1
|
Zhang Q, Zhang J, Lan T, He J, Lei B, Wang H, Mei Z, Lv C. Integrative analysis revealed a correlation of PIAS family genes expression with prognosis, immunomodulation and chemotherapy. Eur J Med Res 2024; 29:195. [PMID: 38528630 DOI: 10.1186/s40001-024-01795-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/13/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Protein inhibitor of activated STATs (PIAS) has pleiotropic biological effects, such as protein post-translational modification, transcriptional coregulation and gene editing. It is reported that PIAS family genes are also correlated with immune cells infiltration in cancers that highlights their unnoticed biological role in tumor progression. However, the relationship of their expression with prognosis, immune cell infiltration, tumor microenvironment, and immunotherapy in pan-cancer has been rarely reported. METHODS The multi-omics data were used to investigate the expression level of PIAS family members in pan-cancer, and the prognostic value of their expression in different tumors was analyzed by univariate Cox regression and Kaplan-Meier. Correlation analysis was used to investigate the relationship of PIAS gene expression with tumor microenvironment, immune infiltrating subtypes, stemness score and drug sensitivity. In addition, we also used wound healing and transwell assays to verify the biological effects of PIAS family gene expression on invasion and metastasis of HCC cells. RESULTS We found that PIAS family genes expression is significantly heterogeneous in tumors by multi-genomic analysis, and associated with poor prognosis in patients with multiple types of cancer. Furthermore, we also found that genetic alterations of PIAS family genes were not only common in different types of human tumors, but were also significantly associated with disease-free survival (DFS) across pan-cancer. Single-cell analysis revealed that PIAS family genes were mainly distributed in monocytes/macrophages. Additionally, we also found that their expression was associated with tumor microenvironment (including stromal cells and immune cells) and stemness score (DNAss and RNAss). Drug sensitivity analysis showed that PIAS family genes were able to predict the response to chemotherapy and immunotherapy. PIAS family genes expression is closely related to tumor metastasis, especially PIAS3. High PIAS3 expression significantly promotes the migration and invasion of liver cancer cell lines (HCC-LM3 and MHCC97-H). CONCLUSIONS Taking together, these findings contribute to determine whether the PIAS family genes are a potential oncogenic target gene, which have important contribution for the development of cancer immunotherapy.
Collapse
Affiliation(s)
- Qiqi Zhang
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Junkui Zhang
- Pharmaceutical Institute, Henan University, Kaifeng, 475004, China
| | - Tianyi Lan
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jiayue He
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Bin Lei
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hongnan Wang
- College of Integrative Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zhiqiang Mei
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Chaoxiang Lv
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
2
|
Gu Y, Fang Y, Wu X, Xu T, Hu T, Xu Y, Ma P, Wang Q, Shu Y. The emerging roles of SUMOylation in the tumor microenvironment and therapeutic implications. Exp Hematol Oncol 2023; 12:58. [PMID: 37415251 PMCID: PMC10324244 DOI: 10.1186/s40164-023-00420-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
Tumor initiation, progression, and response to therapies depend to a great extent on interactions between malignant cells and the tumor microenvironment (TME), which denotes the cancerous/non-cancerous cells, cytokines, chemokines, and various other factors around tumors. Cancer cells as well as stroma cells can not only obtain adaption to the TME but also sculpt their microenvironment through a series of signaling pathways. The post-translational modification (PTM) of eukaryotic cells by small ubiquitin-related modifier (SUMO) proteins is now recognized as a key flexible pathway. Proteins involved in tumorigenesis guiding several biological processes including chromatin organization, DNA repair, transcription, protein trafficking, and signal conduction rely on SUMOylation. The purpose of this review is to explore the role that SUMOylation plays in the TME formation and reprogramming, emphasize the importance of targeting SUMOylation to intervene in the TME and discuss the potential of SUMOylation inhibitors (SUMOi) in ameliorating tumor prognosis.
Collapse
Affiliation(s)
- Yunru Gu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
| | - Yuan Fang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
| | - Xi Wu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
| | - Tingting Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
| | - Tong Hu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
| | - Yangyue Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
| | - Pei Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui Province People’s Republic of China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Lett KE, McLaurin DM, Tucker SK, Hebert MD. The Cajal body marker protein coilin is SUMOylated and possesses SUMO E3 ligase-like activity. FRONTIERS IN RNA RESEARCH 2023; 1:1197990. [PMID: 39703804 PMCID: PMC11656447 DOI: 10.3389/frnar.2023.1197990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Cajal bodies (CBs) are subnuclear domains that contribute to the biogenesis of several different classes of ribonucleoproteins (RNPs) including small nuclear RNPs. Only some cell types contain abundant CBs, such as neuronal cells and skeletal muscle, but CBs are invariant features of transformed cells. In contrast, coilin, the CB marker protein, is a ubiquitously expressed nuclear protein but the function of coilin in cell types that lack CBs is not well understood. We have previously shown that coilin promotes microRNA biogenesis by promoting phosphorylation of DGCR8, a component of the Microprocessor. Here we identify 7 additional residues of DGCR8 with decreased phosphorylation upon coilin knockdown. In addition to phosphorylation, the addition of a small ubiquitin-like modifier (SUMO) to DGCR8 also increases its stability. Because of coilin's role in the promotion of DGCR8 phosphorylation, we investigated whether coilin is involved in DGCR8 SUMOylation. We show that coilin knockdown results in global decrease of protein SUMOylation, including decreased DGCR8 and Sp100 (a PML body client protein) SUMOylation and decreased SMN expression. Alternatively, we found that coilin expression rescued Sp100 SUMOylation and increased DGCR8 and SMN levels in a coilin knockout cell line. Furthermore, we found that coilin facilitates RanGAP1 SUMOylation, interacts directly with components of the SUMOylation machinery (Ubc9 and SUMO2), and itself is SUMOylated in vitro and in vivo. In summary, we have identified coilin as a regulator of DGCR8 phosphorylation and a promotor of protein SUMOylation with SUMO E3 ligase-like activity.
Collapse
Affiliation(s)
- Katheryn E. Lett
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Douglas M. McLaurin
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Sara K. Tucker
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Michael D. Hebert
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| |
Collapse
|
4
|
Lara-Ureña N, Jafari V, García-Domínguez M. Cancer-Associated Dysregulation of Sumo Regulators: Proteases and Ligases. Int J Mol Sci 2022; 23:8012. [PMID: 35887358 PMCID: PMC9316396 DOI: 10.3390/ijms23148012] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
SUMOylation is a post-translational modification that has emerged in recent decades as a mechanism involved in controlling diverse physiological processes and that is essential in vertebrates. The SUMO pathway is regulated by several enzymes, proteases and ligases being the main actors involved in the control of sumoylation of specific targets. Dysregulation of the expression, localization and function of these enzymes produces physiological changes that can lead to the appearance of different types of cancer, depending on the enzymes and target proteins involved. Among the most studied proteases and ligases, those of the SENP and PIAS families stand out, respectively. While the proteases involved in this pathway have specific SUMO activity, the ligases may have additional functions unrelated to sumoylation, which makes it more difficult to study their SUMO-associated role in cancer process. In this review we update the knowledge and advances in relation to the impact of dysregulation of SUMO proteases and ligases in cancer initiation and progression.
