1
|
Wanna W, Aucharean C, Jaeram N. Analysis of Gut Microbiota Associated with WSSV Resistance in Litopenaeus vannamei. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 27:10. [PMID: 39589588 DOI: 10.1007/s10126-024-10381-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/30/2024] [Indexed: 11/27/2024]
Abstract
Microorganisms in the digestive tract regulate the metabolism of host cells as well as stimulate the immune system of the host. If the microbiota is in good balance, it will promote the good health of the host. In this study, using 16S rRNA sequencing, we analyzed the microbiota of three groups of shrimp: a group of normal shrimp (control group), shrimp that were killed by infection with the white spot syndrome virus (WSSV) (susceptible group), and shrimp that survived WSSV infection (resistant group). The results showed that although the alpha diversity of the microbiota was barely affected by the WSSV, the bacterial communities in the three groups had different prevalences. The resistant group harbored significantly more bacteria than both the other groups. Remarkably, the resistant group had the greatest prevalence of the phylum Bacterioidetes, the families Rhodobacteraceae and Flavobacteriaceae, and the genus Nautella, suggesting their potential as biomarkers for shrimp resistance to WSSV infection. In addition, analysis of functional diversity in bacterial communities showed that the abundance of bacterial metagenomes in two groups infected with WSSV was mostly linked to metabolism and cellular processes. The susceptible WSSV group exhibited a significant reduction in amino acid metabolism. This result suggested that metabolism was the principal factor affecting the alteration in the microbiota after WSSV infection. This overview of the gut microbiota of shrimp infected with the WSSV offers crucial insights for aquaculture management and simplifies the use of control strategies in the future.
Collapse
Affiliation(s)
- Warapond Wanna
- Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Songkhla, 90110, Thailand.
- Program in Molecular Biotechnology and Bioinformatics, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| | - Chitchanok Aucharean
- Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Nittaya Jaeram
- Program in Molecular Biotechnology and Bioinformatics, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| |
Collapse
|
2
|
Concha JO, Gutierrez K, Barbosa N, Rodrigues RL, de Carvalho AN, Tavares LA, Rudd JS, Costa CS, Andrade BYG, Espreafico EM, Crump CM, daSilva LLP. Rab27a GTPase and its effector Myosin Va are host factors required for efficient Oropouche virus cell egress. PLoS Pathog 2024; 20:e1012504. [PMID: 39213446 PMCID: PMC11392402 DOI: 10.1371/journal.ppat.1012504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 09/12/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Oropouche fever, a debilitating illness common in South America, is caused by Oropouche virus (OROV), an arbovirus. OROV belongs to the Peribunyaviridae family, a large group of RNA viruses. Little is known about the biology of Peribunyaviridae in host cells, especially assembly and egress processes. Our research reveals that the small GTPase Rab27a mediates intracellular transport of OROV induced compartments and viral release from infected cells. We show that Rab27a interacts with OROV glycoproteins and colocalizes with OROV during late phases of the infection cycle. Moreover, Rab27a activity is required for OROV trafficking to the cell periphery and efficient release of infectious particles. Consistently, depleting Rab27a's downstream effector, Myosin Va, or inhibiting actin polymerization also hinders OROV compartments targeting to the cell periphery and infectious viral particle egress. These data indicate that OROV hijacks Rab27a activity for intracellular transport and cell externalization. Understanding these crucial mechanisms of OROV's replication cycle may offer potential targets for therapeutic interventions and aid in controlling the spread of Oropouche fever.
