1
|
Molecular Analysis of Prognosis and Immune Pathways of Pancreatic Cancer Based on TNF Family Members. JOURNAL OF ONCOLOGY 2021; 2021:2676996. [PMID: 34630563 PMCID: PMC8497127 DOI: 10.1155/2021/2676996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/03/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022]
Abstract
Background Tumor necrosis factor (TNF) family members play a vital role in anticancer therapy. This study aimed to screen the critical markers for the prognostic analysis of pancreatic adenocarcinoma (PAAD) by analyzing the clustering patterns of TNF family members in PAAD. Methods In this study, the NMF clustering method was adopted to cluster samples from The Cancer Genome Atlas (TCGA) to acquire the clustering pattern of the TNF family in PAAD. Differential gene analysis was performed according to TNF family gene clusters. The support vector machine (SVM) method was conducted for further gene screening, and the risk score model of the screened genes was constructed by Lasso. The single sample gene set enrichment analysis (ssGSEA) method was adopted for immunoenrichment analysis and tumor immune cycle analysis. Genes associated with risk scores were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Results We clustered PAAD into two groups based on TNF family genes. Nineteen TNF family genes were significantly associated with the clinical characteristics of PAAD patients. The risk score formula was composed of RHOD, UBE2C, KLHDC7b, MSLN, ADAM8, NME3, GNG2, and MCOLN3. GSE57495 and GSE62452 datasets verified that patients in the high-risk group had a worse prognosis than those in the low-risk group. The risk score-related genes analyzed by GO and KEGG were mainly involved in the modulation of chemical synaptic transmission and synaptic vesicle cycle pathway. There were significant differences in the expression of 15 immune cells between the high-risk group and the low-risk group. The risk score was positively correlated with HCK, interferon, MHC-I, and STAT1. The expression of genes relevant to chemokine, immunostimulator, MHC, and receptor was strongly associated with the risk score. Conclusion The risk score model based on the TNF family can predict the prognosis and immune status of PAAD patients. Further research is needed to verify the clinical prognostic value of risk scores.
Collapse
|
2
|
Identification of Candidate Genes Associated with Susceptibility to Ovarian Clear Cell Adenocarcinoma Using cis-eQTL Analysis. J Clin Med 2020; 9:jcm9041137. [PMID: 32316112 PMCID: PMC7231141 DOI: 10.3390/jcm9041137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Ovarian clear cell adenocarcinoma (Ov-CCA) has a higher prevalence in the Japanese ancestry than other populations. The ancestral disparities in Ov-CCA prevalence suggests the presence of Ov-CCA-specific genetic alterations and may provide an opportunity to identify the novel genes associated with Ov-CCA tumorigenesis. Using 94 previously reported genes as the phenotypic trait, we conducted multistep expression quantitative trait loci (eQTL) analysis with the HapMap3 project datasets. Four single-nucleotide polymorphisms (SNPs) (rs4873815, rs12976454, rs11136002, and rs13259097) that had different allele frequencies in the Japanese ancestry and seven genes associated in cis (APBA3, C8orf58, KIAA1967, NAPRT1, RHOBTB2, TNFRSF10B, and ZNF707) were identified. In silico functional annotation analysis and in vitro promoter assay validated the regulatory effect of rs4873815-TT on ZNF707 and rs11136002-TT on TNFRSF10B. Furthermore, ZNF707 was highly expressed in Ov-CCA and had a negative prognostic value in disease recurrence in our sample cohort. This prognostic power was consistently observed in The Cancer Genome Atlas (TCGA) clear cell renal cell carcinoma dataset, suggesting that ZNF707 may have prognostic value in clear cell histology regardless of tissue origin. In conclusion, rs4873815-TT/ZNF707 may have clinical significance in the prognosis and tumorigenesis of Ov-CCA, which may be more relevant to clear cell histology. Besides, this study may underpin the evidence that cis-eQTL analysis based on ancestral disparities can facilitate the discovery of causal genetic alterations in complex diseases, such as cancer.
