1
|
Wang QW, Zou WB, Masson E, Férec C, Liao Z, Chen JM. Genetics and clinical implications of SPINK1 in the pancreatitis continuum and pancreatic cancer. Hum Genomics 2025; 19:32. [PMID: 40140953 PMCID: PMC11948977 DOI: 10.1186/s40246-025-00740-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Serine peptidase inhibitor, Kazal type 1 (SPINK1), a 56-amino-acid protein in its mature form, was among the first pancreatic enzymes to be extensively characterized biochemically and functionally. Synthesized primarily in pancreatic acinar cells and traditionally known as pancreatic secretory trypsin inhibitor, SPINK1 protects the pancreas by inhibiting prematurely activated trypsin. Since 2000, interest in SPINK1 has resurged following the discovery of genetic variants linked to chronic pancreatitis (CP). This review provides a historical overview of SPINK1's discovery, function, and gene structure before examining key genetic findings. We highlight three variants with well-characterized pathogenic mechanisms: c.-4141G > T, a causative enhancer variant linked to the extensively studied p.Asn34Ser (c.101A > G), which disrupts a PTF1L-binding site within an evolutionarily conserved HNF1A-PTF1L cis-regulatory module; c.194 + 2T > C, a canonical 5' splice site GT > GC variant that retains 10% of wild-type transcript production; and an Alu insertion in the 3'-untranslated region, which causes complete loss of function by forming extended double-stranded RNA structures with pre-existing Alu elements in deep intronic regions. We emphasize the integration of a full-length gene splicing assay (FLGSA) with SpliceAI's predictive capabilities, establishing SPINK1 the first disease gene for which the splicing impact of all possible coding variants was prospectively determined. Findings from both mouse models and genetic association studies support the sentinel acute pancreatitis event (SAPE) model, which explains the progression from acute pancreatitis to CP. Additionally, SPINK1 variants may contribute to an increased risk of pancreatic ductal adenocarcinoma (PDAC). Finally, we discuss the therapeutic potential of SPINK1, particularly through adeno-associated virus type 8 (AAV8)-mediated overexpression of SPINK1 as a strategy for treating and preventing pancreatitis, and highlight key areas for future research.
Collapse
Affiliation(s)
- Qi-Wen Wang
- Department of Gastroenterology, Changhai Hospital; National Key Laboratory of Immunity and Inflammation, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Wen-Bin Zou
- Department of Gastroenterology, Changhai Hospital; National Key Laboratory of Immunity and Inflammation, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Emmanuelle Masson
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200, Brest, France
- Service de Génétique Médicale et de Biologie de la Reproduction, CHU Brest, Brest, France
| | - Claude Férec
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200, Brest, France
| | - Zhuan Liao
- Department of Gastroenterology, Changhai Hospital; National Key Laboratory of Immunity and Inflammation, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
- Shanghai Institute of Pancreatic Diseases, Shanghai, China.
| | - Jian-Min Chen
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200, Brest, France.
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 22 Avenue Camille Desmoulins, 29238, Brest, France.
| |
Collapse
|
2
|
Gao H, Yang S, Song Q, Tang W, Wang Y, Shi B, Tang J, Luo Y. Gabexate mesylate thermo-sensitive in-situ gel is effective for treating grade-III pancreatic trauma in beagle dogs guided by contrast-enhanced ultrasound. Animal Model Exp Med 2025; 8:534-543. [PMID: 39846391 PMCID: PMC11904112 DOI: 10.1002/ame2.12526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 11/29/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND This study evaluates the efficacy of gabexate mesylate thermosensitive in-situ gel (GMTI) in the treatment of beagle grade III pancreatic trauma (PT) with the assistance of contrast-enhanced ultrasound (CEUS) and investigates its mechanism of action. METHODS A grade III PT model consisting of 15 beagle dogs with severed main pancreatic ducts was created and treated with cephalic vein injection of gabexate mesylate (GM) (1.54 mL/10 kg, TID) and peripancreatic injection of GMTI (4.63 mL/10 kg, QD) guided by CEUS within 24 h post-surgery. Ascites and serum levels of amylase (AMY), lipase (LPS), C-reactive protein (CRP), interleukin (IL)-6, tumor necrosis factor (TNF)-α, and urinary trypsinogen activating peptide (TAP) were detected by ELISA. Histopathological changes in the canine pancreas were observed by Hematoxylin and Eosin staining. RESULTS CEUS accurately displayed pancreatic lesions and guided catheterisation. Compared to the control group, the ascites was significantly reduced after treatment (p < 0.01). AMY and LPS ascites significantly decreased on post-operative 1st and 2nd day (p < 0.01). The levels of AMY, LPS, CRP, IL-6, and TNF-α in serum were decreased (p < 0.05 or p < 0.01). Urinary TAP was decreased 1 and 2 days after treatment (p < 0.05 or p < 0.01, respectively). In the control group, pancreatic tissue necrosis was evident in the wound area. Normal glandular cell structures and fibrous tissue hyperplasia were observed in the wound area after GMTI treatment. The GMTI group performed better than the GM group in improving pancreatic histology and reducing AMY levels in the early post-operative period. CONCLUSION Guided by CEUS, daily peripancreatic injections of GMTI in Beagles effectively inhibit pancreatic enzyme activity and aid in the adjuvant treatment of pancreatic trauma.
