1
|
Kanagasabai T, Dunbar Z, Ochoa SG, Farris T, Dhandayuthapani S, Wijeratne EMK, Gunatilaka AAL, Shanker A. Bortezomib in Combination with Physachenolide C Reduces the Tumorigenic Properties of KRAS mut/P53 mut Lung Cancer Cells by Inhibiting c-FLIP. Cancers (Basel) 2024; 16:670. [PMID: 38339421 PMCID: PMC10854725 DOI: 10.3390/cancers16030670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Defects in apoptosis regulation are one of the classical features of cancer cells, often associated with more aggressiveness and failure to therapeutic options. We investigated the combinatorial antitumor effects of a natural product, physachenolide C (PCC) and bortezomib, in KRASmut/P53mut lung cancer cells and xenograft mice models. METHODS The in vitro anticancer effects of the bortezomib and PCC combination were investigated using cell viability, migration, and invasion assays in 344SQ, H23, and H358 cell lines. Furthermore, the effects of combination treatment on the critical parameters of cellular metabolism, including extracellular acidification rate (ECAR) and mitochondrial oxidative phosphorylation based on the oxygen consumption rate of cancer cells were assessed using Seahorse assay. Finally, the antitumor effect of the bortezomib (1 mg/kg) and PCC (10 mg/kg) combination was evaluated using xenograft mice models. RESULTS Our data showed that the bortezomib-PCC combination was more effective in reducing the viability of lung cancer cells in comparison with the individual treatments. Similarly, the combination treatment showed a significant inhibition of cell migration and invasion of cancer cells. Additionally, the key anti-apoptotic protein c-FLIP was significantly inhibited along with a substantial reduction in the key parameters of cellular metabolism in cancer cells. Notably, the bortezomib or PCC inhibited the tumor growth compared to the control group, the tumor growth inhibition was much more effective when bortezomib was combined with PCC in tumor xenograft mice models. CONCLUSION These findings demonstrate that PCC sensitizes cancer cells to bortezomib, potentially improving the antitumor effects against KRASmut/P53mut lung cancer cells, with an enhanced efficacy of combination treatments without causing significant side effects.
Collapse
Affiliation(s)
- Thanigaivelan Kanagasabai
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA; (T.K.); (T.F.)
| | - Zerick Dunbar
- Department of Microbiology, Immunology & Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
| | - Salvador González Ochoa
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
| | - Tonie Farris
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA; (T.K.); (T.F.)
| | | | - E. M. Kithsiri Wijeratne
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture, Life and Environmental Sciences, The University of Arizona, Tucson, AZ 85719, USA; (E.M.K.W.)
| | - A. A. Leslie Gunatilaka
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture, Life and Environmental Sciences, The University of Arizona, Tucson, AZ 85719, USA; (E.M.K.W.)
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
| |
Collapse
|
2
|
Kostecki KL, Iida M, Crossman BE, Salgia R, Harari PM, Bruce JY, Wheeler DL. Immune Escape Strategies in Head and Neck Cancer: Evade, Resist, Inhibit, Recruit. Cancers (Basel) 2024; 16:312. [PMID: 38254801 PMCID: PMC10814769 DOI: 10.3390/cancers16020312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Head and neck cancers (HNCs) arise from the mucosal lining of the aerodigestive tract and are often associated with alcohol use, tobacco use, and/or human papillomavirus (HPV) infection. Over 600,000 new cases of HNC are diagnosed each year, making it the sixth most common cancer worldwide. Historically, treatments have included surgery, radiation, and chemotherapy, and while these treatments are still the backbone of current therapy, several immunotherapies have recently been approved by the Food and Drug Administration (FDA) for use in HNC. The role of the immune system in tumorigenesis and cancer progression has been explored since the early 20th century, eventually coalescing into the current three-phase model of cancer immunoediting. During each of the three phases-elimination, equilibrium, and escape-cancer cells develop and utilize multiple strategies to either reach or remain in the final phase, escape, at which point the tumor is able to grow and metastasize with little to no detrimental interference from the immune system. In this review, we summarize the many strategies used by HNC to escape the immune system, which include ways to evade immune detection, resist immune cell attacks, inhibit immune cell functions, and recruit pro-tumor immune cells.