Collapse
|
3
|
Messeha SS, Zarmouh NO, Mendonca P, Alwagdani H, Cotton C, Soliman KFA. Effects of gossypol on apoptosis‑related gene expression in racially distinct triple‑negative breast cancer cells. Oncol Rep 2019; 42:467-478. [PMID: 31173249 PMCID: PMC6610046 DOI: 10.3892/or.2019.7179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 04/12/2019] [Indexed: 12/22/2022] Open
Abstract
Apoptosis is a gene‑directed mechanism that regulates cell proliferation and maintains homeostasis. Moreover, an aberrant apoptotic process can lead to several pathological conditions, such as tumorigenesis and cancer metastasis. In the present study, the apoptotic effect of the natural polyphenol compound gossypol GOSS) was investigated in triple‑negative breast cancer TNBC) cells. The effect of GOSS was evaluated in two cell lines representative of a Caucasian‑American and African‑American origin, MDA‑MB‑231 MM‑231) and MDA‑MB‑468 MM‑468), respectively. A similar response to both cytotoxicity and proliferation was observed in the two cell lines. However, MM‑468 cells were 2‑fold more sensitive to the apoptotic effect of the compound, which was accompanied by a longer delay in colony formation. Furthermore, GOSS was found to alter the mRNA expression of many apoptosis‑related genes. The compound significantly upregulated growth arrest and DNA damage‑inducible 45 alpha protein (GADD45A), tumor necrosis factor receptor superfamily 9 (TNFRSF9) and BCL2 interacting protein 3 BNIP3) in MM‑231 cells. Similarly, GADD45A and BNIP3 were upregulated in MM‑468 cells. A significant finding in this study is the profound 159‑fold increase in TNF gene expression that was observed in MM‑468 cells. Moreover, the apoptosis‑suppressor gene baculoviral IAP repeat containing 5 BIRC5) was significantly repressed (by more than 90%) in both cell lines, as well as death‑associated protein kinase 1 (DAPK1) in MM‑231 cells and tumor protein 73 (TP73) in MM‑468 cells. In conclusion, the data obtained in this study provide a molecular understanding of the GOSS‑induced apoptosis effect and suggest the importance of this polyphenol compound targeted towards TNBC treatment, particularly in African‑American women.
Collapse
Affiliation(s)
- Samia S Messeha
- College of Pharmacy and Pharmaceutical Science, Florida A&M University, Tallahassee, Florida 32307, USA
| | - Najla O Zarmouh
- College of Pharmacy and Pharmaceutical Science, Florida A&M University, Tallahassee, Florida 32307, USA
| | - Patricia Mendonca
- College of Pharmacy and Pharmaceutical Science, Florida A&M University, Tallahassee, Florida 32307, USA
| | - Hayfaa Alwagdani
- College of Pharmacy and Pharmaceutical Science, Florida A&M University, Tallahassee, Florida 32307, USA
| | - Carolyn Cotton
- College of Pharmacy and Pharmaceutical Science, Florida A&M University, Tallahassee, Florida 32307, USA
| | - Karam F A Soliman
- College of Pharmacy and Pharmaceutical Science, Florida A&M University, Tallahassee, Florida 32307, USA
| |
Collapse
|
4
|
Imaoka Y, Ohira M, Yano T, Nakano R, Tanimine N, Shimizu S, Kuroda S, Tahara H, Kobayashi T, Ohdan H. Polymorphisms in TRAIL predict long-term survival and extrahepatic recurrence following initial hepatectomy for hepatocellular carcinoma. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2018; 25:370-376. [PMID: 30051596 DOI: 10.1002/jhbp.573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Liver natural killer (NK) cells are the first cells to respond to infections and malignancies, such as intraoperative tumor spill. Liver NK cells express tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a marker for hepatocellular carcinoma (HCC). However, the influence of TRAIL single-nucleotide polymorphisms (SNPs) on hepatectomy patients with HCC remains unclear. METHODS Here, we investigated TRAIL SNPs (rs1131568, rs1131579, and rs1131580) located at positions 1525, 1588, and 1595 of exon 5 of the TNFSF10 gene. A total of 104 HCC patients who underwent initial hepatectomy were analyzed. Kaplan-Meier survival analysis and Cox proportional hazard regression were conducted to evaluate the associations between TRAIL genotypes and clinical HCC outcomes. RESULTS Patients harboring the homozygous AA genotype of TRAIL SNPs rs1131568 and rs1131579 and the TT genotype of the TRAIL SNP rs1131580 had lower overall survival and higher rates of extrahepatic recurrence (EHR) than patients harboring the wild type or heterozygous genotypes. Moreover, univariate and multivariate Cox regression analysis revealed that the homozygous genotypes of the target TRAIL SNPs were independent predictive factors for EHR after initial hepatectomy for HCC. CONCLUSION Our findings revealed that the homozygous genotypes of TRAIL SNPs are independent predictors of EHR in initial hepatectomy patients with HCC.