Collapse
Affiliation(s)
| | | | - Mario García-Domínguez
- Andalusian Centre for Molecular Biology and Regenerative Medicine (CABIMER), CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Av. Américo Vespucio 24, 41092 Seville, Spain; (N.L.-U.); (V.J.)
| |
Collapse
|
5
|
Ozawa N, Yokobori T, Osone K, Katayama C, Suga K, Komine C, Shibasaki Y, Shiraishi T, Okada T, Kato R, Ogawa H, Sano A, Sakai M, Sohda M, Ojima H, Miyazaki T, Motegi Y, Ide M, Yao T, Kuwano H, Shirabe K, Saeki H. PD-L1 upregulation is associated with activation of the DNA double-strand break repair pathway in patients with colitic cancer. Sci Rep 2021; 11:13077. [PMID: 34158547 PMCID: PMC8219733 DOI: 10.1038/s41598-021-92530-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Ulcerative colitis (UC) is a DNA damage-associated chronic inflammatory disease; the DNA double-strand break (DSB) repair pathway participates in UC-associated dysplasia/colitic cancer carcinogenesis. The DSB/interferon regulatory factor-1 (IRF-1) pathway can induce PD-L1 expression transcriptionally. However, the association of PD-L1/DSB/IRF-1 with sporadic colorectal cancer (SCRC), and UC-associated dysplasia/colitic cancer, remains elusive. Therefore, we investigated the significance of the PD-L1/DSB repair pathway using samples from 17 SCRC and 12 UC patients with rare UC-associated dysplasia/colitic cancer cases by immunohistochemical analysis. We compared PD-L1 expression between patients with SCRC and UC-associated dysplasia/colitic cancer and determined the association between PD-L1 and the CD8+ T-cell/DSB/IRF-1 axis in UC-associated dysplasia/colitic cancer. PD-L1 expression in UC and UC-associated dysplasia/colitic cancer was higher than in normal mucosa or SCRC, and in CD8-positive T lymphocytes in UC-associated dysplasia/colitic cancer than in SCRC. Moreover, PD-L1 upregulation was associated with γH2AX (DSB marker) and IRF-1 upregulation in UC-associated dysplasia/colitic cancer. IRF-1 upregulation was associated with γH2AX upregulation in UC-associated dysplasia/colitic cancer but not in SCRC. Multicolour immunofluorescence staining validated γH2AX/IRF-1/PD-L1 co-expression in colitic cancer tissue sections. Thus, immune cell-induced inflammation might activate the DSB/IRF-1 axis, potentially serving as the primary regulatory mechanism of PD-L1 expression in UC-associated carcinogenesis.
Collapse
Affiliation(s)
- Naoya Ozawa
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Takehiko Yokobori
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| | - Katsuya Osone
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Chika Katayama
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Kunihiko Suga
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Chika Komine
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Yuta Shibasaki
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Takuya Shiraishi
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Takuhisa Okada
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Ryuji Kato
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Hiroomi Ogawa
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Akihiko Sano
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Makoto Sakai
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Makoto Sohda
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Hitoshi Ojima
- Department of Gastroenterological Surgery, Gunma Prefectural Cancer Center, Ohta, Gunma, Japan
| | - Tatsuya Miyazaki
- Department of Gastroenterological Surgery, Maebashi Red Cross Hospital, Maebashi, Gunma, Japan
| | - Yoko Motegi
- Department of Gastroenterological Surgery, Maebashi Red Cross Hospital, Maebashi, Gunma, Japan
| | - Munenori Ide
- Department of Pathology Diagnosis, Maebashi Red Cross Hospital, Maebashi, Gunma, Japan
| | - Takashi Yao
- Department of Human Pathology, Graduate School of Medicine, Juntendo University, Bunkyo City, Tokyo, Japan
| | - Hiroyuki Kuwano
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Ken Shirabe
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Hiroshi Saeki
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| |
Collapse
|
6
|
Xiao Y, Huang W, Huang H, Wang L, Wang M, Zhang T, Fang X, Xia X. miR-182-5p and miR-96-5p Target PIAS1 and Mediate the Negative Feedback Regulatory Loop between PIAS1 and STAT3 in Endometrial Cancer. DNA Cell Biol 2021; 40:618-628. [PMID: 33751900 DOI: 10.1089/dna.2020.6379] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The expressions and roles of protein inhibitor of activated STAT (PIAS) proteins, a group of proteins with STAT inhibition and SUMOylation E3 ligase activity, are rarely revealed in endometrial cancer (EC). In this study, we analyzed the expressions of PIASs and their relationships with clinical features by mining online data through web servers, including UALCAN and Gene Expression Profiling Interactive Analysis (GEPIA) in EC. The expressions of PIASs in EC tissues were further validated by immunohistochemistry (IHC). The online analyses revealed only PIAS1 was consistently downregulated both at mRNA and protein level in EC, which was validated by the IHC. Subsequently, the mechanism of PIAS1 downregulation was explored with online tools like UALCAN, cBioPortal, LinkedOmics, and the Encyclopedia of RNA Interactomes (ENCORI). The results indicated that the mutation rate of PIAS1 was extremely low and not associated with PIAS1 expression. The promoter methylation level of PIAS1 was comparable between normal and EC tissues. miR-182-5p and miR-96-5p with negative association with PIAS1 in EC were predicted to target PIAS1. Dual luciferase reporter assay confirmed miR-182-5p and miR-96-5p could target PIAS1 in EC. MiR-182-5p and miR-96-5p inhibitors could upregulate PIAS1 in EC cells. Moreover, ectopic PIAS1 expression and STAT3 inhibitor treatment significantly inhibited STAT3's activity and the levels of miR-182-5p and miR-96-5p in EC cells. Collectively, our findings revealed PIAS1 was downregulated in EC, which was caused by upregulation of miR-182-5p and miR-96-5p, and PIAS1 downregulation further activated STAT3 and increased the expression of miR-182-5p and miR-96-5p, confirming miR-182-5p and miR-96-5p mediated the negative feedback regulatory loop between PIAS1 and STAT3 in EC.
Collapse
Affiliation(s)
- Yuzhen Xiao
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Huang
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Hongyan Huang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lei Wang
- NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Min Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tingting Zhang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoling Fang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaomeng Xia
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Liu S, Wang L, Jiang D, Wei W, Nasir MF, Khan MS, Yousafi Q, Liu X, Fu X, Li X, Li J. Sumoylation as an Emerging Target in Therapeutics against Cancer. Curr Pharm Des 2021; 26:4764-4776. [PMID: 32568016 DOI: 10.2174/1381612826666200622124134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
Sumoylation is the Post-translational modification gaining most of the research interest recently. Sumoylation is involved in various crucial functions of the cell such as regulation of cell cycle, DNA damage repair, apoptosis, etc. Oncology is advancing in radiotherapy, targeted chemotherapy, various forms of immunotherapy and targeted gene therapy. Researches are being conducted to prove its connotation with a variety of cancers and inhibitors are being developed to obstruct the fatal effect caused by misbalance of the SUMO-catalytic cycle. It has been shown that up-regulation of certain enzymes of Sumoylation correlates with cancer incidence in most of the cases. However, in some cases, down-regulation also associates with cancer invasion such as underexpression of UBC9 in initial stage breast cancer. This can aid in future study, treatment, and diagnosis of a variety of cancers including breast cancer, prostate cancer, lung adenocarcinoma, melanoma, multiple myeloma, etc. Various mechanistic assays are being developed and used to identify potential inhibitors against the dysregulated proteins of Sumoylation. This review summarizes the normal roles of the enzymes involved in the SUMOcatalytic cycle, their misbalanced regulation leading to tumorigenesis and nearly all the potent inhibitors identified to date, while after detailed studied it was observed that ML-792 could be a promising inhibitor in treating cancers by inhibiting Sumoylation enzymes.