Collapse
Affiliation(s)
- Kourtney L. Kostecki
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
| | - Mari Iida
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
| | - Bridget E. Crossman
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
| | - Ravi Salgia
- Department of Medical Oncology and Experimental Therapeutics, Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA;
| | - Paul M. Harari
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA;
| | - Justine Y. Bruce
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA;
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Deric L. Wheeler
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA;
| |
Collapse
|
3
|
Xue Y, Jiang X, Wang J, Zong Y, Yuan Z, Miao S, Mao X. Effect of regulatory cell death on the occurrence and development of head and neck squamous cell carcinoma. Biomark Res 2023; 11:2. [PMID: 36600313 PMCID: PMC9814270 DOI: 10.1186/s40364-022-00433-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/08/2022] [Indexed: 01/06/2023] Open
Abstract
Head and neck cancer is a malignant tumour with a high mortality rate characterized by late diagnosis, high recurrence and metastasis rates, and poor prognosis. Head and neck squamous cell carcinoma (HNSCC) is the most common type of head and neck cancer. Various factors are involved in the occurrence and development of HNSCC, including external inflammatory stimuli and oncogenic viral infections. In recent years, studies on the regulation of cell death have provided new insights into the biology and therapeutic response of HNSCC, such as apoptosis, necroptosis, pyroptosis, autophagy, ferroptosis, and recently the newly discovered cuproptosis. We explored how various cell deaths act as a unique defence mechanism against cancer emergence and how they can be exploited to inhibit tumorigenesis and progression, thus introducing regulatory cell death (RCD) as a novel strategy for tumour therapy. In contrast to accidental cell death, RCD is controlled by specific signal transduction pathways, including TP53 signalling, KRAS signalling, NOTCH signalling, hypoxia signalling, and metabolic reprogramming. In this review, we describe the molecular mechanisms of nonapoptotic RCD and its relationship to HNSCC and discuss the crosstalk between relevant signalling pathways in HNSCC cells. We also highlight novel approaches to tumour elimination through RCD.
Collapse
Affiliation(s)
- Yuting Xue
- grid.412651.50000 0004 1808 3502Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xuejiao Jiang
- grid.24696.3f0000 0004 0369 153XBeijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Junrong Wang
- grid.412651.50000 0004 1808 3502Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuxuan Zong
- Department of Breast Surgery, The First of hospital of Qiqihar, Qiqihar, China
| | - Zhennan Yuan
- grid.412651.50000 0004 1808 3502Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Susheng Miao
- grid.412651.50000 0004 1808 3502Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xionghui Mao
- grid.412651.50000 0004 1808 3502Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
4
|
Raudenská M, Balvan J, Masařík M. Cell death in head and neck cancer pathogenesis and treatment. Cell Death Dis 2021; 12:192. [PMID: 33602906 PMCID: PMC7893032 DOI: 10.1038/s41419-021-03474-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
Abstract
Many cancer therapies aim to trigger apoptosis in cancer cells. Nevertheless, the presence of oncogenic alterations in these cells and distorted composition of tumour microenvironment largely limit the clinical efficacy of this type of therapy. Luckily, scientific consensus describes about 10 different cell death subroutines with different regulatory pathways and cancer cells are probably not able to avoid all of cell death types at once. Therefore, a focused and individualised therapy is needed to address the specific advantages and disadvantages of individual tumours. Although much is known about apoptosis, therapeutic opportunities of other cell death pathways are often neglected. Molecular heterogeneity of head and neck squamous cell carcinomas (HNSCC) causing unpredictability of the clinical response represents a grave challenge for oncologists and seems to be a critical component of treatment response. The large proportion of this clinical heterogeneity probably lies in alterations of cell death pathways. How exactly cells die is very important because the predominant type of cell death can have multiple impacts on the therapeutic response as cell death itself acts as a second messenger. In this review, we discuss the different types of programmed cell death (PCD), their connection with HNSCC pathogenesis and possible therapeutic windows that result from specific sensitivity to some form of PCD in some clinically relevant subgroups of HNSCC.