Collapse
Affiliation(s)
- Juan O Concha
- Virus Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Kristel Gutierrez
- Virus Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Natalia Barbosa
- Virus Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Roger L Rodrigues
- Virus Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Andreia N de Carvalho
- Virus Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lucas A Tavares
- Virus Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jared S Rudd
- Virus Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Cristina S Costa
- Virus Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Barbara Y G Andrade
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Enilza M Espreafico
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Colin M Crump
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Luis L P daSilva
- Virus Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
3
|
Ohta K, Saka N, Fukasawa M, Nishio M. Hazara orthonairovirus nucleoprotein facilitates viral cell-to-cell spread by modulating tight junction protein, claudin-1. Front Microbiol 2023; 14:1192956. [PMID: 37287449 PMCID: PMC10243194 DOI: 10.3389/fmicb.2023.1192956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023] Open
Abstract
Background Tight junctions act as a barrier that prevents invasion of pathogens through epithelial cells. This study aims to elucidate the correlation between tight junctions and nairoviruses using Hazara orthonairovirus (HAZV) as a surrogate model for Crimean-Congo hemorrhagic fever virus. Methods mRNA, total protein, and cell surface protein levels of tight junction proteins were examined by quantitative real-time reverse transcription polymerase chain reaction, immunoblot and flow cytometry, respectively. HAZV growth was measured by plaque assay. Immunofluorescence assay was used to examine viral cell-to-cell spread. The interaction between HAZV nucleoprotein and claudin-1 was analyzed by immunoprecipitation. Results HAZV infection induced mRNA of several tight junction proteins, especially claudin-1. HAZV infection also induced cell surface expression of claudin-1 protein. Claudin-1 overexpression inhibited the growth of HAZV by blocking its cell-to-cell spread. In contrast, HAZV nucleoprotein completely inhibited HAZV-induced cell surface expression of claudin-1, and this inhibition required interaction between HAZV nucleoprotein and claudin-1. Conclusion HAZV nucleoprotein was shown to bind to claudin-1 to negatively regulate its cell surface expression, and so can promote cell-to-cell spread of HAZV. This is the first presentation of a possible mechanism behind how nairoviruses counteract tight junction barrier function.
Collapse
Affiliation(s)
- Keisuke Ohta
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Naoki Saka
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Masayoshi Fukasawa
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Machiko Nishio
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
4
|
Niu GJ, Yan M, Li C, Lu PY, Yu Z, Wang JX. Infection with white spot syndrome virus affects the microbiota in the stomachs and intestines of kuruma shrimp. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156233. [PMID: 35636540 DOI: 10.1016/j.scitotenv.2022.156233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Maintaining eubiosis of the gastrointestinal (GI) microbiota is essential for animal health. White spot syndrome virus (WSSV) is the most lethal viral pathogen because it causes extremely high mortality in shrimp farming. However, it remains poorly understood how WSSV infection affects the microbiota in different regions of the GI tract of shrimp. In the present study, we established an experimental model of kuruma shrimp (Marsupenaeus japonicus) infection with WSSV and then investigated the effects of WSSV infection on the microbiota in the cardiac stomach, pyloric stomach, and intestines using metataxonomics. We identified 34 phyla and 576 genera of bacteria collectively. At the phylum level, Proteobacteria and Firmicutes were the most abundant in all the three GI segments. The WSSV infection decreased microbial diversity to a different extent in the stomachs and in a time-dependent manner. The infection with WSSV affected the microbiota composition in the two stomachs, but not the intestines. Firmicutes increased significantly, while Actinobacteria, Bacteroidetes, and Cyanobacteria decreased in the two stomachs of the WSSV-infected shrimp. At the genus level, Trichococcus and Vibrio increased, but Bradyrhizobium and Roseburia decreased in the cardiac stomach of the WSSV-infected shrimp. Trichococcus and Photobacterium increased in the pyloric stomach. Although Vibrio showed a slight downward trend, Aliivibrio (formerly Vibrio) increased in the pyloric stomach. Thiothrix, Fusibacter, and Shewanella decreased in the pyloric stomach, but no significant differences in these genera were detected in the cardiac stomach. Analysis of the predicted functions of the GI microbiota indicated that the WSSV infection resulted in losses of some microbiota functions. The new information from this study may help better understand the bacteria-virus interaction in the GI tract of shrimp and other crustacean species, and inform pathogen prevention/control and sustainable aquaculture production.
Collapse
Affiliation(s)
- Guo-Juan Niu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Ming Yan
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Cang Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Peng-Yuan Lu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States.