Collapse
Affiliation(s)
- Yuki Imaoka
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Masahiro Ohira
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Takuya Yano
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Ryosuke Nakano
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Naoki Tanimine
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Seiichi Shimizu
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shintaro Kuroda
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hiroyuki Tahara
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Tsuyoshi Kobayashi
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
5
|
Freitas-Alves DR, Vieira-Monteiro HDA, Piranda DN, Sobral-Leite M, da Silva TSL, Bergmann A, Valença SS, Perini JA, Vianna-Jorge R. PTGS2 polymorphism rs689466 favors breast cancer recurrence in obese patients. Endocr Relat Cancer 2018; 25:351-365. [PMID: 29321183 DOI: 10.1530/erc-17-0374] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/10/2018] [Indexed: 11/08/2022]
Abstract
Breast cancer is the leading cancer among women, and its increasing incidence is a challenge worldwide. Estrogen exposure is the main risk factor, but obesity among postmenopausal women has been shown to favor disease onset and progression. The link between obesity and mammary carcinogenesis involves elevated estrogen production and proinflammatory stimuli within the adipose tissue, with activation of the cyclooxygenase-2 pathway. Here, we evaluate the impact of the four most common cyclooxygenase-2 gene polymorphisms (rs689465, rs689466, rs20417 and rs20417), in combination with obesity, on the risk of breast cancer progression in a cohort of Brazilian breast cancer patients (N = 1038). Disease-free survival was evaluated using Kaplan-Meier curves, with multivariate Cox proportional hazards regression models for calculation of adjusted hazard ratios (HRadj). Obesity did not affect disease progression, whereas rs689466 variant genotypes increased the recurrence risk among obese patients (HRadj = 2.5; 95% CI = 1.4-4.3), either for luminal (HRadj = 2.2; 95% CI = 1.1-4.2) or HER2-like and triple-negative tumors (HRadj = 3.2; 95% CI = 1.2-8.5). Likewise, the haplotype *4, which contains variant rs689466, was associated with shorter disease-free survival among obese patients (HRadj = 3.3; 95% CI = 1.8-6.0), either in luminal (HRadj = 3.5; 95% CI = 1.6-7.3) or HER2-like and triple-negative (HRadj = 3.1; 95% CI = 1.1-8.9) tumors. Such deleterious impact of variant rs689466 on disease-free survival of obese breast cancer patients was restricted to postmenopausal women. In conclusion, cyclooxygenase-2 genotyping may add to the prognostic evaluation of obese breast cancer patients.
Collapse
Affiliation(s)
- Daniely Regina Freitas-Alves
- Coordenação de PesquisaInstituto Nacional do Câncer, Rio de Janeiro, Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Saúde Pública e Meio AmbienteEscola Nacional de Saúde Pública, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto de Ciências BiomédicasUniversidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Hayra de Andrade Vieira-Monteiro
- Coordenação de PesquisaInstituto Nacional do Câncer, Rio de Janeiro, Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Saúde Pública e Meio AmbienteEscola Nacional de Saúde Pública, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Diogo Nascimento Piranda
- Coordenação de PesquisaInstituto Nacional do Câncer, Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto de Ciências BiomédicasUniversidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Marcelo Sobral-Leite
- Coordenação de PesquisaInstituto Nacional do Câncer, Rio de Janeiro, Rio de Janeiro, Brasil
- Division of Molecular PathologyThe Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Taiana Sousa Lopes da Silva
- Coordenação de PesquisaInstituto Nacional do Câncer, Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto de Ciências BiomédicasUniversidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Biologia Molecular e CelularInstituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Anke Bergmann
- Coordenação de PesquisaInstituto Nacional do Câncer, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Samuel Santos Valença
- Instituto de Ciências BiomédicasUniversidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Jamila Alessandra Perini
