1
|
Mohamed YS, Borthwick NJ, Moyo N, Murakoshi H, Akahoshi T, Siliquini F, Hannoun Z, Crook A, Hayes P, Fast PE, Mutua G, Jaoko W, Silva-Arrieta S, Llano A, Brander C, Takiguchi M, Hanke T. Specificity of CD8 + T-Cell Responses Following Vaccination with Conserved Regions of HIV-1 in Nairobi, Kenya. Vaccines (Basel) 2020; 8:E260. [PMID: 32485938 PMCID: PMC7349992 DOI: 10.3390/vaccines8020260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 01/08/2023] Open
Abstract
Sub-Saharan Africa carries the biggest burden of the human immunodeficiency virus type 1 (HIV-1)/AIDS epidemic and is in an urgent need of an effective vaccine. CD8+ T cells are an important component of the host immune response to HIV-1 and may need to be harnessed if a vaccine is to be effective. CD8+ T cells recognize human leukocyte antigen (HLA)-associated viral epitopes and the HLA alleles vary significantly among different ethnic groups. It follows that definition of HIV-1-derived peptides recognized by CD8+ T cells in the geographically relevant regions will critically guide vaccine development. Here, we study fine details of CD8+ T-cell responses elicited in HIV-1/2-uninfected individuals in Nairobi, Kenya, who received a candidate vaccine delivering conserved regions of HIV-1 proteins called HIVconsv. Using 10-day cell lines established by in vitro peptide restimulation of cryopreserved PBMC and stably HLA-transfected 721.221/C1R cell lines, we confirm experimentally many already defined epitopes, for a number of epitopes we define the restricting HLA molecule(s) and describe four novel HLA-epitope pairs. We also identify specific dominance patterns, a promiscuous T-cell epitope and a rescue of suboptimal T-cell epitope induction in vivo by its functional variant, which all together inform vaccine design.
Collapse
Affiliation(s)
- Yehia S. Mohamed
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (Y.S.M.); (N.J.B.); (N.M.); (F.S.); (Z.H.); (A.C.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo 11823, Egypt
| | - Nicola J. Borthwick
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (Y.S.M.); (N.J.B.); (N.M.); (F.S.); (Z.H.); (A.C.)
| | - Nathifa Moyo
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (Y.S.M.); (N.J.B.); (N.M.); (F.S.); (Z.H.); (A.C.)
| | - Hayato Murakoshi
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan; (H.M.); (T.A.); (M.T.)
| | - Tomohiro Akahoshi
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan; (H.M.); (T.A.); (M.T.)
| | - Francesca Siliquini
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (Y.S.M.); (N.J.B.); (N.M.); (F.S.); (Z.H.); (A.C.)
| | - Zara Hannoun
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (Y.S.M.); (N.J.B.); (N.M.); (F.S.); (Z.H.); (A.C.)
| | - Alison Crook
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (Y.S.M.); (N.J.B.); (N.M.); (F.S.); (Z.H.); (A.C.)
| | - Peter Hayes
- International AIDS Vaccine Initiative IAVI-Human Immunology Laboratory, Imperial College London, London SW10 9NH, UK;
| | - Patricia E. Fast
- International AIDS Vaccine Initiative-New York, New York, NY 10004, USA;
| | - Gaudensia Mutua
- KAVI-Institute of Clinical Research, University of Nairobi, Nairobi 19676 00202, Kenya; (G.M.); (W.J.)
| | - Walter Jaoko
- KAVI-Institute of Clinical Research, University of Nairobi, Nairobi 19676 00202, Kenya; (G.M.); (W.J.)
| | - Sandra Silva-Arrieta
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Universitari Germans Trias i Pujol, 08916 Barcelona, Spain; (S.S.-A.); (A.L.); (C.B.)
| | - Anuska Llano
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Universitari Germans Trias i Pujol, 08916 Barcelona, Spain; (S.S.-A.); (A.L.); (C.B.)
| | - Christian Brander
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Universitari Germans Trias i Pujol, 08916 Barcelona, Spain; (S.S.-A.); (A.L.); (C.B.)