Collapse
Affiliation(s)
- Martina Raudenská
- Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00, Brno, Czech Republic.,Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Michal Masařík
- Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00, Brno, Czech Republic. .,Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic. .,Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00, Brno, Czech Republic. .,BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, CZ-252 50, Vestec, Czech Republic.
| |
Collapse
|
5
|
Boice A, Bouchier-Hayes L. Targeting apoptotic caspases in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118688. [PMID: 32087180 DOI: 10.1016/j.bbamcr.2020.118688] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/20/2020] [Accepted: 02/15/2020] [Indexed: 12/30/2022]
Abstract
Members of the caspase family of proteases play essential roles in the initiation and execution of apoptosis. These caspases are divided into two groups: the initiator caspases (caspase-2, -8, -9 and -10), which are the first to be activated in response to a signal, and the executioner caspases (caspase-3, -6, and -7) that carry out the demolition phase of apoptosis. Many conventional cancer therapies induce apoptosis to remove the cancer cell by engaging these caspases indirectly. Newer therapeutic applications have been designed, including those that specifically activate individual caspases using gene therapy approaches and small molecules that repress natural inhibitors of caspases already present in the cell. For such approaches to have maximal clinical efficacy, emerging insights into non-apoptotic roles of these caspases need to be considered. This review will discuss the roles of caspases as safeguards against cancer in the context of the advantages and potential limitations of targeting apoptotic caspases for the treatment of cancer.
Collapse
Affiliation(s)
- Ashley Boice
- Department of Pediatrics, Division of Hematology-Oncology and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Lisa Bouchier-Hayes
- Department of Pediatrics, Division of Hematology-Oncology and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
6
|
Scheurer MJ, Seher A, Steinacker V, Linz C, Hartmann S, Kübler AC, Müller-Richter UD, Brands RC. Targeting inhibitors of apoptosis in oral squamous cell carcinoma in vitro. J Craniomaxillofac Surg 2019; 47:1589-1599. [DOI: 10.1016/j.jcms.2019.07.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/24/2019] [Accepted: 07/14/2019] [Indexed: 10/26/2022] Open
|
7
|
Targeting TRAIL. Bioorg Med Chem Lett 2019; 29:2527-2534. [PMID: 31383590 DOI: 10.1016/j.bmcl.2019.07.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), also known as Apo2L, has been investigated in the past decade for its promising anticancer activity due to its ability to selectively induce apoptosis in tumoral cells by binding to TRAIL receptors (TRAIL-R). Macromolecules such as agonistic monoclonal antibodies and recombinant TRAIL have not proven efficacious in clinical studies, therefore several small molecules acting as TRAIL-R agonists are emerging in the scientific literature. In this work we focus on systemizing these drug molecules described in the past years, in order to better understand and predict the requirements for a novel anti-tumoral therapy based on the TRAIL-R-induced apoptotic mechanism.
Collapse
|
8
|
Safa AR, Kamocki K, Saadatzadeh MR, Bijangi-Vishehsaraei K. c-FLIP, a Novel Biomarker for Cancer Prognosis, Immunosuppression, Alzheimer's Disease, Chronic Obstructive Pulmonary Disease (COPD), and a Rationale Therapeutic Target. BIOMARKERS JOURNAL 2019; 5:4. [PMID: 32352084 PMCID: PMC7189798 DOI: 10.36648/2472-1646.5.1.59] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dysregulation of c-FLIP (cellular FADD-like IL-1β-converting enzyme inhibitory protein) has been shown in several diseases including cancer, Alzheimer's disease, and chronic obstructive pulmonary disease (COPD). c-FLIP is a critical anti-cell death protein often overexpressed in tumors and hematological malignancies and its increased expression is often associated with a poor prognosis. c-FLIP frequently exists as long (c-FLIPL) and short (c-FLIPS) isoforms, regulates its anti-cell death functions through binding to FADD (FAS associated death domain protein), an adaptor protein known to activate caspases-8 and -10 and links c-FLIP to several cell death regulating complexes including the death-inducing signaling complex (DISC) formed by various death receptors. c-FLIP also plays a critical role in necroptosis and autophagy. Furthermore, c-FLIP is able to activate several pathways involved in cytoprotection, proliferation, and survival of cancer cells through various critical signaling proteins. Additionally, c-FLIP can inhibit cell death induced by several chemotherapeutics, anti-cancer small molecule inhibitors, and ionizing radiation. Moreover, c-FLIP plays major roles in aiding the survival of immunosuppressive tumor-promoting immune cells and functions in inflammation, Alzheimer's disease (AD), and chronic obstructive pulmonary disease (COPD). Therefore, c-FLIP can serve as a versatile biomarker for cancer prognosis, a diagnostic marker for several diseases, and an effective therapeutic target. In this article, we review the functions of c-FLIP as an anti-apoptotic protein and negative prognostic factor in human cancers, and its roles in resistance to anticancer drugs, necroptosis and autophagy, immunosuppression, Alzheimer's disease, and COPD.