- Programa de Pós-Graduação em Saúde Pública e Meio AmbienteEscola Nacional de Saúde Pública, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brasil
- Laboratório de Pesquisa de Ciências FarmacêuticasUnidade de Farmácia, Centro Universitário Estadual da Zona Oeste, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Rosane Vianna-Jorge
- Coordenação de PesquisaInstituto Nacional do Câncer, Rio de Janeiro, Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Saúde Pública e Meio AmbienteEscola Nacional de Saúde Pública, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto de Ciências BiomédicasUniversidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
| |
Collapse
|
6
|
TNFSF10/TRAIL regulates human T4 effector memory lymphocyte radiosensitivity and predicts radiation-induced acute and subacute dermatitis. Oncotarget 2017; 7:21416-27. [PMID: 26982083 PMCID: PMC5008295 DOI: 10.18632/oncotarget.7893] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/18/2016] [Indexed: 12/31/2022] Open
Abstract
Sensitivity of T4 effector-memory (T4EM) lymphocytes to radiation-induced apoptosis shows heritability compatible with a Mendelian mode of transmission. Using gene expression studies and flow cytometry, we show a higher TNF-Related Apoptosis Inducing Ligand (TRAIL/TNFSF10) mRNA level and a higher level of membrane bound TRAIL (mTRAIL) on radiosensitive compared to radioresistant T4EM lymphocytes. Functionally, we show that mTRAIL mediates a pro-apoptotic autocrine signaling after irradiation of T4EM lymphocytes linking mTRAIL expression to T4EM radiosensitivity. Using single marker and multimarker Family-Based Association Testing, we identified 3 SNPs in the TRAIL gene that are significantly associated with T4EM lymphocytes radiosensitivity. Among these 3 SNPs, two are also associated with acute and subacute dermatitis after radiotherapy in breast cancer indicating that T4EM lymphocytes radiosensitivity may be used to predict response to radiotherapy. Altogether, these results show that mTRAIL level regulates the response of T4EM lymphocytes to ionizing radiation and suggest that TRAIL/TNFSF10 genetic variants hold promise as markers of individual radiosensitivity.
Collapse
|
7
|
Cebrián A, Gómez Del Pulgar T, Méndez-Vidal MJ, Gonzálvez ML, Lainez N, Castellano D, García-Carbonero I, Esteban E, Sáez MI, Villatoro R, Suárez C, Carrato A, Munárriz-Ferrándiz J, Basterrechea L, García-Alonso M, González-Larriba JL, Perez-Valderrama B, Cruz-Jurado J, González Del Alba A, Moreno F, Reynés G, Rodríguez-Remírez M, Boni V, Mahillo-Fernández I, Martin Y, Viqueira A, García-Foncillas J. Functional PTGS2 polymorphism-based models as novel predictive markers in metastatic renal cell carcinoma patients receiving first-line sunitinib. Sci Rep 2017; 7:41371. [PMID: 28117391 PMCID: PMC5259767 DOI: 10.1038/srep41371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/25/2016] [Indexed: 01/29/2023] Open
Abstract
Sunitinib is the currently standard treatment for metastatic renal cell carcinoma (mRCC). Multiple candidate predictive biomarkers for sunitinib response have been evaluated but none of them has been implemented in the clinic yet. The aim of this study was to analyze single nucleotide polymorphisms (SNPs) in genes linked to mode of action of sunitinib and immune response as biomarkers for mRCC. This is a multicenter, prospective and observational study involving 20 hospitals. Seventy-five mRCC patients treated with sunitinib as first line were used to assess the impact of 63 SNPs in 31 candidate genes on clinical outcome. rs2243250 (IL4) and rs5275 (PTGS2) were found to be significantly associated with shorter cancer-specific survival (CSS). Moreover, allele C (rs5275) was associated with higher PTGS2 expression level confirming its functional role. Combination of rs5275 and rs7651265 or rs2243250 for progression free survival (PFS) or CSS, respectively, was a more valuable predictive biomarker remaining significant after correction for multiple testing. It is the first time that association of rs5275 with survival in mRCC patients is described. Two-SNP models containing this functional variant may serve as more predictive biomarkers for sunitinib and could suppose a clinically relevant tool to improve the mRCC patient management.