Collapse
Affiliation(s)
- Sitong Liu
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, Jilin, China,College of Life Sciences, Jilin University, Changchun, 130012, China
| | - Lichun Wang
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, Jilin, China
| | - Dongjun Jiang
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, Jilin, China
| | - Wei Wei
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, Jilin, China,Dental Hospital, Jilin University, Changchun 130021, China
| | - Mushyeda Fatima Nasir
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Muhammad Saad Khan
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Qudsia Yousafi
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Xintong Liu
- Dental Hospital, Jilin University, Changchun 130021, China
| | - Xueqi Fu
- College of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xiaomeng Li
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, Jilin, China
| | - Jiang Li
- Stomatological Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China,Dental Hospital, Jilin University, Changchun 130021, China
| |
Collapse
|
8
|
Lubega J, Umbreen S, Loake GJ. Recent advances in the regulation of plant immunity by S-nitrosylation. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:864-872. [PMID: 33005916 DOI: 10.1093/jxb/eraa454] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/28/2020] [Indexed: 05/16/2023]
Abstract
S-nitrosylation, the addition of a nitric oxide (NO) moiety to a reactive protein cysteine (Cys) thiol, to form a protein S-nitrosothiol (SNO), is emerging as a key regulatory post-translational modification (PTM) to control the plant immune response. NO also S-nitrosylates the antioxidant tripeptide, glutathione, to form S-nitrosoglutathione (GSNO), both a storage reservoir of NO bioactivity and a natural NO donor. GSNO and, by extension, S-nitrosylation, are controlled by GSNO reductase1 (GSNOR1). The emerging data suggest that GSNOR1 itself is a target of NO-mediated S-nitrosylation, which subsequently controls its selective autophagy, regulating cellular protein SNO levels. Recent findings also suggest that S-nitrosylation may be deployed by pathogen-challenged host cells to counteract the effect of delivered microbial effector proteins that promote pathogenesis and by the pathogens themselves to augment virulence. Significantly, it also appears that S-nitrosylation may regulate plant immune functions by controlling SUMOylation, a peptide-based PTM. In this context, global SUMOylation is regulated by S-nitrosylation of SUMO conjugating enzyme 1 (SCE1) at Cys139. This redox-based PTM has also been shown to control the function of a key zinc finger transcriptional regulator during the establishment of plant immunity. Here, we provide an update of these recent advances.
Collapse
Affiliation(s)
- Jibril Lubega
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Saima Umbreen
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
9
|
Zhao Q, Ma Y, Li Z, Zhang K, Zheng M, Zhang S. The Function of SUMOylation and Its Role in the Development of Cancer Cells under Stress Conditions: A Systematic Review. Stem Cells Int 2020; 2020:8835714. [PMID: 33273928 PMCID: PMC7683158 DOI: 10.1155/2020/8835714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Malignant tumors still pose serious threats to human health due to their high morbidity and mortality. Recurrence and metastasis are the most important factors affecting patient prognosis. Chemotherapeutic drugs and radiation used to treat these tumors mainly interfere with tumor metabolism, destroy DNA integrity, and inhibit protein synthesis. The upregulation of small ubiquitin-like modifier (SUMO) is a prevalent posttranslational modification (PTM) in various cancers and plays a critical role in tumor development. The dysregulation of SUMOylation can protect cancer cells from stresses exerted by external or internal stimuli. SUMOylation is a dynamic process finely regulated by SUMOylation enzymes and proteases to maintain a balance between SUMOylation and deSUMOylation. An increasing number of studies have reported that SUMOylation imbalance may contribute to cancer development, including metastasis, angiogenesis, invasion, and proliferation. High level of SUMOylation is required for cancer cells to survive internal or external stresses. Downregulation of SUMOylation may inhibit the development of cancer, making it an important potential clinical therapeutic target. Some studies have already begun to treat tumors by inhibiting the expression of SUMOylation family members, including SUMO E1 or E2. The tumor cells become more aggressive under internal and external stresses. The prevention of tumor development, metastasis, recurrence, and radiochemotherapy resistance by attenuating SUMOylation requires further exploration. This review focused on SUMOylation in tumor cells to discuss its effects on tumor suppressor proteins and oncoproteins as well as classical tumor pathways to identify new insights for cancer clinical therapy.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- Tianjin Medical University, Tianjin, China
| | - Ying Ma
- Department of Spine Center, Tianjin Union Medical Center, Tianjin, China
| | - Zugui Li
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kexin Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
10
|
PIAS1 is not suitable as a urothelial carcinoma biomarker protein and pharmacological target. PLoS One 2019; 14:e0224085. [PMID: 31639157 PMCID: PMC6804980 DOI: 10.1371/journal.pone.0224085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/05/2019] [Indexed: 11/19/2022] Open
Abstract
Urothelial cancer (UC) is one of the most common cancers in Europe and is also one of the costliest to treat. When first line therapies show initial success, around 50% of cancers relapse and proceed to metastasis. In this study we assessed the Protein inhibitor of activated signal transducers and activators of transcription (PIAS)1 as a potential therapeutic target in urothelial cancer. PIAS1 is a key regulator of STAT1 signalling and may be implicated in carcinogenesis. In contrast to other cancer types PIAS1 protein expression is not significantly different in malignant areas of UC specimens compared to non-malignant tissue. In addition, we found that down-regulation and overexpression of PIAS1 had no effect on the viability or colony forming ability of tested cell lines. Whilst other studies of PIAS1 suggest an important biological role in cancer, this study shows that PIAS1 has no influence on reducing the cytotoxic effects of Cisplatin or cell recovery after DNA damage induced by irradiation. Taken together, these in vitro data demonstrate that PIAS1 is not a promising therapeutic target in UC cancer as previously shown in different entities such as prostate cancer (PCa).
Collapse
|
11
|
Kouchaki E, Nikoueinejad H, Akbari H, Azimi S, Behnam M. The investigation of relevancy between PIAS1 and PIAS2 gene expression and disease severity of multiple sclerosis. J Immunoassay Immunochem 2019; 40:396-406. [PMID: 31084243 DOI: 10.1080/15321819.2019.1613244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Introduction: PIAS1 and PIAS2 (protein inhibitor of activated STAT 1,2) play key roles in the pathogenesis of autoimmune and inflammatory diseases. This study aims to evaluate the gene expression of these factors in multiple sclerosis (MS) patients compared to healthy individuals and correlate them with the severity of MS. Materials and methods: Sixty participants, including 30 patients with MS and 30 healthy controls were studied. The expression of PIAS1 and PIAS2 genes in peripheral blood samples of all participants was measured by real-time PCR. The severity of MS was evaluated using the Expanded Disability Status Scale (EDSS). Finally, we evaluated the correlation between the expression of PIAS1 and PIAS2 genes with disease severity. Results: The expression of PIAS1 gene was increased in patients with MS compared to healthy subjects (P value<.001). Also, there was a significant correlation between the expression of PIAS1 and PIAS2 genes with disease severity according to EDSS. Conclusion: Our study suggests the expression of PIAS1 and PIAS2 genes as a prognostic and diagnostic marker in MS disease.
Collapse
Affiliation(s)
- Ebrahim Kouchaki
- a Physiology Research Center , Kashan University of Medical Sciences , Kashan , Iran.,b Department of Neurology , Kashan University of Medical Sciences , Kashan , Iran
| | - Hassan Nikoueinejad
- c Nephrology and Urology Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Hossein Akbari
- d Trauma Research Center , Kashan University of Medical Sciences , Kashan , Iran
| | - Shirin Azimi
- e Student Research Committee , Kashan University of Medical Sciences , Kashan , Iran
| | - Mohammad Behnam
- f Research Center for Biochemistry and Nutrition in Metabolic Diseases , Kashan University of Medical Sciences , Kashan , Iran
| |
Collapse
|
12
|
Cox OF, Huber PW. Developing Practical Therapeutic Strategies that Target Protein SUMOylation. Curr Drug Targets 2019; 20:960-969. [PMID: 30362419 PMCID: PMC6700758 DOI: 10.2174/1389450119666181026151802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 01/02/2023]
Abstract
Post-translational modification by small ubiquitin-like modifier (SUMO) has emerged as a global mechanism for the control and integration of a wide variety of biological processes through the regulation of protein activity, stability and intracellular localization. As SUMOylation is examined in greater detail, it has become clear that the process is at the root of several pathologies including heart, endocrine, and inflammatory disease, and various types of cancer. Moreover, it is certain that perturbation of this process, either globally or of a specific protein, accounts for many instances of congenital birth defects. In order to be successful, practical strategies to ameliorate conditions due to disruptions in this post-translational modification will need to consider the multiple components of the SUMOylation machinery and the extraordinary number of proteins that undergo this modification.