Collapse
Affiliation(s)
- Ahmad R Safa
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, USA
| | - Krzysztof Kamocki
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, USA
| | - M Reza Saadatzadeh
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, USA
| | | |
Collapse
|
9
|
Greene S, Patel P, Allen CT. How patients with an intact immune system develop head and neck cancer. Oral Oncol 2019; 92:26-32. [PMID: 31010619 DOI: 10.1016/j.oraloncology.2019.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/28/2019] [Accepted: 03/13/2019] [Indexed: 12/18/2022]
Abstract
Although the adaptive immune system can detect and eliminate malignant cells, patients with intact and fully functional immune systems develop head and neck cancer. How is this paradox explained? Manuscripts published in the English language from 1975 to 2018 were reviewed using search inputs related to tumor cell antigenicity and immunogenicity, immunodominance, cancer immunoediting and genomic alterations present within carcinomas. Early in tumor development, T cell responses to immunodominant antigens may lead to the elimination of cancer cells expressing these antigens and a tumor composed to tumor cells expressing only immunorecessive antigens. Conversely, other tumor cells may acquire genomic or epigenetic alterations that result in an antigen processing or presentation defect or other inability to be detected or killed by T cells. Such T cell insensitive tumor cells may also be selected for in a progressing tumor. Tumors harboring subpopulations of cells that cannot be eliminated by T cells may require non-T cell-based treatments, such as NK cell immunotherapies. Recognition of such tumor cell populations within a heterogeneous cancer may inform the selection of treatment for HNSCC in the future.
Collapse
Affiliation(s)
- Sarah Greene
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Priya Patel
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Clint T Allen
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
10
|
Jeon MY, Min KJ, Woo SM, Seo SU, Kim S, Park JW, Kwon TK. Volasertib Enhances Sensitivity to TRAIL in Renal Carcinoma Caki Cells through Downregulation of c-FLIP Expression. Int J Mol Sci 2017; 18:2568. [PMID: 29186071 PMCID: PMC5751171 DOI: 10.3390/ijms18122568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 11/23/2022] Open
Abstract
Polo-like kinase 1 (PLK1) plays major roles in cell cycle control and DNA damage response. Therefore, PLK1 has been investigated as a target for cancer therapy. Volasertib is the second-in class dihydropteridinone derivate that is a specific PLK1 inhibitor. In this study, we examined that combining PLK1 inhibitor with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) would have an additive and synergistic effect on induction of apoptosis in cancer cells. We found that volasertib alone and TRAIL alone had no effect on apoptosis, but the combined treatment of volasertib and TRAIL markedly induced apoptosis in Caki (renal carcinoma), A498 (renal carcinoma) and A549 (lung carcinoma) cells, but not in normal cells (human skin fibroblast cells and mesangial cells). Combined treatment induced accumulation of sub-G1 phase, DNA fragmentation, cleavage of poly (ADP-ribose) polymerase (PARP) and activation of caspase 3 activity in Caki cells. Interestingly, combined treatment induced downregulation of cellular-FLICE-inhibitory protein (c-FLIP) expression and ectopic expression of c-FLIP markedly blocked combined treatment-induced apoptosis. Therefore, this study demonstrates that volasertib may sensitize TRAIL-induced apoptosis in Caki cells via downregulation of c-FLIP.