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China.
| |
Collapse
|
5
|
Chapuy-Regaud S, Allioux C, Capelli N, Migueres M, Lhomme S, Izopet J. Vectorial Release of Human RNA Viruses from Epithelial Cells. Viruses 2022; 14:231. [PMID: 35215825 PMCID: PMC8875463 DOI: 10.3390/v14020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/07/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Epithelial cells are apico-basolateral polarized cells that line all tubular organs and are often targets for infectious agents. This review focuses on the release of human RNA virus particles from both sides of polarized human cells grown on transwells. Most viruses that infect the mucosa leave their host cells mainly via the apical side while basolateral release is linked to virus propagation within the host. Viruses do this by hijacking the cellular factors involved in polarization and trafficking. Thus, understanding epithelial polarization is essential for a clear understanding of virus pathophysiology.
Collapse
Affiliation(s)
- Sabine Chapuy-Regaud
- Department of Virology, CHU Purpan, F-31059 Toulouse, France; (N.C.); (M.M.); (S.L.); (J.I.)
- INFINITy (Toulouse Institute for Infectious and Inflammatory Diseases), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, CHU Purpan, F-31024 Toulouse, France;
| | - Claire Allioux
- INFINITy (Toulouse Institute for Infectious and Inflammatory Diseases), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, CHU Purpan, F-31024 Toulouse, France;
| | - Nicolas Capelli
- Department of Virology, CHU Purpan, F-31059 Toulouse, France; (N.C.); (M.M.); (S.L.); (J.I.)
- INFINITy (Toulouse Institute for Infectious and Inflammatory Diseases), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, CHU Purpan, F-31024 Toulouse, France;
| | - Marion Migueres
- Department of Virology, CHU Purpan, F-31059 Toulouse, France; (N.C.); (M.M.); (S.L.); (J.I.)
- INFINITy (Toulouse Institute for Infectious and Inflammatory Diseases), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, CHU Purpan, F-31024 Toulouse, France;
| | - Sébastien Lhomme
- Department of Virology, CHU Purpan, F-31059 Toulouse, France; (N.C.); (M.M.); (S.L.); (J.I.)
- INFINITy (Toulouse Institute for Infectious and Inflammatory Diseases), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, CHU Purpan, F-31024 Toulouse, France;
| | - Jacques Izopet
- Department of Virology, CHU Purpan, F-31059 Toulouse, France; (N.C.); (M.M.); (S.L.); (J.I.)
- INFINITy (Toulouse Institute for Infectious and Inflammatory Diseases), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, CHU Purpan, F-31024 Toulouse, France;
| |
Collapse
|
6
|
Human Parainfluenza Virus Type 2 V Protein Modulates Iron Homeostasis. J Virol 2021; 95:JVI.01861-20. [PMID: 33408172 DOI: 10.1128/jvi.01861-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
Intracellular iron concentration is tightly controlled for cell viability. It is known to affect the growth of several viruses, but the molecular mechanisms are not well understood. We found that iron chelators inhibit growth of human parainfluenza virus type 2 (hPIV-2). Furthermore, infection with hPIV-2 alters ferritin localization from granules to a homogenous distribution within cytoplasm of iron-stimulated cells. The V protein of hPIV-2 interacts with ferritin heavy chain 1 (FTH1), a ferritin subunit. It also binds to nuclear receptor coactivator 4 (NCOA4), which mediates autophagic degradation of ferritin, so-called ferritinophagy. V protein consequently interferes with interaction between FTH1 and NCOA4. hPIV-2 growth is inhibited in FTH1 knockdown cell line where severe hPIV-2-induced apoptosis is shown. In contrast, NCOA4 knockdown results in the promotion of hPIV-2 growth and limited apoptosis. Our data collectively suggest that hPIV-2 V protein inhibits FTH1-NCOA4 interaction and subsequent ferritinophagy. This iron homeostasis modulation allows infected cells to avoid apoptotic cell death, resulting in effective growth of hPIV-2.IMPORTANCE hPIV-2 V protein interferes with interaction between FTH1 and NCOA4 and inhibits NCOA4-mediated ferritin degradation, leading to the inhibition of iron release to the cytoplasm. This iron homeostasis modulation allows infected cells to avoid apoptotic cell death, resulting in effective growth of hPIV-2.
