1
|
Kamei K. Live attenuated vaccines in patients receiving immunosuppressive agents. Pediatr Nephrol 2023; 38:3889-3900. [PMID: 37076756 PMCID: PMC10115603 DOI: 10.1007/s00467-023-05969-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/21/2023]
Abstract
The use of live attenuated vaccines in patients with immunosuppressive agents is contraindicated in package inserts and guidelines in Japan and other countries. However, patients receiving immunosuppressants have a high risk of infectious disease becoming severe, and the necessity to prevent infectious disease is high. To date, 2,091 vaccinations have been reported in 25 reports of live attenuated vaccines in people receiving immunosuppressants. Twenty-three patients (1.1%) became infected with the virus strain used in the vaccine, which was varicella virus in 21 patients. No reports have described life-threatening complications. A prospective study at the National Center for Child Health and Development conducted under certain immunological conditions (CD4 cell count ≥ 500/mm3, stimulation index of lymphocyte blast transformation by phytohemagglutinin (PHA) ≥ 101.6, serum immunoglobulin G ≥ 300 mg/dL) confirmed the serological effectiveness and safety. The evidence suggests that live attenuated vaccines can be used even in combination with immunosuppressants. Further evidence must be gathered and immunological criteria investigated to determine the conditions for safe use. Depending on the results of these investigations, the wording in package inserts and guidelines may need to be revised.
Collapse
Affiliation(s)
- Koichi Kamei
- Division of Nephrology and Rheumatology, National Center for Child Health and Development, Tokyo, Japan.
| |
Collapse
|
2
|
Miguelena Chamorro B, De Luca K, Swaminathan G, Longet S, Mundt E, Paul S. Bordetella bronchiseptica and Bordetella pertussis: Similarities and Differences in Infection, Immuno-Modulation, and Vaccine Considerations. Clin Microbiol Rev 2023; 36:e0016422. [PMID: 37306571 PMCID: PMC10512794 DOI: 10.1128/cmr.00164-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023] Open
Abstract
Bordetella pertussis and Bordetella bronchiseptica belong to the genus Bordetella, which comprises 14 other species. B. pertussis is responsible for whooping cough in humans, a severe infection in children and less severe or chronic in adults. These infections are restricted to humans and currently increasing worldwide. B. bronchiseptica is involved in diverse respiratory infections in a wide range of mammals. For instance, the canine infectious respiratory disease complex (CIRDC), characterized by a chronic cough in dogs. At the same time, it is increasingly implicated in human infections, while remaining an important pathogen in the veterinary field. Both Bordetella can evade and modulate host immune responses to support their persistence, although it is more pronounced in B. bronchiseptica infection. The protective immune responses elicited by both pathogens are comparable, while there are important characteristics in the mechanisms that differ. However, B. pertussis pathogenesis is more difficult to decipher in animal models than those of B. bronchiseptica because of its restriction to humans. Nevertheless, the licensed vaccines for each Bordetella are different in terms of formulation, route of administration and immune responses induced, with no known cross-reaction between them. Moreover, the target of the mucosal tissues and the induction of long-lasting cellular and humoral responses are required to control and eliminate Bordetella. In addition, the interaction between both veterinary and human fields are essential for the control of this genus, by preventing the infections in animals and the subsequent zoonotic transmission to humans.
Collapse
Affiliation(s)
- Beatriz Miguelena Chamorro
- CIRI – Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Lyon, France
- Boehringer Ingelheim, Global Innovation, Saint-Priest, France
| | - Karelle De Luca
- Boehringer Ingelheim, Global Innovation, Saint-Priest, France
| | | | - Stéphanie Longet
- CIRI – Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Lyon, France
- CIC Inserm 1408 Vaccinology, Saint-Etienne, France
| | - Egbert Mundt
- Boehringer Ingelheim, Global Innovation, Saint-Priest, France
| | - Stéphane Paul
- CIRI – Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Lyon, France
- CIC Inserm 1408 Vaccinology, Saint-Etienne, France
| |
Collapse
|