1
|
Marni R, Malla M, Chakraborty A, Voonna MK, Bhattacharyya PS, Kgk D, Malla RR. Combination of ionizing radiation and 2-thio-6-azauridine induces cell death in radioresistant triple negative breast cancer cells by downregulating CD151 expression. Cancer Chemother Pharmacol 2024; 94:685-706. [PMID: 39167147 DOI: 10.1007/s00280-024-04709-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) represents the most aggressive subtype of breast cancer and is frequently resistant to therapy, ultimately resulting in treatment failure. Clinical trials have demonstrated the potential of sensitizing radiation therapy (RT)-resistant TNBC through the combination of chemotherapy and RT. This study sought to explore the potential of CD151 as a therapy response marker in the co-treatment strategy involving ionizing radiation (IR) and the repurposed antiviral drug 2-Thio-6-azauridine (TAU) for sensitizing RT-resistant TNBC (TNBC/RR). METHODS The investigation encompassed a variety of assessments, including viability using MTT and LDH assays, cell proliferation through BrdU incorporation and clonogenic assays, cell cycle analysis via flow cytometry, cell migration using wound scratch and Boyden chamber invasion assays, DNA damage assessment through γH2AX analysis, apoptosis evaluation through acridine-orange and ethidium bromide double staining assays, as well as caspase 3 activity measurement using a colorimetric assay. CD151 expression was examined through ELISA, flow cytometry and RT-qPCR. RESULTS The results showed a significant reduction in TNBC/RR cell viability following co-treatment. Moreover, the co-treatment reduced cell migration, induced apoptosis, downregulated CD151 expression, and increased caspase 3 activity in TNBC/RR cells. Additionally, CD151 was predicted to serve as a therapy response marker for co-treatment with TAU and IR. CONCLUSION These findings suggest the potential of combination treatment with IR and TAU as a promising strategy to overcome RT resistance in TNBC. Furthermore, CD151 emerges as a valuable therapy response marker for chemoradiotherapy.
Collapse
Affiliation(s)
- Rakshmitha Marni
- Cancer Biology Laboratory, Department of Life Sciences, GITAM (Deemed to Be University), GITAM School of Science, Visakhapatnam, 530045, A.P, India
| | - Manas Malla
- Department of Computer Science and Engineering, GITAM (Deemed to Be University), GITAM School of Technology, Visakhapatnam, 530045, A.P, India
| | | | - Murali Krishna Voonna
- Mahatma Gandhi Cancer Hospital & Research Institute, Visakhapatnam-, 530017, A.P, India
| | | | - Deepak Kgk
- Mahatma Gandhi Cancer Hospital & Research Institute, Visakhapatnam-, 530017, A.P, India
| | - Rama Rao Malla
- Cancer Biology Laboratory, Department of Life Sciences, GITAM (Deemed to Be University), GITAM School of Science, Visakhapatnam, 530045, A.P, India.