Collapse
|
7
|
Foot-and-mouth disease virus degrades Rab27a to suppress the exosome-mediated antiviral immune response. Vet Microbiol 2020; 251:108889. [PMID: 33223235 DOI: 10.1016/j.vetmic.2020.108889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/04/2020] [Indexed: 12/11/2022]
Abstract
Foot-and-mouth disease (FMD) is a highly contagious infection caused by foot-and-mouth disease virus (FMDV). Exosomes are extracellular vesicles that mediate antiviral immune responses in host cells and could be used by pathogens to evade host cell immune responses. Whether FMDV affects exosome secretion or whether exosomes derived from FMDV-infected cells mediate host cell antiviral immune responses is not yet clarified. In this study, the exosomes were identified and extracted from FMDV-infected PK-15 cells, and it was found that FMDV inhibits exosome secretion. Further investigation revealed that FMDV suppresses exosomes by degrading Rab27a via the autophagy-lysosome pathway. Also, microRNA (miRNA) differential analysis was performed in exosomes, which revealed that miRNA-136 was highly differentially expressed in exosomes and may be the key miRNA that inhibits the proliferation of FMDV. In summary, these results showed that host cells take advantage of exosomes to mediate their antiviral immune response, while FMDV evades exosome-mediated immune responses by degrading the exosome molecular switch, Rab27a.
Collapse
|
8
|
Ohta K, Matsumoto Y, Nishio M. Inhibition of Cavin3 Degradation by the Human Parainfluenza Virus Type 2 V Protein Is Important for Efficient Viral Growth. Front Microbiol 2020; 11:803. [PMID: 32425917 PMCID: PMC7203785 DOI: 10.3389/fmicb.2020.00803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/03/2020] [Indexed: 01/01/2023] Open
Abstract
Cavin proteins have important roles in the formation of caveolae in lipid raft microdomains. Pulse-chase experiments of cells infected with human parainfluenza virus type 2 (hPIV-2) showed decreased proteasomal degradation of Cavin3. Overexpression of hPIV-2 V protein alone was sufficient to inhibit Cavin3 degradation. Immunoprecipitation analysis revealed that V protein bound to Cavin3. Trp residues within C-terminal region of V protein, as well as the N-terminal region of Cavin3, are important for V–Cavin3 interaction. Cavin3 knockdown suppressed hPIV-2 growth without affecting its entry, replication, transcription, or translation. Higher amounts of Cavin3 were observed in V protein-overexpressing cells than in control cells in lipid raft microdomains. Our data collectively suggest that hPIV-2 V protein binds to and stabilizes Cavin3, which in turn facilitates assembly and budding of hPIV-2 in lipid raft microdomains.
Collapse
Affiliation(s)
- Keisuke Ohta
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yusuke Matsumoto
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Machiko Nishio
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
9
|
Bearer EL, Wu C. Herpes Simplex Virus, Alzheimer's Disease and a Possible Role for Rab GTPases. Front Cell Dev Biol 2019; 7:134. [PMID: 31448273 PMCID: PMC6692634 DOI: 10.3389/fcell.2019.00134] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/04/2019] [Indexed: 12/17/2022] Open
Abstract
Herpes simplex virus (HSV) is a common pathogen, infecting 85% of adults in the United States. After reaching the nucleus of the long-lived neuron, HSV may enter latency to persist throughout the life span. Re-activation of latent herpesviruses is associated with progressive cognitive impairment and Alzheimer's disease (AD). As an enveloped DNA virus, HSV exploits cellular membrane systems for its life cycle, and thereby comes in contact with the Rab family of GTPases, master regulators of intracellular membrane dynamics. Knock-down and overexpression of specific Rabs reduce HSV production. Disheveled membrane compartments could lead to AD because membrane sorting and trafficking are crucial for synaptic vesicle formation, neuronal survival signaling and Abeta production. Amyloid precursor protein (APP), a transmembrane glycoprotein, is the parent of Abeta, the major component of senile plaques in AD. Up-regulation of APP expression due to HSV is significant since excess APP interferes with Rab5 endocytic trafficking in neurons. Here, we show that purified PC12-cell endosomes transport both anterograde and retrograde when injected into the squid giant axon at rates similar to isolated HSV. Intracellular HSV co-fractionates with these endosomes, contains APP, Rab5 and TrkA, and displays a second membrane. HSV infected PC12 cells up-regulate APP expression. Whether interference with Rabs has a specific effect on HSV or indirectly affects membrane compartment dynamics co-opted by virus needs further study. Ultimately Rabs, their effectors or their membrane-binding partners may serve as handles to reduce the impact of viral re-activation on cognitive function, or even as more general-purpose anti-microbial therapies.