Collapse
Affiliation(s)
- Mi-Yeon Jeon
- Department of Immunology, School of Mediine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, Korea.
| | - Kyoung-Jin Min
- Department of Immunology, School of Mediine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, Korea.
| | - Seon Min Woo
- Department of Immunology, School of Mediine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, Korea.
| | - Seung Un Seo
- Department of Immunology, School of Mediine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, Korea.
| | - Shin Kim
- Department of Immunology, School of Mediine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, Korea.
| | - Jong-Wook Park
- Department of Immunology, School of Mediine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, Korea.
| | - Taeg Kyu Kwon
- Department of Immunology, School of Mediine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, Korea.
| |
Collapse
|
11
|
Min KJ, Um HJ, Seo SU, Woo SM, Kim S, Park JW, Lee HS, Kim SH, Choi YH, Lee TJ, Kwon TK. Angelicin potentiates TRAIL-induced apoptosis in renal carcinoma Caki cells through activation of caspase 3 and down-regulation of c-FLIP expression. Drug Dev Res 2017; 79:3-10. [PMID: 29044596 DOI: 10.1002/ddr.21414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/23/2017] [Indexed: 12/13/2022]
Abstract
Preclinical Research & Development Angelicin is a furocoumarin derived from Psoralea corylifolia L. fruit that has anti-inflammatory and anti-tumor activity. In the present study, the effect of angelicin in enhancing tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptotic cell death was studied in Caki (renal carcinoma) cells. Angelicin alone and TRAIL alone had no effect on apoptosis, but in combination these compounds markedly induced apoptosis in the cancer cell lines while not inducing apoptosis in normal cells. The combination treatment induced accumulation of the sub-G1 population, DNA fragmentation, and activated caspase 3 activity in Caki cells, induced down-regulation of c-FLIP expression post-translationally, and over-expression of c-FLIP markedly blocked apoptosis induced by combined treatment with angelicin plus TRAIL. This study provides evidence that angelicin might be a TRAIL sensitizer.
Collapse
Affiliation(s)
- Kyoung-Jin Min
- Department of Immunology and School of Medicine, Keimyung University, Dalseo-Gu, Daegu, South Korea
| | - Hee Jung Um
- Department of Immunology and School of Medicine, Keimyung University, Dalseo-Gu, Daegu, South Korea
| | - Seung Un Seo
- Department of Immunology and School of Medicine, Keimyung University, Dalseo-Gu, Daegu, South Korea
| | - Seon Min Woo
- Department of Immunology and School of Medicine, Keimyung University, Dalseo-Gu, Daegu, South Korea
| | - Shin Kim
- Department of Immunology and School of Medicine, Keimyung University, Dalseo-Gu, Daegu, South Korea
| | - Jong-Wook Park
- Department of Immunology and School of Medicine, Keimyung University, Dalseo-Gu, Daegu, South Korea
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Sang Hyun Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan, South Korea
| | - Tae-Jin Lee
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Taeg Kyu Kwon
- Department of Immunology and School of Medicine, Keimyung University, Dalseo-Gu, Daegu, South Korea
| |
Collapse
|
12
|
Min KJ, Han MA, Kim S, Park JW, Kwon TK. Osthole enhances TRAIL-mediated apoptosis through downregulation of c-FLIP expression in renal carcinoma Caki cells. Oncol Rep 2017; 37:2348-2354. [DOI: 10.3892/or.2017.5490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/28/2016] [Indexed: 11/06/2022] Open
|
13
|
Raudenska M, Gumulec J, Fribley AM, Masarik M. HNSCC Biomarkers Derived from Key Processes of Cancerogenesis. TARGETING ORAL CANCER 2016:115-160. [DOI: 10.1007/978-3-319-27647-2_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
PARK JUNSOO, KIM WANTAE, KIM SHIN, KWON TAEGKYU, JANG BYEONGCHURL, LEE EUNGSEOK, PARK JONGWOOK. FPDHP, a novel anticancer agent, induces cell detachment and caspase-dependent apoptosis in Caki cells. Int J Mol Med 2014; 34:1051-6. [DOI: 10.3892/ijmm.2014.1875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/16/2014] [Indexed: 11/06/2022] Open
|
15
|
Abstract
Cellular FLICE (FADD-like IL-1beta-converting enzyme)-inhibitory protein (c-FLIP) is a major resistance factor and critical anti-apoptotic regulator that inhibits tumor necrosis factor-alpha (TNF-alpha), Fas-L, and TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis as well as chemotherapy-triggered apoptosis in malignant cells. c-FLIP is expressed as long (c-FLIP(L)), short (c-FLIP(S)), and c-FLIP(R) splice variants in human cells. c-FLIP binds to FADD and/or caspase-8 or -10 in a ligand-dependent and-independent fashion, which in turn prevents death-inducing signaling complex (DISC) formation and subsequent activation of the caspase cascade. Moreover, c-FLIP(L) and c-FLIP(S) are known to have multifunctional roles in various signaling pathways, as well as activating and/or upregulating several cytoprotective signaling molecules. Upregulation of c-FLIP has been found in various tumor types, and its downregulation has been shown to restore apoptosis triggered by cytokines and various chemotherapeutic agents. Hence, c-FLIP is an important target for cancer therapy. For example, small interfering RNAs (siRNAs) that specifically knockdown the expression of c-FLIP(L) in diverse human cancer cell lines augmented TRAIL-induced DISC recruitment and increased the efficacy of chemotherapeutic agents, thereby enhancing effector caspase stimulation and apoptosis. Moreover, small molecules causing degradation of c-FLIP as well as decreasing mRNA and protein levels of c-FLIP(L) and c-FLIP(S) splice variants have been found, and efforts are underway to develop other c-FLIP-targeted cancer therapies. This review focuses on (1) the functional role of c-FLIP splice variants in preventing apoptosis and inducing cytokine and drug resistance; (2) the molecular mechanisms that regulate c-FLIP expression; and (3) strategies to inhibit c-FLIP expression and function.