| |
Collapse
|
2
|
Ameixa J, Bald I. Unraveling the Complexity of DNA Radiation Damage Using DNA Nanotechnology. Acc Chem Res 2024; 57:1608-1619. [PMID: 38780304 PMCID: PMC11154965 DOI: 10.1021/acs.accounts.4c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Radiation cancer therapies use different ionizing radiation qualities that damage DNA molecules in tumor cells by a yet not completely understood plethora of mechanisms and processes. While the direct action of the radiation is significant, the byproducts of the water radiolysis, mainly secondary low-energy electrons (LEEs, <20 eV) and reactive oxygen species (ROS), can also efficiently cause DNA damage, in terms of DNA strand breakage or DNA interstrand cross-linking. As a result, these types of DNA damage evolve into mutations hindering DNA replication, leading to cancer cell death. Concomitant chemo-radiotherapy explores the addition of radiosensitizing therapeutics commonly targeting DNA, such as platinum derivatives and halogenated nucleosides, to enhance the harmful effects of ionizing radiation on the DNA molecule. Further complicating the landscape of DNA damage are secondary structures such as G-quadruplexes occurring in telomeric DNA. These structures protect DNA from radiation damage, rendering them as promising targets for new and more selective cancer radiation treatments, rather than targeting linear DNA. However, despite extensive research, there is no single paradigm approach to understanding the mysterious way in which ionizing radiation causes DNA damage. This is due to the multidisciplinary nature of the field of research, which deals with multiple levels of biological organization, from the molecular building blocks of life toward cells and organisms, as well as with complex multiscale radiation-induced effects. Also, intrinsic DNA features, such as DNA topology and specific oligonucleotide sequences, strongly influence its response to damage from ionizing radiation. In this Account, we present our studies focused on the absolute quantification of photon- and low-energy electron-induced DNA damage in strategically selected target DNA sequences. Our methodology involves using DNA origami nanostructures, specifically the Rothemund triangle, as a platform to expose DNA sequences to either low-energy electrons or vacuum-ultraviolet (VUV, <15 eV) photons and subsequent atomic force microscopy (AFM) analysis. Through this approach, the effects of the DNA sequence, incorporation of halogenated radiosensitizers, DNA topology, and the radiation quality on radiation-induced DNA strand breakage have been systematically assessed and correlated with fundamental photon- and electron-driven mechanisms underlying DNA radiation damage. At lower energies, these mechanisms include dissociative electron attachment (DEA), where electrons attach to DNA molecules causing strand breaks, and dissociative photoexcitation of DNA. Additionally, further dissociative processes such as photoionization and electron impact contribute to the complex cascade of DNA damage events induced by ionizing radiation. We expect that emerging DNA origami-based approaches will lead to a paradigm shift in research fields associated with DNA damage and suggest future directions, which can foster the development of technological applications in nanomedicine, e.g., optimized cancer treatments or the molecular design of optimized radiosensitizing therapeutics.
Collapse
Affiliation(s)
- João Ameixa
- Institute
of Chemistry, Hybrid Nanostructures, University
of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
- Centre
of Physics and Technological Research (CEFITEC), Department of Physics,
NOVA School of Science and Technology, University
NOVA of Lisbon, Campus de Caparica 2829-516, Portugal
| | - Ilko Bald
- Institute
of Chemistry, Hybrid Nanostructures, University
of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| |
Collapse
|
3
|
HF Formation through Dissociative Electron Attachment-A Combined Experimental and Theoretical Study on Pentafluorothiophenol and 2-Fluorothiophenol. Int J Mol Sci 2022; 23:ijms23052430. [PMID: 35269573 PMCID: PMC8910151 DOI: 10.3390/ijms23052430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 02/05/2023] Open
Abstract
In chemoradiation therapy, dissociative electron attachment (DEA) may play an important role with respect to the efficiency of the radiosensitizers used. The rational tailoring of such radiosensitizers to be more susceptive to DEA may thus offer a path to increase their efficiency. Potentially, this may be achieved by tailoring rearrangement reactions into the DEA process such that these may proceed at low incident electron energies, where DEA is most effective. Favorably altering the orbital structure of the respective molecules through substitution is another path that may be taken to promote dissociation up on electron capture. Here we present a combined experimental and theoretical study on DEA in relation to pentafluorothiophenol (PFTP) and 2-fluorothiophenol (2-FTP). We investigate the thermochemistry and dynamics of neutral HF formation through DEA as means to lower the threshold for dissociation up on electron capture to these compounds, and we explore the influence of perfluorination on their orbital structure. Fragment ion yield curves are presented, and the thermochemical thresholds for the respective DEA processes are computed as well as the minimum energy paths for HF formation up on electron capture and the underlying orbital structure of the respective molecular anions. We show that perfluorination of the aromatic ring in these compounds plays an important role in enabling HF formation by further lowering the threshold for this process and through favorable influence on the orbital structure, such that DEA is promoted. We argue that this approach may offer a path for tailoring new and efficient radiosensitizers.