Collapse
Affiliation(s)
| | | | | | | | - Nuria Lainez
- Complejo Hospitalario de Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
King J, Mir H, Singh S. Association of Cytokines and Chemokines in Pathogenesis of Breast Cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 151:113-136. [DOI: 10.1016/bs.pmbts.2017.07.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Agúndez JAG, Blanca M, Cornejo-García JA, García-Martín E. Pharmacogenomics of cyclooxygenases. Pharmacogenomics 2015; 16:501-22. [DOI: 10.2217/pgs.15.6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cyclooxygenases (COX-1 and COX-2) are key enzymes in several physiopathological processes. Many adverse drugs reactions to NSAIDs are attributable to COX-inhibition. The genes coding for these enzymes (PTGS1 and PTGS2) are highly variable, and variations in these genes may underlie the risk of developing, or the clinical evolution of, several diseases and adverse drug reactions. We analyze major variations in the PTGS1 and PTGS2 genes, allele frequencies, functional consequences and population genetics. The most salient clinical associations of PTGS gene variations are related to colorectal cancer and stroke. In many studies, the SNPs interact with NSAIDs use, dietary or environmental factors. We provide an up-to-date catalog of PTGS clinical associations based on case–control studies and genome-wide association studies, and future research suggestions.
Collapse
Affiliation(s)
- José AG Agúndez
- Department of Pharmacology, University of Extremadura, Cáceres, Spain
- Red de Investigación de Reacciones Adversas a Alergenos y Fármacos, Spain
| | - Miguel Blanca
- Red de Investigación de Reacciones Adversas a Alergenos y Fármacos, Spain
- Allergy Service, Carlos Haya Hospital, Málaga, Spain
| | - José A Cornejo-García
- Red de Investigación de Reacciones Adversas a Alergenos y Fármacos, Spain
- Allergy Service, Carlos Haya Hospital, Málaga, Spain
| | - Elena García-Martín
- Red de Investigación de Reacciones Adversas a Alergenos y Fármacos, Spain
- Department of Biochemistry & Molecular Biology, University of Extremadura, Cáceres, Spain
| |
Collapse
|
10
|
mRNA profiling reveals determinants of trastuzumab efficiency in HER2-positive breast cancer. PLoS One 2015; 10:e0117818. [PMID: 25710561 PMCID: PMC4339844 DOI: 10.1371/journal.pone.0117818] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 12/30/2014] [Indexed: 12/30/2022] Open
Abstract
Intrinsic and acquired resistance to the monoclonal antibody drug trastuzumab is a major problem in the treatment of HER2-positive breast cancer. A deeper understanding of the underlying mechanisms could help to develop new agents. Our intention was to detect genes and single nucleotide polymorphisms (SNPs) affecting trastuzumab efficiency in cell culture. Three HER2-positive breast cancer cell lines with different resistance phenotypes were analyzed. We chose BT474 as model of trastuzumab sensitivity, HCC1954 as model of intrinsic resistance, and BTR50, derived from BT474, as model of acquired resistance. Based on RNA-Seq data, we performed differential expression analyses on these cell lines with and without trastuzumab treatment. Differentially expressed genes between the resistant cell lines and BT474 are expected to contribute to resistance. Differentially expressed genes between untreated and trastuzumab treated BT474 are expected to contribute to drug efficacy. To exclude false positives from the candidate gene set, we removed genes that were also differentially expressed between untreated and trastuzumab treated BTR50. We further searched for SNPs in the untreated cell lines which could contribute to trastuzumab resistance. The analysis resulted in 54 differentially expressed candidate genes that might be connected to trastuzumab efficiency. 90% of 40 selected candidates were validated by RT-qPCR. ALPP, CALCOCO1, CAV1, CYP1A2 and IGFBP3 were significantly higher expressed in the trastuzumab treated than in the untreated BT474 cell line. GDF15, IL8, LCN2, PTGS2 and 20 other genes were significantly higher expressed in HCC1954 than in BT474, while NCAM2, COLEC12, AFF3, TFF3, NRCAM, GREB1 and TFF1 were significantly lower expressed. Additionally, we inferred SNPs in HCC1954 for CAV1, PTGS2, IL8 and IGFBP3. The latter also had a variation in BTR50. 20% of the validated subset have already been mentioned in literature. For half of them we called and analyzed SNPs. These results contribute to a better understanding of trastuzumab action and resistance mechanisms.
