1
|
Kharel S, Shrestha S, Yadav S, Shakya P, Baidya S, Hirachan S. BRCA1/ BRCA2 mutation spectrum analysis in South Asia: a systematic review. J Int Med Res 2022; 50:3000605211070757. [PMID: 35000471 PMCID: PMC8753086 DOI: 10.1177/03000605211070757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective Breast cancer (BC) is the most common form of cancer among Asian females. Mutations in the BRCA1/BRCA2 genes are often observed in BC cases and largely increase the lifetime risk of having BC. Because of the paucity of high-quality data on the molecular spectrum of BRCA mutations in South Asian populations, we aimed to explore these mutations among South Asian countries. Methods A systematic literature search was performed for the BRCA1 and BRCA2 gene mutation spectrum using electronic databases such as PubMed, EMBASE, and Google Scholar. Twenty studies were selected based on specific inclusion and exclusion criteria. Results The 185delAG (c.68_69del) mutation in exon 2 of BRCA1 was the most common recurrent mutation and founder mutation found. Various intronic variants, variants of unknown significance, large genomic rearrangements, and polymorphisms were also described in some studies. Conclusions The South Asian population has a wide variety of genetic mutations of BRCA1 and BRCA2 that differ according to countries and ethnicities. A stronger knowledge of various population-specific mutations in these cancer susceptibility genes can help provide efficient strategies for genetic testing.
Collapse
Affiliation(s)
- Sanjeev Kharel
- Maharajgunj Medical Campus, Institute of Medicine, Kathmandu, Nepal
| | - Suraj Shrestha
- Maharajgunj Medical Campus, Institute of Medicine, Kathmandu, Nepal
| | | | - Prafulla Shakya
- Department of Surgery, National Cancer Hospital and Research Center, Harisiddhi, Lalitpur, Nepal
| | - Sujita Baidya
- Kathmandu University School of Medical Sciences, Panauti, Nepal
| | - Suzita Hirachan
- Department of Surgery, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| |
Collapse
|
2
|
Tarapara B, Badgujar N, Pandya S, Joshi M, Shah F. An Overview of Genes Associated with Hereditary Breast and Ovarian Cancer in India. INDIAN JOURNAL OF GYNECOLOGIC ONCOLOGY 2021. [DOI: 10.1007/s40944-020-00489-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Malhotra H, Kowtal P, Mehra N, Pramank R, Sarin R, Rajkumar T, Gupta S, Bapna A, Bhattacharyya GS, Gupta S, Maheshwari A, Mannan AU, Reddy Kundur R, Sekhon R, Singhal M, Smruti B, SP S, Suryavanshi M, Verma A. Genetic Counseling, Testing, and Management of HBOC in India: An Expert Consensus Document from Indian Society of Medical and Pediatric Oncology. JCO Glob Oncol 2020; 6:991-1008. [PMID: 32628584 PMCID: PMC7392772 DOI: 10.1200/jgo.19.00381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2020] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Hereditary breast and ovarian cancer (HBOC) syndrome is primarily characterized by mutations in the BRCA1/2 genes. There are several barriers to the implementation of genetic testing and counseling in India that may affect clinical decisions. These consensus recommendations were therefore convened as a collaborative effort to improve testing and management of HBOC in India. DESIGN Recommendations were developed by a multidisciplinary group of experts from the Indian Society of Medical and Pediatric Oncology and some invited experts on the basis of graded evidence from the literature and using a formal Delphi process to help reach consensus. PubMed and Google Scholar databases were searched to source relevant articles. RESULTS This consensus statement provides practical insight into identifying patients who should undergo genetic counseling and testing on the basis of assessments of family and ancestry and personal history of HBOC. It discusses the need and significance of genetic counselors and medical professionals who have the necessary expertise in genetic counseling and testing. Recommendations elucidate requirements of pretest counseling, including discussions on genetic variants of uncertain significance and risk reduction options. The group of experts recommended single-site mutation testing in families with a known mutation and next-generation sequencing coupled with multiplex ligation probe amplification for the detection of large genomic rearrangements for unknown mutations. Recommendations for surgical and lifestyle-related risk reduction approaches and management using poly (ADP-ribose) polymerase inhibitors are also detailed. CONCLUSION With rapid strides being made in the field of genetic testing/counseling in India, more oncologists are expected to include genetic testing/counseling as part of their clinical practice. These consensus recommendations are anticipated to help homogenize genetic testing and management of HBOC in India for improved patient care.