- Faculty of Medicine, Universitat de Vic-Central de Catalunya (UVic-UCC), 08500 Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Masafumi Takiguchi
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan; (H.M.); (T.A.); (M.T.)
| | - Tomáš Hanke
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (Y.S.M.); (N.J.B.); (N.M.); (F.S.); (Z.H.); (A.C.)
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan; (H.M.); (T.A.); (M.T.)
| |
Collapse
|
2
|
Different Effects of Nonnucleoside Reverse Transcriptase Inhibitor Resistance Mutations on Cytotoxic T Lymphocyte Recognition between HIV-1 Subtype B and Subtype A/E Infections. J Virol 2015; 89:7363-72. [PMID: 25972553 DOI: 10.1128/jvi.00974-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/04/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The effect of antiretroviral drug resistance mutations on cytotoxic T lymphocyte (CTL) recognition has been analyzed in HIV-1 subtype B infections, but it remains unclear in infections by other HIV-1 subtypes that are epidemic in countries where antiretroviral drugs are not effectively used. We investigated the effect of nonnucleoside reverse transcriptase (RT) inhibitor (NNRTI)-resistance mutations (Y181C, Y181I, and Y181V) on epitope recognition by CTLs specific for 3 different HIV-1 epitopes (HLA-A*02:01-restricted IV10, HLA-B*35:01-restricted NY9, and HLA-C*12:02-restricted KY9) in subtype B and subtype A/E infections and the accumulation of these mutations in treatment-naive Japanese and Vietnamese. These NNRTI-resistance mutations critically affected NY9-specific and KY9-specific T cell responses in the subtype B infections, whereas they showed a different effect on IV10-specific T cell responses among the subtype B-infected individuals. These mutations affected IV10-specific T cell responses but weakly affected NY9-specific T cell responses in the subtype A/E infections. The substitution at position 3 of NY9 epitope which was found in the subtype A/E virus differently influenced the peptide binding to HLA-B*35:01, suggesting that the differences in peptide binding may result in the differences in T cell recognition between the subtype B virus and A/E virus infections. The Y181C mutation was found to be accumulating in treatment-naive Vietnamese infected with the subtype A/E virus. The present study demonstrated different effects of NNRTI-resistance RT181 mutations on CTL responses between the 2 subtype infections. The Y181C mutation may influence HIV-1 control by the CTLs in Vietnam, since this mutation has been accumulating in treatment-naive Vietnamese. IMPORTANCE Antiretroviral therapy leads to the emergence of drug-resistant HIV-1, resulting in virological and clinical failures. Though HIV-1-specific CTLs play a critical role in HIV-1 infection, some of drug resistance mutations located in CTL epitopes are known to affect HIV-1-specific CTL responses. Nonnucleoside reverse transcriptase inhibitor (NNRTI)-resistance RT181 mutations are frequently observed in patients treated with NNRTIs. Such drug resistance mutations may have an influence on immune control by HIV-1-specific CTLs, especially in countries where antiretroviral drugs are not effectively used. We here investigated the effect of three NNRTI-resistance RT181 mutations on immune responses by HIV-1-specific CTLs and the recent accumulation of these mutations in treatment-naive Vietnamese infected with HIV-1 subtype A/E virus. RT181 mutations affected CTL recognition in both subtype A/E and B infections, while the RT Y181C mutation has been accumulating in treatment-naive Vietnamese. The results suggest that the Y181C mutation may influence HIV-1 control by CTLs in Vietnam.
Collapse
|
3
|
Doerr HW, Berger A. Vaccination against infectious diseases: what is promising? Med Microbiol Immunol 2014; 203:365-71. [PMID: 25064610 DOI: 10.1007/s00430-014-0346-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/10/2014] [Indexed: 12/17/2022]
Abstract
Vaccination has proven to be one of the best weapons protecting the mankind against infectious diseases. Along with the huge progress in microbiology, numerous highly efficacious and safe vaccines have been produced by conventional technology (cultivation), by the use of molecular biology (genetic modification), or by synthetic chemistry. Sterilising prevention is achieved by the stimulation of antibody production, while the stimulation of cell-mediated immune responses may prevent the outbreak of disease in consequence of an acute or reactivated infection. From several examples, two rules are deduced to evaluate the perspectives of future vaccine developments: They are promising, if (1) the natural infectious disease induces immunity or (2) passive immunisation (transfer of antibodies, adoptive transfer of lymphocytes) is successful in preventing infection.