Collapse
Affiliation(s)
- Olivia F. Cox
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, Center for Stem Cells and Regenerative Medicine, University of Notre Dame Notre Dame, Indiana 46556, U.S.A
| | - Paul W. Huber
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, Center for Stem Cells and Regenerative Medicine, University of Notre Dame Notre Dame, Indiana 46556, U.S.A
| |
Collapse
|
13
|
Yang Y, Xia Z, Wang X, Zhao X, Sheng Z, Ye Y, He G, Zhou L, Zhu H, Xu N, Liang S. Small-Molecule Inhibitors Targeting Protein SUMOylation as Novel Anticancer Compounds. Mol Pharmacol 2018; 94:885-894. [PMID: 29784649 DOI: 10.1124/mol.118.112300] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/16/2018] [Indexed: 02/05/2023] Open
Abstract
SUMOylation, one of post-translational modifications, is covalently modified on lysine residues of a target protein through an enzymatic cascade reaction similar to protein ubiquitination. Along with identification of many SUMOylated proteins, protein SUMOylation has been proven to regulate multiple biologic activities including transcription, cell cycle, DNA repair, and innate immunity. The dysregulation of protein SUMOylation and deSUMOylation modification is linked with carcinogenesis and tumor progression. The SUMOylation-associated enzymes are usually elevated in various cancers, which function as cancer biomarkers to relate to poor outcomes for patients. Considering the significance of protein SUMOylation in regulating diverse biologic functions in cancer progression, numerous small-molecule inhibitors targeting protein SUMOylation pathway are developed as potentially clinical anticancer therapeutics. Here, we systematically summarize the latest progresses of associations of small ubiquitin-like modifier (SUMO) enzymes with cancers and small-molecular inhibitors against human cancers by targeting SUMOylation enzymes. We also compared the pros and cons of several special anticancer inhibitors targeting SUMO pathway. As more efforts are invested in this field, small-molecule inhibitors targeting the SUMOylation modification pathway are promising for development into novel anticancer drugs.
Collapse
Affiliation(s)
- Yanfang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu (Y.Ya., Z.X., X.W., X.Z., Z.S., Y.Ye., G.H., L.Z., N.X., S.L.); Departments of Nephrology (Z.X.) and Neurosurgery (L.Z.), West China Hospital, Sichuan University, Chengdu; and Laboratory of Cell and Molecular Biology, and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences, Beijing (H.Z., N.X.), People's Republic of China
| | - Zijing Xia
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu (Y.Ya., Z.X., X.W., X.Z., Z.S., Y.Ye., G.H., L.Z., N.X., S.L.); Departments of Nephrology (Z.X.) and Neurosurgery (L.Z.), West China Hospital, Sichuan University, Chengdu; and Laboratory of Cell and Molecular Biology, and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences, Beijing (H.Z., N.X.), People's Republic of China
| | - Xixi Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu (Y.Ya., Z.X., X.W., X.Z., Z.S., Y.Ye., G.H., L.Z., N.X., S.L.); Departments of Nephrology (Z.X.) and Neurosurgery (L.Z.), West China Hospital, Sichuan University, Chengdu; and Laboratory of Cell and Molecular Biology, and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences, Beijing (H.Z., N.X.), People's Republic of China
| | - Xinyu Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu (Y.Ya., Z.X., X.W., X.Z., Z.S., Y.Ye., G.H., L.Z., N.X., S.L.); Departments of Nephrology (Z.X.) and Neurosurgery (L.Z.), West China Hospital, Sichuan University, Chengdu; and Laboratory of Cell and Molecular Biology, and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences, Beijing (H.Z., N.X.), People's Republic of China
| | - Zenghua Sheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu (Y.Ya., Z.X., X.W., X.Z., Z.S., Y.Ye., G.H., L.Z., N.X., S.L.); Departments of Nephrology (Z.X.) and Neurosurgery (L.Z.), West China Hospital, Sichuan University, Chengdu; and Laboratory of Cell and Molecular Biology, and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences, Beijing (H.Z., N.X.), People's Republic of China
| | - Yang Ye
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu (Y.Ya., Z.X., X.W., X.Z., Z.S., Y.Ye., G.H., L.Z., N.X., S.L.); Departments of Nephrology (Z.X.) and Neurosurgery (L.Z.), West China Hospital, Sichuan University, Chengdu; and Laboratory of Cell and Molecular Biology, and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences, Beijing (H.Z., N.X.), People's Republic of China
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu (Y.Ya., Z.X., X.W., X.Z., Z.S., Y.Ye., G.H., L.Z., N.X., S.L.); Departments of Nephrology (Z.X.) and Neurosurgery (L.Z.), West China Hospital, Sichuan University, Chengdu; and Laboratory of Cell and Molecular Biology, and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences, Beijing (H.Z., N.X.), People's Republic of China
| | - Liangxue Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu (Y.Ya., Z.X., X.W., X.Z., Z.S., Y.Ye., G.H., L.Z., N.X., S.L.); Departments of Nephrology (Z.X.) and Neurosurgery (L.Z.), West China Hospital, Sichuan University, Chengdu; and Laboratory of Cell and Molecular Biology, and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences, Beijing (H.Z., N.X.), People's Republic of China
| | - Hongxia Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu (Y.Ya., Z.X., X.W., X.Z., Z.S., Y.Ye., G.H., L.Z., N.X., S.L.); Departments of Nephrology (Z.X.) and Neurosurgery (L.Z.), West China Hospital, Sichuan University, Chengdu; and Laboratory of Cell and Molecular Biology, and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences, Beijing (H.Z., N.X.), People's Republic of China
| | - Ningzhi Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu (Y.Ya., Z.X., X.W., X.Z., Z.S., Y.Ye., G.H., L.Z., N.X., S.L.); Departments of Nephrology (Z.X.) and Neurosurgery (L.Z.), West China Hospital, Sichuan University, Chengdu; and Laboratory of Cell and Molecular Biology, and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences, Beijing (H.Z., N.X.), People's Republic of China
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu (Y.Ya., Z.X., X.W., X.Z., Z.S., Y.Ye., G.H., L.Z., N.X., S.L.); Departments of Nephrology (Z.X.) and Neurosurgery (L.Z.), West China Hospital, Sichuan University, Chengdu; and Laboratory of Cell and Molecular Biology, and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences, Beijing (H.Z., N.X.), People's Republic of China
| |
Collapse
|
14
|
Yang Y, He Y, Wang X, Liang Z, He G, Zhang P, Zhu H, Xu N, Liang S. Protein SUMOylation modification and its associations with disease. Open Biol 2018; 7:rsob.170167. [PMID: 29021212 PMCID: PMC5666083 DOI: 10.1098/rsob.170167] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/31/2017] [Indexed: 02/05/2023] Open
Abstract
SUMOylation, as a post-translational modification, plays essential roles in various biological functions including cell growth, migration, cellular responses to stress and tumorigenesis. The imbalance of SUMOylation and deSUMOylation has been associated with the occurrence and progression of various diseases. Herein, we summarize and discuss the signal crosstalk between SUMOylation and ubiquitination of proteins, protein SUMOylation relations with several diseases, and the identification approaches for SUMOylation site. With the continuous development of bioinformatics and mass spectrometry, several accurate and high-throughput methods have been implemented to explore small ubiquitin-like modifier-modified substrates and sites, which is helpful for deciphering protein SUMOylation-mediated molecular mechanisms of disease.