Collapse
|
11
|
Jia S, Dong W, Zhou X, Chen Z, Yun W. Association between TNFSF10 polymorphism and migraine susceptibility in a Chinese population. J Int Med Res 2015; 43:326-31. [PMID: 25712717 DOI: 10.1177/0300060514565681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 12/03/2014] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the correlation between migraine in a Chinese population and a 4 base pair (GAGT) insertion/deletion polymorphism (rs35975099) localized near the 3' end of the tumour necrosis factor superfamily 10 gene, TNFSF10. METHODS Ethnically Han Chinese patients with migraine and healthy control subjects were recruited. TNFSF10 genotype and allele frequencies were determined via polymerase chain reaction and polyacrylamide gel electrophoresis. RESULTS Rs35975099 was in Harvey-Weinberg equilibrium in patients with migraine (n = 269) and control subjects (n = 374). There were no significant relationships between allele or genotype frequency and migraine. CONCLUSION There was no functional significance of the TNFSF10 gene polymorphism rs35975099 in migraine pathogenesis.
Collapse
Affiliation(s)
- Shasha Jia
- Department of Neurology, Laboratory of Neurological Diseases, Changzhou No.2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Wanli Dong
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xianju Zhou
- Department of Neurology, Laboratory of Neurological Diseases, Changzhou No.2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Zhiguo Chen
- Department of Neurology, Laboratory of Neurological Diseases, Changzhou No.2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Wenwei Yun
- Department of Neurology, Laboratory of Neurological Diseases, Changzhou No.2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
12
|
Dhama K, Latheef SK, Samad HA, Chakrabort S, Tiwari R, Kumar A, Rahal A. Tumor Necrosis Factor as Mediator of Inflammatory Diseases and its Therapeutic Targeting: A Review. JOURNAL OF MEDICAL SCIENCES 2013. [DOI: 10.3923/jms.2013.226.235] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
13
|
Ross J, Lockett L, Brookes D, Tabor B, Duesing K, Buckley M, Lockett T, Molloy P, Macrae F, Young G, Blanco I, Capella G, Hannan GN. An association between the PTGS2 rs5275 polymorphism and colorectal cancer risk in families with inherited non-syndromic predisposition. Eur J Hum Genet 2013; 21:1389-95. [PMID: 23531863 DOI: 10.1038/ejhg.2013.53] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 02/15/2013] [Accepted: 02/19/2013] [Indexed: 02/06/2023] Open
Abstract
Recently our group completed a genome-wide linkage study investigating Australian and Spanish families with inherited risk of colorectal cancer (CRC). A minor linkage peak from that study located on chromosome 1 correlates with the location of a known CRC risk-modifying gene, prostaglandin synthase (PTGS2). PTGS2 encodes the inducible prostaglandin synthase enzyme cyclooxygenase-2 (COX-2). Prostaglandins are implicated in the initiation of carcinogenesis and progression of tumours. Sequencing of PTGS2 in a small subset of affected individuals identified a high frequency of the minor C allele of single nucleotide polymorphism rs5275. We then genotyped the rs5275 polymorphism in 183 affected and 223 unaffected individuals from our CRC predisposed families. Tests for association in the presence of linkage were made using family-based association tests. The C allele was found to be significantly associated (P<0.01) with diagnosis of hereditary non-syndromic CRC (P=0.0094, dominant model) and an earlier age of diagnosis (P=0.0089, heterozygous-advantage model). Interestingly, by stratifying the age of diagnosis data, we observed a speculative gender-discordant effect. Relative to other groups, female CC carriers were diagnosed less when young, but by 60 years of age were the most at risk group. Conversely, CT carriers of both genders showed a consistently earlier diagnosis relative to TT carriers. Our results suggest potential differential age-and gender-dependent efficacies of chemopreventative COX-2 inhibitors in the context of non-syndromic colorectal cancer.
