1
|
Ako AA, Ismaiel A, Rastogi S. Electrical impedance tomography in neonates: a review. Pediatr Res 2025:10.1038/s41390-025-03929-x. [PMID: 39987341 DOI: 10.1038/s41390-025-03929-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/10/2025] [Accepted: 01/26/2025] [Indexed: 02/24/2025]
Abstract
Appropriate interventions informed by real-time assessment of pulmonary function in mechanically ventilated critically ill neonates can reduce the incidence of bronchopulmonary dysplasia, pneumothorax, intraventricular hemorrhage and other complications of newborn life. The respiratory system in neonates is uniquely different from older children, and its physiological and anatomic attributes increase neonatal vulnerability to respiratory distress and eventual failure. While significant advancements have been made in developing respiratory support for neonates, such support is accompanied by inherent risks to their delicate lungs. Ventilator-associated lung injury poses a critical concern that can be potentially decreased with more precise, non-invasive, non-radiating, bedside methods for assessing neonatal pulmonary function in real time. Electrical impedance tomography (EIT) is one such tool, with immense potential for real-time pulmonary function monitoring in neonates. Still relatively new and in the earliest stages of clinical adoption, EIT use in neonatal critical care has been reported in several studies. This review discusses the basic features of EIT, its distinct advantages over traditional pulmonary function monitoring tools, the scope of its adoption in neonatal clinical practice, challenges associated with clinical adoption, and prospects for future applications. IMPACT: 1. Individualized care assisted by bedside pulmonary function monitoring can positively impact neonatal critical care and outcomes. 2. Electrical impedance tomography (EIT) has the potential to improve neonatal pulmonary function monitoring and treatment outcomes. 3. Electrical impedance tomography can be adopted as a part of routine neonatal respiratory critical care, especially in the population of patients most at risk for bronchopulmonary dysplasia and acute respiratory complications.
Collapse
Affiliation(s)
- Ako A Ako
- Division of Neonatology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York, 10467, USA
| | - Ahmed Ismaiel
- Division of Neonatology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York, 10467, USA
| | - Shantanu Rastogi
- Division of Neonatology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York, 10467, USA.
| |
Collapse
|
2
|
Abstract
Bronchopulmonary dysplasia (BPD) is a multifactorial disease with many associated co-morbidities, responsible for most cases of chronic lung disease in childhood. The use of imaging exams is pivotal for the clinical care of BPD and the identification of candidates for experimental therapies and a closer follow-up. Imaging is also useful to improve communication with the family and objectively evaluate the clinical evolution of the patient's disease. BPD imaging has been classically performed using only chest X-rays, but several modern techniques are currently available, such as lung ultrasound, thoracic tomography, magnetic resonance imaging and electrical impedance tomography. These techniques are more accurate and provide clinically meaningful information. We reviewed the most recent evidence published in the last five years regarding these techniques and analyzed their advantages and disadvantages.
Collapse
Affiliation(s)
- Almudena Alonso-Ojembarrena
- Neonatal Intensive Care Unit, Puerta del Mar University Hospital, Cádiz. Spain; Biomedical Research and Innovation Institute of Cádiz (INiBICA). Research Unit, Puerta del Mar University Hospital, Cádiz. Spain.