Collapse
Affiliation(s)
- Yanfang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17, 3rd Section of People's South Road, Chengdu, 610041, People's Republic of China
| | - Yu He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17, 3rd Section of People's South Road, Chengdu, 610041, People's Republic of China
| | - Xixi Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17, 3rd Section of People's South Road, Chengdu, 610041, People's Republic of China
| | - Ziwei Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17, 3rd Section of People's South Road, Chengdu, 610041, People's Republic of China
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17, 3rd Section of People's South Road, Chengdu, 610041, People's Republic of China
| | - Peng Zhang
- Department of Urinary Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Hongxia Zhu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, 100034, People's Republic of China
| | - Ningzhi Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17, 3rd Section of People's South Road, Chengdu, 610041, People's Republic of China.,Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, 100034, People's Republic of China
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17, 3rd Section of People's South Road, Chengdu, 610041, People's Republic of China
| |
Collapse
|
15
|
Zhou Y, Ji C, Cao M, Guo M, Huang W, Ni W, Meng L, Yang H, Wei JF. Inhibitors targeting the SUMOylation pathway: A patent review 2012‑2015 (Review). Int J Mol Med 2017; 41:3-12. [PMID: 29115401 DOI: 10.3892/ijmm.2017.3231] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 10/27/2017] [Indexed: 11/06/2022] Open
Abstract
Small ubiquitin‑related modifier (SUMO) proteins bind to the lysine residue of target proteins to produce functionally mature proteins. The abnormal SUMOylation of certain target proteins is associated with diseases including cancer, heart disease, diabetes, arthritis, degenerative diseases and brain ischemia/stroke. Thus, there has been growing appreciation for the potential importance of the SUMO conjugation pathway as a target for treating these diseases. This review introduces the important steps in the reversible SUMOylation pathway. The SUMO inhibitors disclosed in the patents between 2012 and 2015 are divided into different categories according to their mechanisms of action. Certain compounds disclosed in this review have also been reported in other articles for their inhibition of the SUMOylation pathway following screening in cell lines. Although there are few studies using animal models or clinical trials that have used these compounds, the application of bortezomin, a ubiquitylation inhibitor, for treating cancer indicates that SUMO inhibitors may be clinically successful.
Collapse
Affiliation(s)
- Yanjun Zhou
- Research Division of Clinical Pharmacology, Jiangsu Province People's Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Chunmei Ji
- Research Division of Clinical Pharmacology, Jiangsu Province People's Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Mengda Cao
- Research Division of Clinical Pharmacology, Jiangsu Province People's Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Miao Guo
- Research Division of Clinical Pharmacology, Jiangsu Province People's Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Wen Huang
- Research Division of Clinical Pharmacology, Jiangsu Province People's Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Weiwei Ni
- Research Division of Clinical Pharmacology, Jiangsu Province People's Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Ling Meng
- Research Division of Clinical Pharmacology, Jiangsu Province People's Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Haiwei Yang
- Department of Urology, Jiangsu Province People's Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, Jiangsu Province People's Hospital, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
16
|
Xie XJ, Liu P, Cai CD, Zhuang YR, Zhang L, Zhuang HW. The Generation and Validation of a 20-Genes Model Influencing the Prognosis of Colorectal Cancer. J Cell Biochem 2017; 118:3675-3685. [PMID: 28370286 DOI: 10.1002/jcb.26013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/22/2017] [Indexed: 02/05/2023]
Abstract
Colorectal cancer is a common malignant tumor with high incidence affecting the digestive system. This study aimed to identify the key genes relating to prognosis of colorectal cancer and to construct a prognostic model for its risk evaluation. Gene expression profiling of colorectal cancer patients, GSE17537, was downloaded from Gene Expression Omnibus database (GEO). A total of 55 samples from patients ranging from stages 1 to 4 were available. Differentially expressed genes were screened, with which single factor survival analysis was performed to identify the response genes. Interacting network and KEGG enrichment analysis of responsive genes were performed to identify key genes. In return, Fisher enrichment analysis, literature mining, and Kaplan-Meier analysis were used to verify the effectiveness of the prognostic model. The 20-gene model generated in this study posed significant influences on the prognoses (P = 9.691065e-09). Significance was verified via independent dataset GSE38832 (P = 9.86581e-07) and GSE17536 (P = 2.741e-08). The verified effective 20-gene model could be utilized to predict prognosis of patients with colorectal cancer and would contribute to post-operational treatment and follow-up strategies. J. Cell. Biochem. 118: 3675-3685, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiao-Jun Xie
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Ping Liu
- Department of Pathology, Shiyan Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, China
| | - Chu-Dong Cai
- Department of General Surgery, Shantou Central Hospital, Shantou, China
| | - Ying-Ru Zhuang
- Department of Anorectal Surgery, Shantou Hospital of TCM, Shantou, China
| | - Li Zhang
- Intensive Care Unit, Hubei Cancer Hospital, Wuhan, China
| | - Hai-Wen Zhuang
- Division of Gastrointestinal Surgery, Department of General Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, China
| |
Collapse
|
17
|
Chanda A, Chan A, Deng L, Kornaga EN, Enwere EK, Morris DG, Bonni S. Identification of the SUMO E3 ligase PIAS1 as a potential survival biomarker in breast cancer. PLoS One 2017; 12:e0177639. [PMID: 28493978 PMCID: PMC5426774 DOI: 10.1371/journal.pone.0177639] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/01/2017] [Indexed: 02/07/2023] Open
Abstract
Metastasis is the ultimate cause of breast cancer related mortality. Epithelial-mesenchymal transition (EMT) is thought to play a crucial role in the metastatic potential of breast cancer. Growing evidence has implicated the SUMO E3 ligase PIAS1 in the regulation of EMT in mammary epithelial cells and breast cancer metastasis. However, the relevance of PIAS1 in human cancer and mechanisms by which PIAS1 might regulate breast cancer metastasis remain to be elucidated. Using tissue-microarray analysis (TMA), we report that the protein abundance and subcellular localization of PIAS1 correlate with disease specific overall survival of a cohort of breast cancer patients. In mechanistic studies, we find that PIAS1 acts via sumoylation of the transcriptional regulator SnoN to suppress invasive growth of MDA-MB-231 human breast cancer cell-derived organoids. Our studies thus identify the SUMO E3 ligase PIAS1 as a prognostic biomarker in breast cancer, and suggest a potential role for the PIAS1-SnoN sumoylation pathway in controlling breast cancer metastasis.
Collapse
Affiliation(s)
- Ayan Chanda
- Arnie Charbonneau Cancer Institute and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Angela Chan
- Translational Laboratories, Tom Baker Cancer Centre, Alberta Health Services, Calgary, Alberta, Canada
| | - Lili Deng
- Arnie Charbonneau Cancer Institute and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Elizabeth N. Kornaga
- Translational Laboratories, Tom Baker Cancer Centre, Alberta Health Services, Calgary, Alberta, Canada
| | - Emeka K. Enwere
- Translational Laboratories, Tom Baker Cancer Centre, Alberta Health Services, Calgary, Alberta, Canada
| | - Donald G. Morris
- Translational Laboratories, Tom Baker Cancer Centre, Alberta Health Services, Calgary, Alberta, Canada
- Department of Oncology, Alberta Health Services, Calgary, Alberta, Canada
| | - Shirin Bonni
- Arnie Charbonneau Cancer Institute and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
18
|
Abstract
Post-translational protein modification by small ubiquitin-like modifier (SUMO), termed sumoylation, is an important mechanism in cellular responses to stress and one that appears to be upregulated in many cancers. Here, we examine the role of sumoylation in tumorigenesis as a possibly necessary safeguard that protects the stability and functionality of otherwise easily misregulated gene expression programmes and signalling pathways of cancer cells.
Collapse
Affiliation(s)
- Jacob-Sebastian Seeler
- Nuclear Organization and Oncogenesis Unit, INSERM U993, Institut Pasteur, 28 rue de Dr Roux, 75724 Paris Cedex 15, France
| | - Anne Dejean
- Nuclear Organization and Oncogenesis Unit, INSERM U993, Institut Pasteur, 28 rue de Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
19
|
Abstract
SUMOylation is a key post-translational modification that regulates crucial cellular functions and pathological processes. Recently, Small Ubiquitin-related MOdifier (SUMO) modification has emerged as a fundamental route that may drive different steps of human tumorigenesis. Indeed, alteration in expression or activity of one of the different SUMO pathway components may completely subvert cellular properties through fine-tuning modulation of protein(s) involved in carcinogenic pathways, leading to altered cell proliferation, apoptosis resistance and metastatic potential. Here we describe some of the most interesting findings pointing to a clear link between SUMO pathway and human malignancies. Importantly, a putative role for SUMO enzymes to predict cancer behavior can be speculated, and thus the possible application of alterations in SUMO pathway components as tumor biomarkers is discussed.