Collapse
Affiliation(s)
- Hanjing Gao
- Department of UltrasoundFirst Medical Center of General Hospital of Chinese PLABeijingChina
- Department of UltrasoundSecond Medical Center, General Hospital of Chinese PLABeijingChina
| | - Shanshan Yang
- Department of Disease Prevention and ControlGeneral Hospital of Chinese PLA, First Medical CenterBeijingChina
| | - Qing Song
- Department of UltrasoundGeneral Hospital of Chinese PLA, Seventh Medical CenterBeijingChina
| | - Wenjing Tang
- Department of NeurologyChinese PLA General HospitalBeijingChina
- Institute of Neurological ResearchChinese PLA General HospitalBeijingChina
| | - Yiru Wang
- Department of UltrasoundFirst Medical Center of General Hospital of Chinese PLABeijingChina
| | - Bin Shi
- Department of Organ TransplantationGeneral Hospital of Chinese PLA, Third Medical CenterBeijingChina
| | - Jie Tang
- Department of UltrasoundFirst Medical Center of General Hospital of Chinese PLABeijingChina
| | - Yukun Luo
- Department of UltrasoundFirst Medical Center of General Hospital of Chinese PLABeijingChina
| |
Collapse
|
3
|
Wang YC, Mao XT, Sun C, Wang YH, Zheng YZ, Xiong SH, Liu MY, Mao SH, Wang QW, Ma GX, Wu D, Li ZS, Chen JM, Zou WB, Liao Z. Pancreas-directed AAV8 -hSPINK1 gene therapy safely and effectively protects against pancreatitis in mice. Gut 2024; 73:1142-1155. [PMID: 38553043 DOI: 10.1136/gutjnl-2023-330788] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/19/2024] [Indexed: 06/15/2024]
Abstract
OBJECTIVE Currently, there is no cure for chronic pancreatitis (CP). Germline loss-of-function variants in SPINK1 (encoding trypsin inhibitor) are common in patients with CP and are associated with acute attacks and progression of the disease. This preclinical study was conducted to explore the potential of adeno-associated virus type 8 (AAV8)-mediated overexpression of human SPINK1 (hSPINK1) for pancreatitis therapy in mice. DESIGN A capsid-optimised AAV8-mediated hSPINK1 expression vector (AAV8-hSPINK1) to target the pancreas was constructed. Mice were treated with AAV8-hSPINK1 by intraperitoneal injection. Pancreatic transduction efficiency and safety of AAV8-hSPINK1 were dynamically evaluated in infected mice. The effectiveness of AAV8-hSPINK1 on pancreatitis prevention and treatment was studied in three mouse models (caerulein-induced pancreatitis, pancreatic duct ligation and Spink1 c.194+2T>C mouse models). RESULTS The constructed AAV8-hSPINK1 vector specifically and safely targeted the pancreas, had low organ tropism for the heart, lungs, spleen, liver and kidneys and had a high transduction efficiency (the optimal expression dose was 2×1011 vg/animal). The expression and efficacy of hSPINK1 peaked at 4 weeks after injection and remained at significant level for up to at least 8 weeks. In all three mouse models, a single dose of AAV8-hSPINK1 before disease onset significantly alleviated the severity of pancreatitis, reduced the progression of fibrosis, decreased the levels of apoptosis and autophagy in the pancreas and accelerated the pancreatitis recovery process. CONCLUSION One-time injection of AAV8-hSPINK1 safely targets the pancreas with high transduction efficiency and effectively ameliorates pancreatitis phenotypes in mice. This approach is promising for the prevention and treatment of CP.