Collapse
Affiliation(s)
- Jason Ross
- 1] CSIRO, Preventative Health National Research Flagship, North Ryde, NSW, Australia [2] Animal, Food and Health Sciences, CSIRO, North Ryde, NSW, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Prognostic value of single nucleotide polymorphisms of candidate genes associated with inflammation in early stage breast cancer. Breast Cancer Res Treat 2013; 138:917-24. [PMID: 23529385 DOI: 10.1007/s10549-013-2445-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
Abstract
To examine the role of germline genetic variations in inflammatory pathways as modifiers of time to recurrence (TTR) in patients with early stage breast cancer (BC), DNA from 997 early stage BC patients was genotyped for 53 tagging single nucleotide polymorphisms (SNPs) in 12 genes involved in inflammation. SNPs were analyzed separately for Caucasians versus African-Americans and Hispanics. Cox proportional hazards models were used to evaluate the association between SNPs in the inflammatory genes and TTR, adjusted for clinical and pathologic covariates. In univariable analyses of Caucasian women, the homozygous genotype of 12 SNPs, including 6 NFKB1 SNPs, 4 IL4 SNPs, and 2 IL13 SNPs, were significantly associated with a decrease in TTR compared with the heterozygous and/or corresponding homozygous genotype (P < 0.05). The significant NFKB1 and IL4 SNPs were in an area of high linkage disequilibrium (D' > 0.8). After adjusting for stage, age, and treatment, carriage of the homozygous genotypes for NFKB1 rs230532 and IL13rs1800925 were independently associated with a shorter TTR (P = 0.001 and P = 0.034, respectively). In African-American and Hispanic patients, expression of NFKB1 rs3774932, TNFrs1799964, and IL4rs3024543 SNPs were associated with a shorter TTR in univariable model. Only NFKB1 rs3774932 (P = 0.02) and IL4Rrs3024543 (P = 0.03) had independent prognostic value in the multivariable model These data support the existence of host genetic susceptibility as a component in recurrence risk mediated by pro-inflammatory and immune factors, and suggest the potential for drugs which modify immune responses and inflammatory genes to improve prognosis in early stage BC.
Collapse
|
15
|
Mahfoudh W, Bouaouina N, Gabbouj S, Chouchane L. FASL-844 T/C polymorphism: a biomarker of good prognosis of breast cancer in the Tunisian population. Hum Immunol 2012; 73:932-8. [PMID: 22732091 DOI: 10.1016/j.humimm.2012.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 06/05/2012] [Accepted: 06/14/2012] [Indexed: 01/16/2023]
Abstract
The single nucleotide polymorphism, rs763110 (-844 T/C) of the FASL gene, is located within a putative binding motif of CAAT/enhancer-binding protein β transcription factor. Higher basal expression of FASL is significantly associated with the FASL-844 C allele compared with the FASL-844 T allele suggesting that the FASL-844 T/C polymorphism may influence FASL expression and FASL-mediated signalling, and ultimately, the susceptibility to cancer. Therefore, we carried out a population-based study to estimate the FASL-844 C allele frequency in our population and to investigate, in a case-control study, the potential association of the FASL-844 T/C polymorphism with the risk and prognosis of breast cancer in Tunisia. FASL-844 T/C polymorphism was examined in a Tunisian population-based case-control of 438 patients with breast cancer and 332 control subjects using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. By using TT genotype as reference, no significant association was found between any genotype and the risk of developing breast cancer. The frequency of the FASL-844 C allele was 46.3% among the cases and 43.7% among the controls. Similarly, by using T allele as reference, this difference was also not statistically significant. We observed FASL-844 CC genotype and FASL-844 C allele were significantly associated with SBR 1-2 tumour grade (OR=0.42, P=0.007; OR=0.65, P=0.005, respectively). In patients with diagnosis age ≤ 50 years, FASL-844 CC genotype and C allele showed significant associations with T(1)-T(2) clinical tumour size (OR=0.34, P=0.01; OR=0.65, P=0.02, respectively) and SBR grade 1-2 (OR=0.41, P=0.02; OR=0.62, P=0.01, respectively). A marginally significant association was also found with negative nodal status (OR=0.53, P=0.06; OR=0.73, P=0.07, respectively). Thus, the FASL-844 CC genotype and C allele seem to be associated with a good prognosis in patients with diagnosis age ≤ 50 years.