| | - Victoria Aldecoa-Bilbao
- Neonatology Department, Hospital Clinic Barcelona. BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine. Barcelona, Spain
| | - Daniele De Luca
- Division of Pediatrics and Neonatal Critical Care, "A.Béclère" Medical Center, Paris- Saclay University Hospitals, APHP, Paris, France; Physiopathology and Therapeutic Innovation Unit-INSERM U999, Paris-Saclay University, Paris, France; Department of Pediatrics, Division of Neonatology, Stanford University, School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
3
|
Prolonged Continuous Monitoring of Regional Lung Function in Infants with Respiratory Failure. Ann Am Thorac Soc 2021; 19:991-999. [PMID: 34898392 DOI: 10.1513/annalsats.202005-562oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RATIONALE Electrical impedance tomography (EIT) allows instantaneous and continuous visualization of regional ventilation and changes in end-expiratory lung volume at the bedside. There is particular interest in using EIT for monitoring in critically ill neonates and young children with respiratory failure. Previous studies have focused only on short-term monitoring in small populations. The feasibility and safety of prolonged monitoring with EIT in neonates and young children has not been demonstrated yet. OBJECTIVES To evaluate the feasibility and safety of long-term EIT monitoring in a routine clinical setting and to describe changes in ventilation distribution and homogeneity over time and with positioning in a multi-center cohort of neonates and young children with respiratory failure. METHODS At four European University Hospitals, we conducted an observational study (NCT02962505) on 200 patients with post-menstrual ages (PMA) between 25 weeks and 36 months, at risk for or suffering from respiratory failure. Continuous EIT data were obtained using a novel textile 32-electrode interface and recorded at 48 images/s for up to 72 hours. Clinicians were blinded to EIT images during the recording. EIT parameters and the effects of body position on ventilation distribution were analyzed offline. RESULTS The average duration of EIT measurements was 53±20 hours. Skin contact impedance was sufficient to allow image reconstruction for valid ventilation analysis during 92[77-98]% (median[interquartile range]) of examination time. EIT examinations were well tolerated, with minor skin irritations (temporary redness or imprint) occurring in 10% of patients and no moderate or severe adverse events. Higher ventilation amplitude was found in the dorsal and right lung areas when compared with the ventral and left regions respectively. Prone positioning resulted in an increase in the ventilation-related EIT signal in the dorsal hemithorax, indicating increased ventilation of the dorsal lung areas. Lateral positioning led to a redistribution of ventilation towards the dependent lung in preterm infants and to the non-dependent lung in patients with PMA above 37 weeks. CONCLUSIONS EIT allows continuous long-term monitoring of regional lung function in neonates and young children for up to 72 hours with minimal adverse effects. Our study confirmed the presence of posture-dependent changes in ventilation distribution and their dependency on PMA in a large patient cohort. Clinical trial registered with ClinicalTrials.gov (NCT02962505).
Collapse
|
4
|
Defining information needs in neonatal resuscitation with work domain analysis. J Clin Monit Comput 2020; 35:689-710. [PMID: 32458169 DOI: 10.1007/s10877-020-00526-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 05/07/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To gain a deeper understanding of the information requirements of clinicians conducting neonatal resuscitation in the first 10 min after birth. BACKGROUND During the resuscitation of a newborn infant in the first minutes after birth, clinicians must monitor crucial physiological adjustments that are relatively unobservable, unpredictable, and highly variable. Clinicians' access to information regarding the physiological status of the infant is also crucial to determining which interventions are most appropriate. To design displays to support clinicians during newborn resuscitation, we must first carefully consider the information requirements. METHODS We conducted a work domain analysis (WDA) for the neonatal transition in the first 10 min after birth. We split the work domain into two 'subdomains'; the physiology of the neonatal transition, and the clinical resources supporting the neonatal transition. A WDA can reveal information requirements that are not yet supported by resources. RESULTS The physiological WDA acted as a conceptual tool to model the exact processes and functions that clinicians must monitor and potentially support during the neonatal transition. Importantly, the clinical resources WDA revealed several capabilities and limitations of the physical objects in the work domain-ultimately revealing which physiological functions currently have no existing sensor to provide clinicians with information regarding their status. CONCLUSION We propose two potential approaches to improving the clinician's information environment: (1) developing new sensors for the information we lack, and (2) employing principles of ecological interface design to present currently available information to the clinician in a more effective way.