Collapse
Affiliation(s)
- Domenico Mattoscio
- 1Department of Experimental Oncology, European Institute of Oncology@ IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy
| | - Susanna Chiocca
- 1Department of Experimental Oncology, European Institute of Oncology@ IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy
| |
Collapse
|
20
|
Puhr M, Hoefer J, Neuwirt H, Eder IE, Kern J, Schäfer G, Geley S, Heidegger I, Klocker H, Culig Z. PIAS1 is a crucial factor for prostate cancer cell survival and a valid target in docetaxel resistant cells. Oncotarget 2015; 5:12043-56. [PMID: 25474038 PMCID: PMC4322998 DOI: 10.18632/oncotarget.2658] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/27/2014] [Indexed: 11/25/2022] Open
Abstract
Occurrence of an inherent or acquired resistance to the chemotherapeutic drug docetaxel is a major burden for patients suffering from different kinds of malignancies, including castration resistant prostate cancer (PCa). In the present study we address the question whether PIAS1 targeting can be used to establish a basis for improved PCa treatment. The expression status and functional relevance of PIAS1 was evaluated in primary tumors, in metastatic lesions, in tissue of patients after docetaxel chemotherapy, and in docetaxel resistant cells. Patient data were complemented by functional studies on PIAS1 knockdown in vitro as well as in chicken chorioallantoic membrane and mouse xenograft in vivo models. PIAS1 was found to be overexpressed in local and metastatic PCa and its expression was further elevated in tumors after docetaxel treatment as well as in docetaxel resistant cells. Furthermore, PIAS1 knockdown experiments revealed an increased expression of tumor suppressor p21 and declined expression of anti-apoptotic protein Mcl1, which caused diminished cell proliferation and tumor growth in vitro and in vivo. In summary, the presented data indicate that PIAS1 is crucial for parental and docetaxel resistant PCa cell survival and is therefore a promising new target for treatment of primary, metastatic, and chemotherapy resistant PCa.
Collapse
Affiliation(s)
- Martin Puhr
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Hoefer
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hannes Neuwirt
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University of Innsbruck, Innsbruck, Austria
| | - Iris E Eder
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Johann Kern
- Oncotyrol Laboratory for Tumor Biology and Angiogenesis, Innsbruck, Austria
| | - Georg Schäfer
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stephan Geley
- Division of Molecular Pathophysiology, Innsbruck Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Isabel Heidegger
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Helmut Klocker
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zoran Culig
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
21
|
Ford SA, Blanck G. Signal persistence and amplification in cancer development and possible, related opportunities for novel therapies. Biochim Biophys Acta Rev Cancer 2015; 1855:18-23. [DOI: 10.1016/j.bbcan.2014.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/23/2014] [Accepted: 11/04/2014] [Indexed: 12/28/2022]
|
22
|
Lloyd MC, Burke N, Kalantarpour F, Niesen MI, Hall A, Pennypacker K, Citron B, Pick CG, Adams V, Das M, Mohapatra S, Cualing H, Blanck G. QUANTITATIVE MORPHOLOGICAL AND MOLECULAR PATHOLOGY OF THE HUMAN THYMUS CORRELATE WITH INFANT CAUSE OF DEATH. TECHNOLOGY AND INNOVATION 2014; 16:55-62. [PMID: 25309682 DOI: 10.3727/194982414x13971392823398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The objective of this study was to investigate and quantify the morphological and molecular changes in the thymus for common causes of human infant death. Thymic architecture and molecular changes apparent in human infant head trauma victims were assessed by microscopy and quantified by image analysis of digital whole slide images. Thymuses from victims of SIDS and suffocated infants displaying normal thymus architecture were used for comparison. Molecular expression of proliferation and serotonin receptor and transporter protein markers was evaluated. Duplicate morphological and molecular studies of rodent thymuses were completed with both mouse and rat models. Quantification of novel parameters of digital images of thymuses from human infants suffering mortal head trauma revealed a disruption of the corticomedullary organization of the thymus, particularly involving dissolution of the corticomedullary border. A similar result was obtained for related mouse and rat models. The human thymuses from head trauma cases also displayed a higher percentage of Ki-67-positive thymocytes. Finally, we determined that thymus expression of the human serotonin receptor, and the serotonin transporter, occur almost exclusively in the thymic medulla. Head trauma leads to a disruption of the thymic, corticomedullary border, and molecular expression patterns in a robust and quantifiable manner.
Collapse
Affiliation(s)
- Mark C Lloyd
- Analytic Microscopy Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Nancy Burke
- Analytic Microscopy Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Fatemeh Kalantarpour
- Department of Oncological Sciences, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Melissa I Niesen
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Aaron Hall
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - Keith Pennypacker
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - Bruce Citron
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA ; Laboratory of Molecular Biology, Bay Pines VA Healthcare System, Bay Pines, FL, USA
| | - Chaim G Pick
- Department of Anatomy and Anthropology, Tel Aviv University, Tel Aviv, Israel
| | - Vernard Adams
- Medical Examiner Department, Hillsborough County Government, Tampa, FL, USA ; Department of Pathology and Cell Biology, University of South Florida, Tampa, FL, USA
| | - Mahasweta Das
- Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - Shyam Mohapatra
- Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - Hernani Cualing
- Department of Pathology and Cell Biology, University of South Florida, Tampa, FL, USA ; IHCFLOW, Inc., Lutz, FL, USA
| | - George Blanck
- Department of Oncological Sciences, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA ; Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
23
|
SUMOylation proteins in breast cancer. Breast Cancer Res Treat 2014; 144:519-30. [PMID: 24584753 DOI: 10.1007/s10549-014-2897-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 02/20/2014] [Indexed: 10/25/2022]
Abstract
Small Ubiquitin-like Modifier proteins (or SUMO) modify the function of protein substrates involved in various cellular processes including DNA damage response (DDR). It is becoming apparent that dysregulated SUMO contribute to carcinogenesis by affecting post-transcriptional modification of key proteins. It is hypothesised that SUMO contributes to the aggressive nature of breast cancer particularly those associated with features similar to breast carcinoma arising in patients with BRCA1 germline mutations. This study aims to assess the clinical and biological significance of three members of SUMO in a well-characterised annotated series of BC with emphasis on DDR. The study cohort comprised primary operable invasive BC including tumours from patients with known BRCA1 germline mutations. SUMO proteins PIAS1, PIAS4 and UBC9 were assessed using immunohistochemistry utilising tissue microarray technology. Additionally, their expression was assessed using reverse phase protein microarray utilising different cell lines. PIAS1 and UBC9 showed cytoplasmic and/or nuclear expression while PIAS4 was detected only in the nuclei. There was a correlation between subcellular localisation and expression of the nuclear transport protein KPNA2. Tumours showing positive nuclear/negative cytoplasmic expression of SUMO featured good prognostic characteristics including lower histologic grade and had a good outcome. Strong correlation with DDR-related proteins including BRCA1, Rad51, ATM, CHK1, DNA-PK and KU70/KU80 was observed. Correlation with ER and BRCA1 was confirmed using RPPA on cell lines. SUMO proteins seem to play important role in BC. Not only expression but also subcellular location is associated with BC phenotype.