Collapse
Affiliation(s)
- Hans Wilhelm Doerr
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University, Paul-Ehrlich-Str. 40, 60596, Frankfurt/M., Germany,
| | | |
Collapse
|
4
|
Roider J, Meissner T, Kraut F, Vollbrecht T, Stirner R, Bogner JR, Draenert R. Comparison of experimental fine-mapping to in silico prediction results of HIV-1 epitopes reveals ongoing need for mapping experiments. Immunology 2014; 143:193-201. [PMID: 24724694 DOI: 10.1111/imm.12301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 04/06/2014] [Accepted: 04/08/2014] [Indexed: 11/27/2022] Open
Abstract
Methods for identifying physiologically relevant CD8 T-cell epitopes are critically important not only for the development of T-cell-based vaccines but also for understanding host-pathogen interactions. As experimentally mapping an optimal CD8 T-cell epitope is a tedious procedure, many bioinformatic tools have been developed that predict which peptides bind to a given MHC molecule. We assessed the ability of the CD8 T-cell epitope prediction tools syfpeithi, ctlpred and iedb to foretell nine experimentally mapped optimal HIV-specific epitopes. Randomly - for any of the subjects' HLA type and with any matching score - the optimal epitope was predicted in seven of nine epitopes using syfpeithi, in three of nine epitopes using ctlpred and in all nine of nine epitopes using iedb. The optimal epitope within the three highest ranks was given in four of nine epitopes applying syfpeithi, in two of nine epitopes applying ctlpred and in seven of nine epitopes applying iedb when screening for all of the subjects' HLA types. Knowing the HLA restriction of the peptide of interest improved the ranking of the optimal epitope within the predicted results. Epitopes restricted by common HLA alleles were more likely to be predicted than those restricted by uncommon HLA alleles. Epitopes with aberrant lengths compared with the usual HLA-class I nonamers were most likely not predicted. Application of epitope prediction tools together with literature searches for already described optimal epitopes narrows down the possibilities of optimal epitopes within a screening peptide of interest. However, in our opinion, the actual fine-mapping of a CD8 T-cell epitope cannot yet be replaced.
Collapse
Affiliation(s)
- Julia Roider
- Department of Infectious Diseases, Ludwig-Maximilians-Universität München, München, Germany
| | | | | | | | | | | | | |
Collapse
|
5
|
Rahman MA, Kuse N, Murakoshi H, Chikata T, Gatanaga H, Oka S, Takiguchi M. Raltegravir and elvitegravir-resistance mutation E92Q affects HLA-B*40:02-restricted HIV-1-specific CTL recognition. Microbes Infect 2014; 16:434-8. [PMID: 24657622 DOI: 10.1016/j.micinf.2014.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 11/30/2022]
Abstract
Interplay between drug-resistance mutations in CTL epitopes and HIV-1-specific CTLs may influence the control of HIV-1 viremia. However, the effect of integrase inhibitor (INI)-resistance mutations on the CTL recognition has not been reported. We here investigated the effect of a raltegravir and elvitegravir-resistance mutation (E92Q) on HLA-B*40:02-restricted Int92-102 (EL11: ETGQETAYFLL)-specific CTLs. EL11-specific CTLs recognized E92Q peptide-pulsed and E92Q mutant virus-infected cells less effectively than EL11 peptide-pulsed and wild-type virus-infected cells, respectively. Ex vivo ELISpot analysis showed no induction of E92Q-specific T cells in chronically HIV-1-infected individuals. Thus, we demonstrated that EL11-specific CTL recognition was affected by the INI-resistance mutation.
Collapse
Affiliation(s)
- Mohammad Arif Rahman
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Nozomi Kuse
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Hayato Murakoshi
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Takayuki Chikata
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Hiroyuki Gatanaga
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan; AIDS Clinical Center, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Shinichi Oka
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan; AIDS Clinical Center, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Masafumi Takiguchi
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan.
| |
Collapse
|
6
|
Roider J, Vollbrecht T, Draenert R. Mapping of optimal CD8 T cell epitopes. Methods Mol Biol 2014; 1169:97-106. [PMID: 24957233 DOI: 10.1007/978-1-4939-0882-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Defining the optimal epitope of a CD8 T cell response towards a certain antigen is a multistep procedure that requires the performance of peptide truncation design, ELISPOT peptide titration assays, and assessing the HLA class I restriction of the defined epitope via intracellular cytokine staining assays with B cell lines and epitope-specific CD8 T cell lines.