Collapse
|
5
|
Weber J, Gutjahr J, Schmidt J, Lozano-Zahonero S, Borgmann S, Schumann S, Wirth S. Effect of individualized PEEP titration guided by intratidal compliance profile analysis on regional ventilation assessed by electrical impedance tomography - a randomized controlled trial. BMC Anesthesiol 2020; 20:42. [PMID: 32079526 PMCID: PMC7033933 DOI: 10.1186/s12871-020-00960-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/17/2020] [Indexed: 11/10/2022] Open
Abstract
Background The application of positive end-expiratory pressure (PEEP) may reduce dynamic strain during mechanical ventilation. Although numerous approaches for PEEP titration have been proposed, there is no accepted strategy for titrating optimal PEEP. By analyzing intratidal compliance profiles, PEEP may be individually titrated for patients. Methods After obtaining informed consent, 60 consecutive patients undergoing general anesthesia were randomly allocated to mechanical ventilation with PEEP 5 cmH2O (control group) or PEEP individually titrated, guided by an analysis of the intratidal compliance profile (intervention group). The primary endpoint was the frequency of each nonlinear intratidal compliance (CRS) profile of the respiratory system (horizontal, increasing, decreasing, and mixed). The secondary endpoints measured were respiratory mechanics, hemodynamic variables, and regional ventilation, which was assessed via electrical impedance tomography. Results The frequencies of the CRS profiles were comparable between the groups. Besides PEEP [control: 5.0 (0.0), intervention: 5.8 (1.1) cmH2O, p < 0.001], the respiratory and hemodynamic variables were comparable between the two groups. The compliance profile analysis showed no significant differences between the two groups. The loss of ventral and dorsal regional ventilation was higher in the control [ventral: 41.0 (16.3)%; dorsal: 25.9 (13.8)%] than in the intervention group [ventral: 29.3 (17.6)%; dorsal: 16.4 (12.7)%; p (ventral) = 0.039, p (dorsal) = 0.028]. Conclusions Unfavorable compliance profiles indicating tidal derecruitment were found less often than in earlier studies. Individualized PEEP titration resulted in slightly higher PEEP. A slight global increase in aeration associated with this was indicated by regional gain and loss analysis. Differences in dorsal to ventral ventilation distribution were not found. Trial registration This clinical trial was registered at the German Register for Clinical Trials (DRKS00008924) on August 10, 2015.
Collapse
Affiliation(s)
- Jonas Weber
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
| | - Jan Gutjahr
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Johannes Schmidt
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Sara Lozano-Zahonero
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Silke Borgmann
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Stefan Schumann
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Steffen Wirth
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| |
Collapse
|
6
|
Onland W, Hutten J, Miedema M, Bos LD, Brinkman P, Maitland-van der Zee AH, van Kaam AH. Precision Medicine in Neonates: Future Perspectives for the Lung. Front Pediatr 2020; 8:586061. [PMID: 33251166 PMCID: PMC7673376 DOI: 10.3389/fped.2020.586061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common complication of pre-term birth with long lasting sequelae. Since its first description more than 50 years ago, many large randomized controlled trials have been conducted, aiming to improve evidence-based knowledge on the optimal strategies to prevent and treat BPD. However, most of these intervention studies have been performed on a population level without regard for the variation in clinical and biological diversity (e.g., gestational age, ethnicity, gender, or disease progression) between patients that is driven by the complex interaction of genetic pre-disposition and environmental exposures. Nevertheless, clinicians provide daily care such as lung protective interventions on an individual basis every day despite the fact that research supporting individualized or precision medicine for monitoring or treating pre-term lungs is immature. This narrative review summarizes four potential developments in pulmonary research that might facilitate the process of individualizing lung protective interventions to prevent development of BPD. Electrical impedance tomography and electromyography of the diaphragm are bedside monitoring tools to assess regional changes in lung volume and ventilation and spontaneous breathing effort, respectively. These non-invasive tools allow a more individualized optimization of invasive and non-invasive respiratory support. Investigation of the genomic variation in caffeine metabolism in pre-term infants can be used to optimize and individualize caffeine dosing regimens. Finally, volatile organic compound analysis in exhaled breath might accurately predict BPD at an early stage of the disease, enabling clinicians to initiate preventive strategies for BPD on an individual basis. Before these suggested diagnostic or monitoring tools can be implemented in daily practice and improve individualized patient care, future research should address and overcome their technical difficulties, perform extensive external validation and show their additional value in preventing BPD.