Collapse
|
24
|
Clinicopathological and molecular significance of Sumolyation marker (ubiquitin conjugating enzyme 9 (UBC9)) expression in breast cancer of black women. Pathol Res Pract 2014; 210:10-7. [DOI: 10.1016/j.prp.2013.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 08/22/2013] [Accepted: 09/23/2013] [Indexed: 01/17/2023]
|
25
|
Agboola A, Musa A, Banjo A, Ayoade B, Deji-Agboola M, Nolan C, Rakha E, Ellis I, Green A. PIASγ expression in relation to clinicopathological, tumour factors and survival in indigenous black breast cancer women. J Clin Pathol 2013; 67:301-6. [DOI: 10.1136/jclinpath-2013-201658] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
Citro S, Jaffray E, Hay RT, Seiser C, Chiocca S. A role for paralog-specific sumoylation in histone deacetylase 1 stability. J Mol Cell Biol 2013; 5:416-27. [PMID: 24068740 DOI: 10.1093/jmcb/mjt032] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Histone deacetylase 1 (HDAC1) is an essential epigenetic regulator belonging to a highly conserved family of deacetylases. Increased HDAC1 activity and expression often correlates with neoplastic transformation. Here we show how specific modification of HDAC1 by SUMO1, but not by SUMO2, facilitates HDAC1 degradation. Our findings reveal that SUMO1, but not SUMO2, conjugation to HDAC1 promotes HDAC1 ubiquitination and degradation. This is suggested by the observation that in non-tumorigenic mammary epithelial cells HDAC1 is preferentially conjugated to SUMO1 leading to HDAC1 proteolysis, whereas in breast cancer cells HDAC1 is more conjugated to SUMO2, promoting HDAC1 protein stability. SUMO E3 ligases play an important role in paralog-specific conjugation; in particular, the SUMO E3 ligase PIASy, which is overexpressed in breast cancer cells, selectively promotes the conjugation of HDAC1 to SUMO2. Therefore, cell environment affects paralog-specific sumoylation of HDAC1, whose conjugation to SUMO1 but not to SUMO2 facilitates its protein turnover. Our findings uncover a role for paralog-specific sumoylation of HDAC1 whose significance is emphasized by the use of HDAC inhibitors as anticancer drugs.
Collapse
Affiliation(s)
- Simona Citro
- Department of Experimental Oncology, European Institute of Oncology, IFOM-IEO Campus, 20139 Milan, Italy
| | | | | | | | | |
Collapse
|
27
|
PIAS1-modulated Smad2/4 complex activation is involved in zinc-induced cancer cell apoptosis. Cell Death Dis 2013; 4:e811. [PMID: 24052079 PMCID: PMC3789191 DOI: 10.1038/cddis.2013.333] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/05/2013] [Accepted: 08/06/2013] [Indexed: 11/27/2022]
Abstract
Prostate cancer is one of the most frequently diagnosed cancers among men. Dietary intake of nutrients is considered crucial for preventing the initiation of events leading to the development of carcinoma. Many dietary compounds have been considered to contribute to cancer prevention including zinc, which has a pivotal role in modulating apoptosis. However, the mechanism for zinc-mediated prostate cancer chemoprevention remains enigmatic. In this study, we investigated the therapeutic effect of zinc in prostate cancer chemoprevention for the first time. Exposure to zinc induced apoptosis and resulted in transactivation of p21WAF1/Cip1 in a Smad-dependent and p53-independent manner in prostate cancer cells. Smad2 and PIAS1 proteins were significantly upregulated resulting in dramatically increased interactions between Smad2/4 and PIAS1 in the presence of zinc in LNCaP cells. Furthermore, it was found that the zinc-induced Smad4/2/PIAS1 transcriptional complex is responsible for Smad4 binding to SBE1 and SBE3 regions within the p21WAF1/Cip1 promoter. Exogenous expression of Smad2/4 and PIAS1 promotes zinc-induced apoptosis concomitant with Smad4 nuclear translocation, whereas endogenous Smad2/4 silencing inhibited zinc-induced apoptosis accompanying apparent p21WAF1/Cip1 reduction. Moreover, the knockdown of PIAS1 expression attenuated the zinc-induced recruitment of Smad4 on the p21WAF1/Cip1 promoter. The colony formation experiments demonstrate that PIAS1 and Smad2/4 silencing could attenuate zinc apoptotic effects, with a proliferation of promoting effects. We further demonstrate the correlation of apoptotic sensitivity to zinc and Smad4 and PIAS1 in multiple cancer cell lines, demonstrating that the important roles of PIAS1, Smad2, and Smad4 in zinc-induced cell death and p21WAF1/Cip1 transactivation were common biological events in different cancer cell lines. Our results suggest a new avenue for regulation of zinc-induced apoptosis, and provide a model that demonstrates zinc endorses the Smad2/4/PIAS1 complex to activate the p21WAF1/Cip1 gene that mediates apoptosis.
Collapse
|
28
|
Integrated analyses of genome-wide DNA occupancy and expression profiling identify key genes and pathways involved in cellular transformation by a Marek's disease virus oncoprotein, Meq. J Virol 2013; 87:9016-29. [PMID: 23740999 DOI: 10.1128/jvi.01163-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marek's disease (MD) is an economically significant disease in chickens that is caused by the highly oncogenic Marek's disease virus (MDV). A major unanswered question is the mechanism of MDV-induced tumor formation. Meq, a bZIP transcription factor discovered in the 1990s, is critically involved in viral oncogenicity, but only a few of its host target genes have been described, impeding our understanding of MDV-induced tumorigenesis. Using chromatin immunoprecipitation-sequencing (ChIP-seq) and microarray analysis, a high-confidence list of Meq binding sites in the chicken genome and a global transcriptome of Meq-responsive genes were generated. Meq binding sites were found to be enriched in the promoter regions of upregulated genes but not in those of downregulated genes. ChIP-seq was also performed for c-Jun, a known heterodimeric partner of Meq. The close location of binding sites of Meq and c-Jun was noted, suggesting cooperativity between these two factors in modulating transcription. Pathway analysis indicated that Meq transcriptionally regulates many genes that are part of several signaling pathways including the extracellular signal-regulated kinase /mitogen-activated protein kinase (ERK/MAPK), Jak-STAT, and ErbB pathways, which are critical for oncogenesis and/or include signaling mediators involved in apoptosis. Meq activates oncogenic signaling cascades by transcriptionally activating major kinases in the ERK/MAPK pathway and simultaneously repressing phosphatases, as verified using inhibitors of MEK and ERK1/2 in a cell proliferation assay. This study provides significant insights into the mechanistic basis of Meq-dependent cell transformation.
Collapse
|
29
|
Wang BX, Platanias LC, Fish EN. STAT Activation in Malignancies: Roles in Tumor Progression and in the Generation of Antineoplastic Effects of IFNs. J Interferon Cytokine Res 2013; 33:181-8. [DOI: 10.1089/jir.2012.0154] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Ben X. Wang
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
- Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Jesse Brown VA Medical Center, Northwestern University, Chicago, Illinois
| | - Eleanor N. Fish
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
30
|
CHEN PING, ZHAO DESHOU, SUN YUNWEI, HUANG LIYA, ZHANG SHUXIAN, YUAN YAOZONG. Protein inhibitor of activated STAT-1 is downregulated in gastric cancer tissue and involved in cell metastasis. Oncol Rep 2012; 28:2149-55. [DOI: 10.3892/or.2012.2030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/28/2012] [Indexed: 11/06/2022] Open
|
31
|
Pradhan MP, Prasad NKA, Palakal MJ. A systems biology approach to the global analysis of transcription factors in colorectal cancer. BMC Cancer 2012; 12:331. [PMID: 22852817 PMCID: PMC3539921 DOI: 10.1186/1471-2407-12-331] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 06/21/2012] [Indexed: 02/08/2023] Open
Abstract
Background Biological entities do not perform in isolation, and often, it is the nature and degree of interactions among numerous biological entities which ultimately determines any final outcome. Hence, experimental data on any single biological entity can be of limited value when considered only in isolation. To address this, we propose that augmenting individual entity data with the literature will not only better define the entity’s own significance but also uncover relationships with novel biological entities. To test this notion, we developed a comprehensive text mining and computational methodology that focused on discovering new targets of one class of molecular entities, transcription factors (TF), within one particular disease, colorectal cancer (CRC). Methods We used 39 molecular entities known to be associated with CRC along with six colorectal cancer terms as the bait list, or list of search terms, for mining the biomedical literature to identify CRC-specific genes and proteins. Using the literature-mined data, we constructed a global TF interaction network for CRC. We then developed a multi-level, multi-parametric methodology to identify TFs to CRC. Results The small bait list, when augmented with literature-mined data, identified a large number of biological entities associated with CRC. The relative importance of these TF and their associated modules was identified using functional and topological features. Additional validation of these highly-ranked TF using the literature strengthened our findings. Some of the novel TF that we identified were: SLUG, RUNX1, IRF1, HIF1A, ATF-2, ABL1, ELK-1 and GATA-1. Some of these TFs are associated with functional modules in known pathways of CRC, including the Beta-catenin/development, immune response, transcription, and DNA damage pathways. Conclusions Our methodology of using text mining data and a multi-level, multi-parameter scoring technique was able to identify both known and novel TF that have roles in CRC. Starting with just one TF (SMAD3) in the bait list, the literature mining process identified an additional 116 CRC-associated TFs. Our network-based analysis showed that these TFs all belonged to any of 13 major functional groups that are known to play important roles in CRC. Among these identified TFs, we obtained a novel six-node module consisting of ATF2-P53-JNK1-ELK1-EPHB2-HIF1A, from which the novel JNK1-ELK1 association could potentially be a significant marker for CRC.