Collapse
Affiliation(s)
- Julia Roider
- Department of infectious diseases, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Campus Innenstadt, Pettenkoferstraße 8a, 80336, Munich, Germany
| | | | | |
Collapse
|
7
|
Smidt W. Potential elucidation of a novel CTL epitope in HIV-1 protease by the protease inhibitor resistance mutation L90M. PLoS One 2013; 8:e71888. [PMID: 24015196 PMCID: PMC3756051 DOI: 10.1371/journal.pone.0071888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 07/09/2013] [Indexed: 11/25/2022] Open
Abstract
The combination of host immune responses and use of antiretrovirals facilitate partial control of human immunodeficiency virus type 1 (HIV-1) infection and result in delayed progression to Acquired Immunodeficiency Syndrome (AIDS). Both treatment and host immunity impose selection pressures on the highly mutable HIV-1 genome resulting in antiretroviral resistance and immune escape. Researchers have shown that antiretroviral resistance mutations can shape cytotoxic T-lymphocyte immunity by altering the epitope repertoire of HIV infected cells. Here it was discovered that an important antiretroviral resistance mutation, L90M in HIV protease, occurs at lower frequencies in hosts that harbor the B*15, B*48 or A*32 human leukocyte antigen subtypes. A likely reason is the elucidation of novel epitopes by L90M. NetMHCPan predictions reveal increased affinity of the peptide spanning the HIV protease region, PR 89–97 and PR 90–99 to HLA-B*15/B*48 and HLA-A*32 respectively due to the L90M substitution. The higher affinity could increase the chance of the epitope being presented and recognized by Cytotoxic T-lymphocytes and perhaps provide additional immunological pressures in the presence of antiretroviral attenuating mutations. This evidence supports the notion that knowledge of HLA allotypes in HIV infected individuals could augment antiretroviral treatment by the elucidation of epitopes due to antiretroviral resistance mutations in HIV protease.
Collapse
Affiliation(s)
- Werner Smidt
- Bioinformatics and Computational Biology Unit, Department of Biochemistry, University of Pretoria, Pretoria, South Africa
- * E-mail:
| |
Collapse
|
8
|
Comparison of HIV-1 viral load assay performance in immunological stable patients with low or undetectable viremia. Med Microbiol Immunol 2012; 202:67-75. [PMID: 22699843 DOI: 10.1007/s00430-012-0249-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/26/2012] [Indexed: 10/27/2022]
Abstract
The goal of antiretroviral therapy is reduction in morbidity and mortality via suppression of human immunodeficiency virus (HIV) viral load (VL) to undetectable levels. VL assay sensitivity has improved over time, but the reproducibility and clinical importance of VL results marginally higher than the limit of detection (LoD) are uncertain. We assessed the reproducibility and concordance of low VL results obtained with the Roche Cobas AmpliPrep/Cobas TaqMan HIV-1 version 2.0 (CAP-CTM) and the Abbott RealTime (m2000) HIV-1 assays, using longitudinal specimens from HIV-1-infected patients with low VL (<300 copies/ml) and stable CD4+ cell counts. Based on replicate testing of 3 specimens, coefficients of variation for log-transformed VL results were 5-8 % for m2000 and 9-10 % for CAP-CTM. The concordance between assays in specimens from patients with previously undetectable, detectable but not quantifiable VL, or variable (undetectable/detectable but not quantifiable VL) results over time was 90, 56, and 56 %, respectively. Correlation between results for specimens with quantifiable VL (initially 40-300 copies/ml) was moderate (R (2) = 0.48) with significantly higher results for CAP-CTM and a mean difference (CAP-CTM minus m2000) of 0.10 log(10) copies/ml. T-cell activation (CD8+/CD38+ percentage) in patients with low VL was initially higher than in patients with undetectable VL, and then decreased to equivalent levels over time. These results indicate that residual viremia at levels slightly above the LoD have no negative effect on T-cell activation.
Collapse
|