Collapse
Affiliation(s)
- Wes Onland
- Department of Neonatology, Amsterdam University Medical Centers, VU University Medical Center, Emma Children's Hospital, University of Amsterdam, Amsterdam, Netherlands
| | - Jeroen Hutten
- Department of Neonatology, Amsterdam University Medical Centers, VU University Medical Center, Emma Children's Hospital, University of Amsterdam, Amsterdam, Netherlands
| | - Martijn Miedema
- Department of Neonatology, Amsterdam University Medical Centers, VU University Medical Center, Emma Children's Hospital, University of Amsterdam, Amsterdam, Netherlands
| | - Lieuwe D Bos
- Department of Respiratory Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Paul Brinkman
- Department of Respiratory Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Anke H Maitland-van der Zee
- Department of Respiratory Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Anton H van Kaam
- Department of Neonatology, Amsterdam University Medical Centers, VU University Medical Center, Emma Children's Hospital, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
7
|
Leonhäuser D, Castelar C, Schlebusch T, Rohm M, Rupp R, Leonhardt S, Walter M, Grosse JO. Evaluation of electrical impedance tomography for determination of urinary bladder volume: comparison with standard ultrasound methods in healthy volunteers. Biomed Eng Online 2018; 17:95. [PMID: 30005629 PMCID: PMC6045869 DOI: 10.1186/s12938-018-0526-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 07/10/2018] [Indexed: 11/11/2022] Open
Abstract
Background Continuous non-invasive urinary bladder volume measurement (cystovolumetry) would allow better management of urinary tract disease. Electrical impedance tomography (EIT) represents a promising method to overcome the limitations of non-continuous ultrasound measurements. The aim of this study was to compare the measurement accuracy of EIT to standard ultrasound in healthy volunteers. Methods For EIT of the bladder a commercial device (Goe MF II) was used with 4 different configurations of 16 standard ECG electrodes attached to the lower abdomen of healthy participants. To estimate maximum bladder capacity (BCmax) and residual urine (RU) two ultrasound methods (US-Ellipsoid and US-L × W × H) and a bedside bladder scanner (BS), were performed at the point of urgency and after voiding. For volume reference, BCmax and RU were validated by urine collection in a weight measuring pitcher. The global impedance method was used offline to estimate BCmax and RU from EIT. Results The mean error of US-Ellipsoid (37 ± 17%) and US-L × W × H (36 ± 15%) and EIT (32 ± 18%) showed no significant differences in the estimation of BCmax (mean 743 ± 200 ml) normalized to pitcher volumetry. BS showed significantly worse accuracy (55 ± 9%). Volumetry of RU (mean 152.1 ± 64 ml) revealed comparable higher errors for both EIT (72 ± 58%) and BS (63 ± 24%) compared to US-Ellipsoid (54 ± 25%). In case of RU, EIT accuracy is dependent on electrode configuration, as the Stripes (41 ± 25%) and Matrix (38 ± 27%) configurations revealed significantly superior accuracy to the 1 × 16 (116 ± 62%) configuration. Conclusions EIT-cystovolumetry compares well with ultrasound techniques. For estimation of RU, the selection of the EIT electrode configuration is important. Also, the development of an algorithm should consider the impact of movement artefacts. Finally, the accuracy of non-invasive ultrasound accepted as gold standard of cystovolumetry should be reconsidered.
Collapse
Affiliation(s)
- Dorothea Leonhäuser
- Department of Urology, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Carlos Castelar
- Philips Chair for Medical Information Technology (MedIT), RWTH Aachen University, Aachen, Germany
| | - Thomas Schlebusch
- Philips Chair for Medical Information Technology (MedIT), RWTH Aachen University, Aachen, Germany
| | - Martin Rohm
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Rüdiger Rupp
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Steffen Leonhardt
- Philips Chair for Medical Information Technology (MedIT), RWTH Aachen University, Aachen, Germany
| | - Marian Walter
- Philips Chair for Medical Information Technology (MedIT), RWTH Aachen University, Aachen, Germany
| | - Joachim O Grosse
- Department of Urology, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
8
|
A Multitasking Electrical Impedance Tomography System Using Titanium Alloy Electrode. Int J Biomed Imaging 2017; 2017:3589324. [PMID: 29225613 PMCID: PMC5684615 DOI: 10.1155/2017/3589324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/25/2017] [Indexed: 12/25/2022] Open
Abstract
This paper presents a multitasking electrical impedance tomography (EIT) system designed to improve the flexibility and durability of an existing EIT system. The ability of the present EIT system to detect, locate, and reshape objects was evaluated by four different experiments. The results of the study show that the system can detect and locate an object with a diameter as small as 1.5 mm in a testing tank with a diameter of 134 mm. Moreover, the results demonstrate the ability of the current system to reconstruct an image of several dielectric object shapes. Based on the results of the experiments, the programmable EIT system can adapt the EIT system for different applications without the need to implement a new EIT system, which may help to save time and cost. The setup for all the experiments consisted of a testing tank with an attached 16-electrode array made of titanium alloy grade 2. The titanium alloy electrode was used to enhance EIT system's durability and lifespan.