Collapse
Affiliation(s)
- Hemant Malhotra
- Department of Medical Oncology, Sri Ram Cancer Center, Mahatma Gandhi Medical College Hospital, Jaipur, India
| | - Pradnya Kowtal
- Sarin Laboratory and OIC Sanger Sequencing Facility, Advanced Centre for Treatment Research, and Education in Cancer, Navi Mumbai, India
| | - Nikita Mehra
- Department of Medical Oncology, Cancer Institute (WIA), Chennai, India
| | - Raja Pramank
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Rajiv Sarin
- Radiation Oncology, Cancer Genetics Unit, Tata Memorial Centre and PI Sarin Laboratory, Advanced Centre for Treatment Research and Education in Cancer, Navi Mumbai, India
| | | | - Sudeep Gupta
- Tata Memorial Centre Advanced Centre for Treatment, Research, and Education in Cancer, Navi Mumbai, India
| | - Ajay Bapna
- Department of Medical Oncology, Bhagwan Mahavir Cancer Hospital Research Center, Jaipur, India
| | | | - Sabhyata Gupta
- Department of Gynae Oncology, Medanta-The Medicity, Gurgaon, India
| | - Amita Maheshwari
- Department of Gynecologic Oncology, Tata Memorial Centre, Mumbai, India
| | - Ashraf U. Mannan
- Clinical Diagnostics, Strand Center for Genomics and Personalized Medicine, Strand Life Sciences, Bangalore, India
| | | | - Rupinder Sekhon
- Gynae Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | | | - B.K. Smruti
- Bombay Hospital and Medical Research Centre, Mumbai, India
| | - Somashekhar SP
- Manipal Comprehensive Cancer Center, Manipal Hospital, Bengaluru, India
| | - Moushumi Suryavanshi
- Molecular Diagnostics, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Amit Verma
- Molecular Oncology and Cancer Genetics, Max Hospital, New Delhi, India
| |
Collapse
|
4
|
Thirthagiri E, Lee SY, Kang P, Lee DS, Toh GT, Selamat S, Yoon SY, Taib NAM, Thong MK, Yip CH, Teo SH. Evaluation of BRCA1 and BRCA2 mutations and risk-prediction models in a typical Asian country (Malaysia) with a relatively low incidence of breast cancer. Breast Cancer Res 2008; 10:R59. [PMID: 18627636 PMCID: PMC2575532 DOI: 10.1186/bcr2118] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 06/18/2008] [Accepted: 07/16/2008] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION The cost of genetic testing and the limited knowledge about the BRCA1 and BRCA2 genes in different ethnic groups has limited its availability in medium- and low-resource countries, including Malaysia. In addition, the applicability of many risk-assessment tools, such as the Manchester Scoring System and BOADICEA (Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm) which were developed based on mutation rates observed primarily in Caucasian populations using data from multiplex families, and in populations where the rate of breast cancer is higher, has not been widely tested in Asia or in Asians living elsewhere. Here, we report the results of genetic testing for mutations in the BRCA1 or BRCA2 genes in a series of families with breast cancer in the multi-ethnic population (Malay, Chinese and Indian) of Malaysia. METHOD A total of 187 breast cancer patients with either early-onset breast cancer (at age </= 40 years) or a personal and/or family history of breast or ovarian cancer were comprehensively tested by full sequencing of both BRCA1 and BRCA2. Two algorithms to predict the presence of mutations, the Manchester Scoring System and BOADICEA, were evaluated. RESULTS Twenty-seven deleterious mutations were detected (14 in BRCA1 and 13 in BRCA2), only one of which was found in two unrelated individuals (BRCA2 490 delCT). In addition, 47 variants of uncertain clinical significance were identified (16 in BRCA1 and 31 in BRCA2). Notably, many mutations are novel (13 of the 30 BRCA1 mutations and 24 of the 44 BRCA2). We report that while there were an equal proportion of BRCA1 and BRCA2 mutations in the Chinese population in our study, there were significantly more BRCA2 mutations among the Malays. In addition, we show that the predictive power of the BOADICEA risk-prediction model and the Manchester Scoring System was significantly better for BRCA1 than BRCA2, but that the overall sensitivity, specificity and positive-predictive value was lower in this population than has been previously reported in Caucasian populations. CONCLUSION Our study underscores the need for larger collaborative studies among non-Caucasian populations to validate the role of genetic testing and the use of risk-prediction models in ensuring that the other populations in the world may also benefit from the genomics and genetics era.
Collapse
Affiliation(s)
- E Thirthagiri
- Cancer Research Initiatives Foundation, Subang Jaya Medical Centre, Kuala Lumpur, Malaysia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|