Collapse
|
4
|
Nguyen THP, Kumar VB, Ponnusamy VK, Mai TTT, Nhat PT, Brindhadevi K, Pugazhendhi A. Phytochemicals intended for anticancer effects at preclinical levels to clinical practice: Assessment of formulations at nanoscale for non-small cell lung cancer (NSCLC) therapy. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Huang XH, Wang Y, Hong P, Yang J, Zheng CC, Yin XF, Song WB, Xu WW, Li B, He QY. Benzethonium chloride suppresses lung cancer tumorigenesis through inducing p38-mediated cyclin D1 degradation. Am J Cancer Res 2019; 9:2397-2412. [PMID: 31815042 PMCID: PMC6895443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/13/2019] [Indexed: 06/10/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, but effective therapeutics is limited. This study aims to identify novel anticancer strategy from a Food and Drug Administration (FDA)-approved drug library consisting of 528 compounds. Benzethonium Chloride (BZN), a FDA-approved drug for anti-infective, was found to markedly induce apoptosis and inhibit proliferation and colony formation ability of lung cancer cells in dose- and time-dependent manners. BZN also enhanced the sensitivity of lung cancer cells to gefitinib, the first-line treatment strategy for selected lung cancer patients. Furthermore, BZN significantly delayed the growth of tumor xenografts in nude mice by increasing apoptosis and decreasing Ki-67 proliferation index, without obvious toxic effects to the vital organs of animals. Mechanistically, quantitative proteomics coupled with bioinformatics analyses and a series of functional assays demonstrated that BZN induced cell cycle arrest at G1 phase, and this was associated with an increase in p38-mediated phosphorylation at threonine 286 (T286) and accelerated degradation of cyclin D1. Our findings provide the first evidence that BZN could be a promising therapeutic agent in lung cancer treatment.
Collapse
Affiliation(s)
- Xiao-Hui Huang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, China
| | - Yang Wang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, China
| | - Pan Hong
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, China
| | - Jie Yang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, China
| | - Can-Can Zheng
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, China
| | - Xing-Feng Yin
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, China
| | - Wen-Bo Song
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, China
| | - Wen Wen Xu
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan UniversityGuangzhou 510632, China
| | - Bin Li
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, China
| |
Collapse
|
6
|
Lee MW, Parker WB, Xu B. New insights into the synergism of nucleoside analogs with radiotherapy. Radiat Oncol 2013; 8:223. [PMID: 24066967 PMCID: PMC3851323 DOI: 10.1186/1748-717x-8-223] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/24/2013] [Indexed: 11/18/2022] Open
Abstract
Nucleoside analogs have been frequently used in combination with radiotherapy in the clinical setting, as it has long been understood that inhibition of DNA repair pathways is an important means by which many nucleoside analogs synergize. Recent advances in our understanding of the structure and function of deoxycytidine kinase (dCK), a critical enzyme required for the anti-tumor activity for many nucleoside analogs, have clarified the mechanistic role this kinase plays in chemo- and radio-sensitization. A heretofore unrecognized role of dCK in the DNA damage response and cell cycle machinery has helped explain the synergistic effect of these agents with radiotherapy. Since most currently employed nucleoside analogs are primarily activated by dCK, these findings lend fresh impetus to efforts focused on profiling and modulating dCK expression and activity in tumors. In this review we will briefly review the pharmacology and biochemistry of the major nucleoside analogs in clinical use that are activated by dCK. This will be followed by discussions of recent advances in our understanding of dCK activation via post-translational modifications in response to radiation and current strategies aimed at enhancing this activity in cancer cells.
Collapse
Affiliation(s)
- Michael W Lee
- Department of Medical Education, College of Medicine, University of Central Florida, 6850 Lake Nona Blvd,, Orlando, FL 32827, USA.
| | | | | |
Collapse
|