was. Because strain BEN2908 also expresses type 1 fimbriae, we measured the adhesion specifically due to IbeA by comparing the adhesive properties of a Deltafim derivative of strain BEN2908 to those of a double Deltafim DeltaibeA mutant. No differences were observed, indicating that the reduction of adhesion in BEN2908 DeltaibeA could be due to a decrease in type 1 fimbria expression. We indeed showed that the decreased adhesion of BEN2908 DeltaibeA was correlated with a decrease in type 1 fimbria expression. Accordingly, more bacteria had a fim promoter orientated in the off position in a culture of BEN2908 DeltaibeA than in a culture of BEN2908. Expression of fimB and fimE, two genes encoding recombinases participating in controlling the orientation of the fim promoter, was decreased in BEN2908 DeltaibeA. A reduction of type 1 fimbria expression due to a preferential orientation of the fim promoter in the off position was also seen in an ibeT mutant of strain BEN2908. We finally suggest a role for IbeA and IbeT in modulating the expression of type 1 fimbriae through an as yet unknown mechanism.
Collapse
Affiliation(s)
- Mélanie A M Cortes
- INRA, UR 1282 Infectiologie Animale et Santé Publique, Laboratoire de Pathogénie Bactérienne, Nouzilly, France
| | | | | | | | | | | |
Collapse
|