Collapse
Affiliation(s)
- Elaine L. Bearer
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Chengbiao Wu
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
10
|
Ohta K, Matsumoto Y, Nishio M. Profilin2 is required for filamentous actin formation induced by human parainfluenza virus type 2. Virology 2019; 533:108-114. [PMID: 31150988 DOI: 10.1016/j.virol.2019.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/09/2019] [Accepted: 05/23/2019] [Indexed: 11/17/2022]
Abstract
We previously reported that human parainfluenza virus type 2 (hPIV-2) promoted RhoA activation and subsequent filamentous actin (F-actin) formation. Actin-binding proteins, such as profilin and cofilin, are involved in the regulation of F-actin formation by RhoA signaling. In the present study, we identified profilin2 as a key molecule that is involved in hPIV-2-induced F-actin formation. Immunoprecipitation assays demonstrated that hPIV-2 V protein binds to profilin2 but not to profilin1. Mutation of Trp residues within C-terminal region of V protein abolished the binding capacity to profilin2. Depletion of profilin2 resulted in the inhibition of hPIV-2-induced F-actin formation and the suppression of hPIV-2 growth. Overexpression of wild type V but not Trp-mutated V protein reduced the quantity of actin co-immunoprecipitated with profilin2. Taken together, these results suggest that hPIV-2 V protein promotes F-actin formation by affecting actin-profilin2 interaction through its binding to profilin2.
Collapse
Affiliation(s)
- Keisuke Ohta
- Department of Microbiology, School of Medicine, Wakayama Medical University, Japan
| | - Yusuke Matsumoto
- Department of Microbiology, School of Medicine, Wakayama Medical University, Japan
| | - Machiko Nishio
- Department of Microbiology, School of Medicine, Wakayama Medical University, Japan.
| |
Collapse
|
11
|
Wang J, Huang Y, Xu K, Zhang X, Sun H, Fan L, Yan M. White spot syndrome virus (WSSV) infection impacts intestinal microbiota composition and function in Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2019; 84:130-137. [PMID: 30278220 DOI: 10.1016/j.fsi.2018.09.076] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/25/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
Intestinal microbiota homeostasis is crucial to the health of host. Pathogen invasion results in dynamics of microbiota composition and structure, disrupting their function in maintaining host health. WSSV is the most prevalent viral pathogen and is able to cause extremely high mortality in Litopenaeus vannamei. However, the changes of intestinal microbiota induced by WSSV are yet to be elucidated. In this study, we analyzed and compared the microbiota of healthy and WSSV-challenged shrimp intestines. Though the richness and diversity of microbiota was barely affected by WSSV, the abundance of predominant phyla like Proteobacteria and Fusobacteria were upregulated significantly, while Bacteroidetes and Tenericutes were significantly decreased in WSSV-infected shrimps. At the genus level, significant increase was observed in Photobacterium, Propionigenium and Arcobacter, as well as significant decrease in Candidatus Bacilloplasma and Flavobacterium in WSSV-infected shrimps. Additionally, metagenomic predictions by PICRUSt suggested that the altered microbiota was mainly related to metabolism, human diseases, genetic information processing, environmental information processing and cellular processes. These results suggested that the invasion of WSSV could impact intestinal microbiota composition and function in L. vannamei.
Collapse
Affiliation(s)
- Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, PR China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, PR China
| | - Youjia Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, PR China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, PR China
| | - Kaihang Xu
- College of Marine Sciences, South China Agricultural University, Guangzhou, PR China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, PR China
| | - Xiaoyong Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, PR China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, PR China
| | - Hongyan Sun
- College of Marine Sciences, South China Agricultural University, Guangzhou, PR China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, PR China
| | - Lanfen Fan
- College of Marine Sciences, South China Agricultural University, Guangzhou, PR China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, PR China.
| | - Muting Yan
- College of Marine Sciences, South China Agricultural University, Guangzhou, PR China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, PR China.
| |
Collapse
|