Collapse
Affiliation(s)
- Yuan-Chen Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, China
| | - Xiao-Tong Mao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Chang Sun
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ya-Hui Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Yi-Zhou Zheng
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Si-Huai Xiong
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Mu-Yun Liu
- Department of Gastroenterology, No. 905 Hospital of PLA Navy Affiliated to Naval Medical University, Shanghai, China
| | - Sheng-Han Mao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Qi-Wen Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Guo-Xiu Ma
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Di Wu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, China
| | - Jian-Min Chen
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
| | - Wen-Bin Zou
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, China
| | - Zhuan Liao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, China
| |
Collapse
|
4
|
Bioinformatics Approach Predicts Candidate Targets for SARS-CoV-2 Infections to COPD Patients. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1806427. [PMID: 35747501 PMCID: PMC9211381 DOI: 10.1155/2022/1806427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 01/08/2023]
Abstract
COVID-19 is still prevalent in more world regions and poses a severe threat to human health due to its high pathogenicity. The incidence of COPD patients is gradually increasing, especially in patients over 45 years old. COPD patients are susceptible to COVID-19 due to the specific lung receptor ACE2 of SARS-CoV-2. We attempt to reveal the genetic basis by analyzing the expression of common DEGs of the two diseases through bioinformatics approaches and find potential therapeutic agents based on the target genes. Thus, we search the GEO database for COVID-19 and COPD transcriptomic gene expression. We also study the enrichment of signaling regulatory pathways and hub genes for potential therapeutic treatments. There are 34 common DEGs in the two datasets. The signaling pathways are mainly enriched in intercellular junctions between virus and cytokine regulation. In the PPI network of common DEGs, we extract 5 hub genes. We find that artesunate CTD 00001840, dexverapamil MCF7 UP, and STOCK1N-35696 PC3 DOWN could be therapeutic agents for both diseases. We also analyze the regulatory network of differential genes with transcription factors and miRNAs. Therefore, we conclude that artesunate CTD 00001840, dexverapamil MCF7 UP, and STOCK1N-35696 PC3 DOWN can be therapeutic candidates in COPD combined with COVID-19.
Collapse
|
5
|
Tian G, Zhu L, Chen S, Zhao Q, Jiang T. Etiology, case fatality, recurrence, and severity in pediatric acute pancreatitis: a meta-analysis of 48 studies. Pediatr Res 2022; 91:56-63. [PMID: 33742133 DOI: 10.1038/s41390-021-01454-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/24/2020] [Accepted: 02/17/2021] [Indexed: 01/31/2023]
Abstract
For children, there are very few published reviews focusing on severe acute pancreatitis (AP). PubMed, EMBASE, Web of Science, Scopus, Chinese National Knowledge Infrastructure (CNKI), Wanfang data, EBSCO, and Cochrane Library were searched from inception until March 2020. Meta-regression analyses were used to estimate the etiology, case fatality, recurrence, and severity of pediatric AP in different regions (North America, Asia, South America, Europe, and Oceania). Pooled data from 47 papers (48 studies) found that main causes of pediatric AP were gallstones in Asia; trauma in Oceania; and idiopathic in Europe, North America, and South America. The case-fatality rate (CFR) of pediatric AP is 4.7% (North America), 6.2% (Europe), 2.4% (Asia), 3.1% (South America), and 7.4% (Oceania). The incidence rates of recurrent acute pancreatitis (RAP) in children who have had an episode of acute pancreatitis in North American, Asia, and Europe were 15.3, 13.1, and 13.8%, respectively. The incidence of severe acute pancreatitis (SAP) in different regions was 30.3% (Oceania), 29.2% (South America), 20.8% (Europe), 15.8% (Asia), and 13.7% (North America). It suggests that physicians should notice the etiology of pediatric AP for the initial assessment, diagnosis, prediction of relapse, and appropriate treatment at a later stage. IMPACT: It indicates the etiology of pediatric acute pancreatitis for the initial assessment, diagnosis, and prediction of relapse. Main causes of pediatric AP were gallstones in Asia; trauma in Oceania; and idiopathic in Europe, North America, and South America. The case-fatality rate of pediatric AP is diverse worldwide. It suggests that physicians noticed the etiology of pediatric AP for the initial assessment, diagnosis, prediction of relapse, and appropriate treatment at a later stage.