Collapse
|
9
|
Miedema M, Waldmann A, McCall KE, Böhm SH, van Kaam AH, Tingay DG. Individualized Multiplanar Electrical Impedance Tomography in Infants to Optimize Lung Monitoring. Am J Respir Crit Care Med 2017; 195:536-538. [DOI: 10.1164/rccm.201607-1370le] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Martijn Miedema
- Murdoch Children’s Research InstituteMelbourne, Australia
- Academic Medical Centre AmsterdamAmsterdam, the Netherlands
| | | | - Karen E. McCall
- Murdoch Children’s Research InstituteMelbourne, Australia
- University College DublinDublin, Ireland
| | | | | | - David G. Tingay
- Murdoch Children’s Research InstituteMelbourne, Australia
- Royal Children’s HospitalMelbourne, Australiaand
- University of MelbourneMelbourne, Australia
| |
Collapse
|
10
|
Frerichs I, Amato MBP, van Kaam AH, Tingay DG, Zhao Z, Grychtol B, Bodenstein M, Gagnon H, Böhm SH, Teschner E, Stenqvist O, Mauri T, Torsani V, Camporota L, Schibler A, Wolf GK, Gommers D, Leonhardt S, Adler A. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group. Thorax 2016; 72:83-93. [PMID: 27596161 PMCID: PMC5329047 DOI: 10.1136/thoraxjnl-2016-208357] [Citation(s) in RCA: 550] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/12/2016] [Accepted: 07/16/2016] [Indexed: 11/04/2022]
Abstract
Electrical impedance tomography (EIT) has undergone 30 years of development. Functional chest examinations with this technology are considered clinically relevant, especially for monitoring regional lung ventilation in mechanically ventilated patients and for regional pulmonary function testing in patients with chronic lung diseases. As EIT becomes an established medical technology, it requires consensus examination, nomenclature, data analysis and interpretation schemes. Such consensus is needed to compare, understand and reproduce study findings from and among different research groups, to enable large clinical trials and, ultimately, routine clinical use. Recommendations of how EIT findings can be applied to generate diagnoses and impact clinical decision-making and therapy planning are required. This consensus paper was prepared by an international working group, collaborating on the clinical promotion of EIT called TRanslational EIT developmeNt stuDy group. It addresses the stated needs by providing (1) a new classification of core processes involved in chest EIT examinations and data analysis, (2) focus on clinical applications with structured reviews and outlooks (separately for adult and neonatal/paediatric patients), (3) a structured framework to categorise and understand the relationships among analysis approaches and their clinical roles, (4) consensus, unified terminology with clinical user-friendly definitions and explanations, (5) a review of all major work in thoracic EIT and (6) recommendations for future development (193 pages of online supplements systematically linked with the chief sections of the main document). We expect this information to be useful for clinicians and researchers working with EIT, as well as for industry producers of this technology.
Collapse
Affiliation(s)
- Inéz Frerichs
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Marcelo B P Amato
- Pulmonary Division, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Anton H van Kaam
- Department of Neonatology, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands
| | - David G Tingay
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | - Zhanqi Zhao
- Institute of Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany
| | - Bartłomiej Grychtol
- Fraunhofer Project Group for Automation in Medicine and Biotechnology PAMB, Mannheim, Germany
| | - Marc Bodenstein
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Hervé Gagnon
- Department of Systems and Computer Engineering, Carleton University, Ottawa, Ontario, Canada
| | | | | | - Ola Stenqvist
- Department of Anesthesiology and Intensive Care Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Vinicius Torsani
- Pulmonary Division, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luigi Camporota
- Department of Adult Critical Care, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Andreas Schibler
- Paediatric Critical Care Research Group, Mater Research University of Queensland, South Brisbane, Australia
| | - Gerhard K Wolf
- Children's Hospital Traunstein, Ludwig Maximilian's University, Munich, Germany
| | - Diederik Gommers
- Department of Adult Intensive Care, Erasmus MC, Rotterdam, The Netherlands
| | - Steffen Leonhardt
- Philips Chair for Medical Information Technology, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Andy Adler
- Department of Systems and Computer Engineering, Carleton University, Ottawa, Ontario, Canada
| | | |
Collapse
|
11
|
Nebuya S, Koike T, Imai H, Iwashita Y, Brown BH, Soma K. Feasibility of using ‘lung density’ values estimated from EIT images for clinical diagnosis of lung abnormalities in mechanically ventilated ICU patients. Physiol Meas 2015; 36:1261-71. [DOI: 10.1088/0967-3334/36/6/1261] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|