Collapse
|
16
|
Turksma AW, Braakhuis BJ, Bloemena E, Meijer CJ, Leemans CR, Hooijberg E. Immunotherapy for head and neck cancer patients: shifting the balance. Immunotherapy 2013; 5:49-61. [PMID: 23256798 DOI: 10.2217/imt.12.135] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Head and neck squamous cell carcinoma is the sixth most common cancer in the western world. Over the last few decades little improvement has been made to increase the relatively low 5-year survival rate. This calls for novel and improved therapies. Here, we describe opportunities in immunotherapy for head and neck cancer patients and hurdles yet to be overcome. Viruses are involved in a subset of head and neck squamous cell carcinoma cases. The incidence of HPV-related head and neck cancer is increasing and is a distinctly different disease from other head and neck carcinomas. Virus-induced tumors express viral antigens that are good targets for immunotherapeutic treatment options. The type of immunotherapeutic treatment, either active or passive, should be selected depending on the HPV status of the tumor and the immune status of the patient.
Collapse
Affiliation(s)
- Annelies W Turksma
- VU University Medical Center - Cancer Center Amsterdam, Department of Pathology 2.26, de Boelelaan 1117, NL-1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein (c-FLIP) is a major antiapoptotic protein and an important cytokine and chemotherapy resistance factor that suppresses cytokine- and chemotherapy-induced apoptosis. c-FLIP is expressed as long (c-FLIPL), short (c-FLIPS), and c-FLIPR splice variants in human cells. c-FLIP binds to FADD and/or caspase-8 or -10 and TRAIL receptor 5 (DR5). This interaction in turn prevents Death-Inducing Signaling Complex (DISC) formation and subsequent activation of the caspase cascade. c-FLIPL and c-FLIPS are also known to have multifunctional roles in various signaling pathways, as well as activating and/or upregulating several cytoprotective and pro-survival signaling proteins including Akt, ERK, and NF-κB. In addition to its role in apoptosis, c-FLIP is involved in programmed necroptosis (necrosis) and autophagy. Necroptosis is regulated by the Ripoptosome, which is a signaling intracellular cell death platform complex. The Ripoptosome contains receptor-interacting protein-1/Receptor-Interacting Protein-3 (RIP1), caspase-8, caspase-10, FADD, and c-FLIP isoforms involved in switching apoptotic and necroptotic cell death. c-FLIP regulates the Ripoptosome; in addition to its role in apoptosis, it is therefore also involved in necrosis. c-FLIPL attenuates autophagy by direct acting on the autophagy machinery by competing with Atg3 binding to LC3, thereby decreasing LC3 processing and inhibiting autophagosome formation. Upregulation of c-FLIP has been found in various tumor types, and its silencing has been shown to restore apoptosis triggered by cytokines and various chemotherapeutic agents. Hence, c-FLIP is an important target for cancer therapy. This review focuses on (1) the anti-apoptotic role of c-FLIP splice variants in preventing apoptosis and inducing cytokine and chemotherapy drug resistance, as well as its roles in necrosis and autophagy, and (2) modulation of c-FLIP expression as a means to enhance apoptosis and modulate necrosis and autophagy in cancer cells.