Collapse
Affiliation(s)
- Guo Tian
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pulsed Electric Field Technology Medical Transformation, Hangzhou, Zhejiang, China
| | - Lu Zhu
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shuochun Chen
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiyu Zhao
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pulsed Electric Field Technology Medical Transformation, Hangzhou, Zhejiang, China
| | - Tian'an Jiang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Zhejiang Provincial Key Laboratory of Pulsed Electric Field Technology Medical Transformation, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Potì F, Pozzoli C, Adami M, Poli E, Costa LG. Treatments for COVID-19: emerging drugs against the coronavirus. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:118-136. [PMID: 32420936 PMCID: PMC7569629 DOI: 10.23750/abm.v91i2.9639] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 01/08/2023]
Abstract
The Coronavirus disease 19 (COVID-19) outbreak has been recognized as a global threat to public health. It is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and no effective therapies currently exist against this novel viral agent. Along with extensive public health measures, an unprecedented global effort in identifying effective drugs for the treatment is being implemented. Potential drug targets are emerging as the result of a fast-evolving understanding of SARS-CoV-2 virology, host response to the infection, and clinical course of the disease. This brief review focuses on the latest and most promising pharmacological treatments against COVID-19 currently under investigation and discuss their potential use based on either documented efficacy in similar viral infections, or their activity against inflammatory syndromes. Ongoing clinical trials are also emphasized.
Collapse
Affiliation(s)
- Francesco Potì
- Department of Medicine and Surgery - Unit of Neurosciences, University of Parma, Parma, Italy.
| | - Cristina Pozzoli
- Department of Medicine and Surgery - Unit of Neurosciences, University of Parma, Parma, Italy.
| | - Maristella Adami
- Department of Medicine and Surgery - Unit of Neurosciences, University of Parma, Parma, Italy.
| | - Enzo Poli
- Department of Medicine and Surgery - Unit of Neurosciences, University of Parma, Parma, Italy.
| | - Lucio G Costa
- Department of Medicine and Surgery - Unit of Neurosciences, University of Parma, Parma, Italy.
| |
Collapse
|
7
|
Kim DG, Bae GS, Choi SB, Jo IJ, Shin JY, Lee SK, Kim MJ, Kim MJ, Jeong HW, Choi CM, Seo SH, Choo GC, Seo SW, Song HJ, Park SJ. Guggulsterone attenuates cerulein-induced acute pancreatitis via inhibition of ERK and JNK activation. Int Immunopharmacol 2015; 26:194-202. [PMID: 25843255 DOI: 10.1016/j.intimp.2015.03.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/23/2015] [Accepted: 03/17/2015] [Indexed: 02/07/2023]
Abstract
Guggulsterone (GS), a plant steroid and a compound found at high levels in Commiphora myrrha, exhibits anti-inflammatory, anti-cancer, and cholesterol-lowering effects. However, the potential of GS to ameliorate acute pancreatitis (AP) is unknown. The aim of this study was to evaluate the effects of GS on cerulein-induced AP. AP was induced by intraperitoneally injecting supramaximal concentrations of the stable cholecystokinin analog cerulein (50 μg/kg) hourly for 6 h. In the GS-treated group, GS was administered intraperitoneally (10, 25, or 50mg/kg) 1 h before the first cerulein injection. Mice were sacrificed 6 h after the final cerulein injection. Blood samples were collected to measure serum lipase levels and evaluate cytokine production. The pancreas and lung were rapidly removed for morphologic and histological examinations, flow cytometry analysis, myeloperoxidase (MPO) assay, and real-time reverse transcription-polymerase chain reaction analysis. Pre-treatment with GS attenuated cerulein-induced histological damage, reduced pancreas weight/body weight ratio, decreased serum lipase levels, inhibited infiltrations of macrophages and neutrophils, and suppressed cytokine production. Additionally, GS treatment suppressed the activation of extracellular signal-regulated protein kinase (ERK) and c-Jun N-terminal kinase (JNK) in the pancreas in cerulein-induced pancreatitis. In conclusion, our results suggest that GS attenuates AP via deactivation of ERK and JNK.