Collapse
Affiliation(s)
- Wijden Mahfoudh
- Laboratoire d'Immuno-Oncologie Moléculaire, Faculté de Médecine de Monastir, Université de Monastir, 5019 Monastir, Tunisia.
| | | | | | | |
Collapse
|
16
|
Lavender NA, Rogers EN, Yeyeodu S, Rudd J, Hu T, Zhang J, Brock GN, Kimbro KS, Moore JH, Hein DW, Kidd LCR. Interaction among apoptosis-associated sequence variants and joint effects on aggressive prostate cancer. BMC Med Genomics 2012; 5:11. [PMID: 22546513 PMCID: PMC3355002 DOI: 10.1186/1755-8794-5-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 04/30/2012] [Indexed: 01/26/2023] Open
Abstract
Background Molecular and epidemiological evidence demonstrate that altered gene expression and single nucleotide polymorphisms in the apoptotic pathway are linked to many cancers. Yet, few studies emphasize the interaction of variant apoptotic genes and their joint modifying effects on prostate cancer (PCA) outcomes. An exhaustive assessment of all the possible two-, three- and four-way gene-gene interactions is computationally burdensome. This statistical conundrum stems from the prohibitive amount of data needed to account for multiple hypothesis testing. Methods To address this issue, we systematically prioritized and evaluated individual effects and complex interactions among 172 apoptotic SNPs in relation to PCA risk and aggressive disease (i.e., Gleason score ≥ 7 and tumor stages III/IV). Single and joint modifying effects on PCA outcomes among European-American men were analyzed using statistical epistasis networks coupled with multi-factor dimensionality reduction (SEN-guided MDR). The case-control study design included 1,175 incident PCA cases and 1,111 controls from the prostate, lung, colo-rectal, and ovarian (PLCO) cancer screening trial. Moreover, a subset analysis of PCA cases consisted of 688 aggressive and 488 non-aggressive PCA cases. SNP profiles were obtained using the NCI Cancer Genetic Markers of Susceptibility (CGEMS) data portal. Main effects were assessed using logistic regression (LR) models. Prior to modeling interactions, SEN was used to pre-process our genetic data. SEN used network science to reduce our analysis from > 36 million to < 13,000 SNP interactions. Interactions were visualized, evaluated, and validated using entropy-based MDR. All parametric and non-parametric models were adjusted for age, family history of PCA, and multiple hypothesis testing. Results Following LR modeling, eleven and thirteen sequence variants were associated with PCA risk and aggressive disease, respectively. However, none of these markers remained significant after we adjusted for multiple comparisons. Nevertheless, we detected a modest synergistic interaction between AKT3 rs2125230-PRKCQ rs571715 and disease aggressiveness using SEN-guided MDR (p = 0.011). Conclusions In summary, entropy-based SEN-guided MDR facilitated the logical prioritization and evaluation of apoptotic SNPs in relation to aggressive PCA. The suggestive interaction between AKT3-PRKCQ and aggressive PCA requires further validation using independent observational studies.
Collapse
Affiliation(s)
- Nicole A Lavender
- Department of Pharmacology & Toxicology, School of Medicine, University of Louisville-UofL, Louisville, KY, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Tumour necrosis factor (TNF), an important proinflammatory cytokine, plays a role in the regulation of cell differentiation, proliferation and death, as well as in inflammation, innate and adaptive immune responses, and also implicated in a wide variety of human diseases. The presence of DNA sequence variations in regulatory region might interfere with transcription of TNF gene, influencing the circulating level of TNF and thus increases the susceptibility to human diseases (infectious, cancer, autoimmune, neurodegenerative and other diseases). In this review, we have comprehensively analysed various published case-control studies of different types of human diseases, in which TNF gene polymorphism played a role, and computationally predicted several single nucleotide polymorphisms (SNPs) lie in transcription factor-binding sites (TFBS) of transcription factors (TFs). It has been observed that TNF enhancer polymorphism is implicated in several diseases, and TNF rs1800629 and rs361525 SNPs are the most important in human disease susceptibility as these might influence the transcription of TNF gene. Thirty-two SNPs lies in TFBS of 20 TFs have been detected in the TNF upstream region. It has been found that TNF enhancer polymorphism influences the serum level of TNF in different human diseases and thus affects the susceptibility to diseases. The presence of DNA sequence variation in TNF gene causes the modification of transcriptional regulation and thus responsible for association of susceptibility/resistance with human diseases.
Collapse
Affiliation(s)
- T Qidwai
- Metabolic and Structural Biology Department, Central Institute of Medicinal and Aromatic Plants, Council of Scientific and Industrial Research, Lucknow, Uttar Pradesh, India
| | | |
Collapse
|