Collapse
Affiliation(s)
- Meeta P Pradhan
- School of Informatics, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
32
|
Hoefer J, Schäfer G, Klocker H, Erb HH, Mills IG, Hengst L, Puhr M, Culig Z. PIAS1 Is Increased in Human Prostate Cancer and Enhances Proliferation through Inhibition of p21. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:2097-107. [DOI: 10.1016/j.ajpath.2012.01.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 12/17/2011] [Accepted: 01/13/2012] [Indexed: 10/28/2022]
|
33
|
Cai QW, Huang Y. Role of STAT3 in the development and progression of gastroenteric tumors. Shijie Huaren Xiaohua Zazhi 2011; 19:2334-2339. [DOI: 10.11569/wcjd.v19.i22.2334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
STAT3 is a member of the signal transducers and activators of transcription (STATs) family of proteins. Cytoplasmic STAT3 is phosphorylated by JAK to form STAT3-STAT3 dimers. After dimerization, the dimers translocate to the nucleus, where they bind to specific DNA response elements in the promoters of target genes to regulate the transcription of these genes. Recently it has been found that STAT3 plays a significant role in gastroenteric tumorigenesis, especially gastric cancer and colorectal carcinoma. STAT3 regulates the expression of genes that mediate survival & anti-apoptosis (Bcl-2, survivin, cyclin D1), invasion & metastasis (matrix metalloproteinases), and angiogenesis (vascular endothelial growth factor). Multiple mechanisms are involved in regulating the STAT3 signaling pathway. Two major groups of direct negative modulators of STAT3 signaling are the suppressors of cytokine signaling (SOCS) and the protein inhibitors of activated STATs (PIAS). STAT3 inhibitors are promising agents for the therapy of gastroenteric tumors.
Collapse
|
34
|
Suda N, Shibata H, Kurihara I, Ikeda Y, Kobayashi S, Yokota K, Murai-Takeda A, Nakagawa K, Oya M, Murai M, Rainey WE, Saruta T, Itoh H. Coactivation of SF-1-mediated transcription of steroidogenic enzymes by Ubc9 and PIAS1. Endocrinology 2011; 152:2266-77. [PMID: 21467194 PMCID: PMC3100613 DOI: 10.1210/en.2010-1232] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 03/10/2011] [Indexed: 01/07/2023]
Abstract
Steroidogenic factor-1 (SF-1) is a nuclear orphan receptor, which is essential for adrenal development and regulation of steroidogenic enzyme expression. SF-1 is posttranslationally modified by small ubiquitin-related modifier-1 (SUMO-1), thus mostly resulting in attenuation of transcription. We investigated the role of sumoylation enzymes, Ubc9 and protein inhibitors of activated STAT1 (PIAS1), in SF-1-mediated transcription of steroidogenic enzyme genes in the adrenal cortex. Coimmunoprecipitation assays showed that both Ubc9 and PIAS1 interacted with SF-1. Transient transfection assays in adrenocortical H295R cells showed Ubc9 and PIAS1 potentiated SF-1-mediated transactivation of reporter constructs containing human CYP17, CYP11A1, and CYP11B1 but not CYP11B2 promoters. Reduction of endogenous Ubc9 and PIAS1 by introducing corresponding small interfering RNA significantly reduced endogenous CYP17, CYP11A1, and CYP11B1 mRNA levels, indicating that they normally function as coactivators of SF-1. Wild type and sumoylation-inactive mutants of Ubc9 and PIAS1 can similarly enhance the SF-1-mediated transactivation of the CYP17 gene, indicating that the coactivation potency of Ubc9 and PIAS1 is independent of sumoylation activity. Chromatin immunoprecipitation assays demonstrated that SF-1, Ubc9, and PIAS1 were recruited to an endogenous CYP17 gene promoter in the context of chromatin in vivo. Immunohistochemistry and Western blotting showed that SF-1, Ubc9, and PIAS1 were expressed in the nuclei of the human adrenal cortex. In cortisol-producing adenomas, the expression pattern of SF-1 and Ubc9 were markedly increased, whereas that of PIAS1 was decreased compared with adjacent normal adrenals. These results showed the physiological roles of Ubc9 and PIAS1 as SF-1 coactivators beyond sumoylation enzymes in adrenocortical steroidogenesis and suggested their possible pathophysiological roles in human cortisol-producing adenomas.
Collapse
Affiliation(s)
- Noriko Suda
- Department of Internal Medicine, School of Medicine, Keio University, Shinjujku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Damasco C, Lembo A, Somma MP, Gatti M, Di Cunto F, Provero P. A signature inferred from Drosophila mitotic genes predicts survival of breast cancer patients. PLoS One 2011; 6:e14737. [PMID: 21386884 PMCID: PMC3046113 DOI: 10.1371/journal.pone.0014737] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 01/10/2011] [Indexed: 12/24/2022] Open
Abstract
Introduction The classification of breast cancer patients into risk groups provides a
powerful tool for the identification of patients who will benefit from
aggressive systemic therapy. The analysis of microarray data has generated
several gene expression signatures that improve diagnosis and allow risk
assessment. There is also evidence that cell proliferation-related genes
have a high predictive power within these signatures. Methods We thus constructed a gene expression signature (the DM signature) using the
human orthologues of 108 Drosophila melanogaster genes
required for either the maintenance of chromosome integrity (36 genes) or
mitotic division (72 genes). Results The DM signature has minimal overlap with the extant signatures and is highly
predictive of survival in 5 large breast cancer datasets. In addition, we
show that the DM signature outperforms many widely used breast cancer
signatures in predictive power, and performs comparably to other
proliferation-based signatures. For most genes of the DM signature, an
increased expression is negatively correlated with patient survival. The
genes that provide the highest contribution to the predictive power of the
DM signature are those involved in cytokinesis. Conclusion This finding highlights cytokinesis as an important marker in breast cancer
prognosis and as a possible target for antimitotic therapies.
Collapse
Affiliation(s)
- Christian Damasco
- Molecular Biotechnology Center and Department
of Genetics, Biology and Biochemistry, University of Turin, Turin,
Italy
| | - Antonio Lembo
- Molecular Biotechnology Center and Department
of Genetics, Biology and Biochemistry, University of Turin, Turin,
Italy
| | - Maria Patrizia Somma
- Dipartimento di Biologia e Biotecnologie, and
Istituto di Biologia e Patologia Molecolari del CNR, “Sapienza”
Università di Roma, Roma, Italy
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie, and
Istituto di Biologia e Patologia Molecolari del CNR, “Sapienza”
Università di Roma, Roma, Italy
| | - Ferdinando Di Cunto
- Molecular Biotechnology Center and Department
of Genetics, Biology and Biochemistry, University of Turin, Turin,
Italy
| | - Paolo Provero
- Molecular Biotechnology Center and Department
of Genetics, Biology and Biochemistry, University of Turin, Turin,
Italy
- * E-mail:
| |
Collapse
|