Collapse
Affiliation(s)
- Dong-Goo Kim
- BK21 Plus Team, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 540-749, South Korea; Department of Herbology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 540-749, South Korea
| | - Gi-Sang Bae
- Hanbang Body Fluid Research Center, Wonkwang University, Iksan, Jeonbuk 540-749, South Korea
| | - Sun-Bok Choi
- BK21 Plus Team, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 540-749, South Korea; Department of Herbology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 540-749, South Korea
| | - Il-Joo Jo
- BK21 Plus Team, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 540-749, South Korea; Department of Herbology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 540-749, South Korea
| | - Joon-Yeon Shin
- BK21 Plus Team, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 540-749, South Korea; Department of Herbology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 540-749, South Korea
| | - Sung-Kon Lee
- BK21 Plus Team, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 540-749, South Korea; Department of Herbology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 540-749, South Korea
| | - Myoung-Jin Kim
- BK21 Plus Team, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 540-749, South Korea; Department of Herbology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 540-749, South Korea
| | - Min-Jun Kim
- BK21 Plus Team, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 540-749, South Korea; Department of Herbology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 540-749, South Korea
| | - Hyun-Woo Jeong
- Department of Pathology, College of Korean Medicine, Dongshin University, Naju, Jeonnam 520-714, South Korea
| | - Chang-Min Choi
- Department of Obstetrics and Gynecology, College of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 570-749, South Korea
| | - Seung-Hee Seo
- Department of Cosmetology, Dongshin University, Naju, Jeonnam 520-714, South Korea
| | - Gab-Chul Choo
- Department of Forest Resources, Gyeongnam National University of Science and Technology, Jinju, Gyeongnam 660-758, South Korea
| | - Sang-Wan Seo
- Department of Oriental Medicine Industry, Honam University, Gwangju 506-714, South Korea
| | - Ho-Joon Song
- BK21 Plus Team, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 540-749, South Korea; Department of Herbology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 540-749, South Korea
| | - Sung-Joo Park
- BK21 Plus Team, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 540-749, South Korea; Department of Herbology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 540-749, South Korea; Hanbang Body Fluid Research Center, Wonkwang University, Iksan, Jeonbuk 540-749, South Korea.
| |
Collapse
|
8
|
Suzuki M, Sai JK, Shimizu T. Acute pancreatitis in children and adolescents. World J Gastrointest Pathophysiol 2014; 5:416-26. [PMID: 25400985 PMCID: PMC4231506 DOI: 10.4291/wjgp.v5.i4.416] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/09/2014] [Accepted: 07/18/2014] [Indexed: 02/06/2023] Open
Abstract
In this Topic Highlight, the causes, diagnosis, and treatment of acute pancreatitis in children are discussed. Acute pancreatitis should be considered during the differential diagnosis of abdominal pain in children and requires prompt treatment because it may become life-threatening. The etiology, clinical manifestations, and course of acute pancreatitis in children are often different than in adults. Therefore, the specific features of acute pancreatitis in children must be considered. The etiology of acute pancreatitis in children is often drugs, infections, trauma, or anatomic abnormalities. Diagnosis is based on clinical symptoms (such as abdominal pain and vomiting), serum pancreatic enzyme levels, and imaging studies. Several scoring systems have been proposed for the assessment of severity, which is useful for selecting treatments and predicting prognosis. The basic pathogenesis of acute pancreatitis does not greatly differ between adults and children, and the treatments for adults and children are similar. In large part, our understanding of the pathology, optimal treatment, assessment of severity, and outcome of acute pancreatitis in children is taken from the adult literature. However, we often find that the common management of adult pancreatitis is difficult to apply to children. With advances in diagnostic techniques and treatment methods, severe acute pancreatitis in children is becoming better understood and more controllable.
Collapse
|