Collapse
Affiliation(s)
- Ahmad R Safa
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, IN 46202, USA ; Indiana University Simon Cancer Center, Indiana University School of Medicine, IN 46202, USA
| |
Collapse
|
18
|
Burz C, Berindan-Neagoe I, Balacescu O, Irimie A. Apoptosis in cancer: key molecular signaling pathways and therapy targets. Acta Oncol 2010; 48:811-21. [PMID: 19513886 DOI: 10.1080/02841860902974175] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Apoptosis is a physiological process vital for embryologic development and the maintenance of homeostasis in multicellular organisms, but it is also involved in a wide range of pathological processes, including cancer. In mammalian cells, apoptosis has been divided into two major pathways: the extrinsic pathway, activated by proapoptotic receptor signals at the cellular surface, and the intrinsic pathway, which involves the disruption of mitochondrial membrane integrity. Although many of the proteins vital for apoptosis have been identified, the molecular pathways of cellular death still remain to be elucidated. This review provides references concerning the apoptotic molecules, their interactions, the mechanisms involved in apoptosis resistance, and also the modulation of apoptosis for the treatment of cancer.
Collapse
Affiliation(s)
- Claudia Burz
- University of Medicine and Pharmacy “I. Hatieganu,”, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- University of Medicine and Pharmacy “I. Hatieganu,”, Cluj-Napoca, Romania
- Cancer Institute “I. Chiricuta,”, Cluj-Napoca, Romania
| | | | - Alexandru Irimie
- University of Medicine and Pharmacy “I. Hatieganu,”, Cluj-Napoca, Romania
- Cancer Institute “I. Chiricuta,”, Cluj-Napoca, Romania
| |
Collapse
|
19
|
Jiang R, Xia Y, Li J, Deng L, Zhao L, Shi J, Wang X, Sun B. High expression levels of IKKalpha and IKKbeta are necessary for the malignant properties of liver cancer. Int J Cancer 2010; 126:1263-74. [PMID: 19728335 DOI: 10.1002/ijc.24854] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
IKK-NF-kappaB signaling is regarded as an important factor in hepatocarcinogenesis and a potential target for liver cancer therapy. Therefore, in this study, we analyzed the expression of mRNAs encoding components and targets of NF-kappaB signaling including IKKalpha, IKKbeta, RANK, RANKL, OPG, CyclinD3, mammary serine protease inhibitor (Maspin), CyclinD1, c-FLIP, Bcl-xl, Stat3, Cip1 and Cip2 by real-time PCR in 40 patients with liver cancer. After statistical analysis, 7 indices including IKKalpha, IKKbeta, RANK, Maspin, c-FLIP, Cip2 and cyclinD1 were found to show significant differences between tumor tissue and its corresponding adjacent tissue. When IKKalpha and IKKbeta were downregulated in the hepatocellular carcinoma (HCC) cell lines of MHCC-97L and MHCC-97H in vitro, the numbers of BrdU positive cells were decreased in both IKKalpha and IKKbeta knockdown cells. Levels of apoptosis were also investigated in IKKalpha and IKKbeta knockdown cells. The growth of HCC was inhibited in the subcutaneous implantation model, and lung metastatogenesis was also significantly inhibited in the kidney capsule transplantation model. Downregulation of IKKalpha and IKKbeta in HCC cultured in vitro revealed that increased Maspin, OPG and RANKL expression was associated with metastasis of HCC. These findings were associated with downregulation of Bcl-XL and c-FLIP, which may be the reason for increased apoptosis. The therapeutic effect of IKKalpha and IKKbeta downregulation depends on extent of NF-kappaB inhibition and the malignant nature of the HCC. We anticipate that IKK-targeted gene therapy can be used in the treatment of HCC, a cancer that is notoriously resistant to radiation and chemotherapy.
Collapse
Affiliation(s)
- Runqiu Jiang
- Liver Transplantation Center of the First Affiliated Hospital and Cancer Center, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Current world literature. Curr Opin Otolaryngol Head Neck Surg 2009; 17:132-41. [PMID: 19363348 DOI: 10.1097/moo.0b013e32832ad5ad] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|