1
|
Akin C, Siebenhaar F, Wechsler JB, Youngblood BA, Maurer M. Detecting Changes in Mast Cell Numbers Versus Activation in Human Disease: A Roadblock for Current Biomarkers? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:1727-1737. [PMID: 38467332 DOI: 10.1016/j.jaip.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/09/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
The pathophysiology of mast cell (MC)-driven disorders is diverse, ranging from localized reactions to systemic disorders caused by abnormal accumulation and activation in multiorgan systems. Prompt and accurate diagnosis is critically important, both for informing treatment and objective assessment of treatment outcomes. As new therapeutics are being developed to deplete MCs or silence them (eg, by engaging inhibitory receptors that block activation), new biomarkers are needed that can distinguish between MC activation versus burden. Serum tryptase is the gold standard for assessing both MC burden and activation; however, commercial tryptase assays have limitations related to timing of release, lack of discernment between inactive (α) and active (β) forms of tryptase, and interpatient variability of baseline levels. Alternative approaches to measuring MC activation include urinary MC mediators, flow cytometry-based assays or gene expression profiling. Additional markers of MC activation are needed for use in clinical diagnostics, to help selection of treatment of MC diseases, and for assessing outcomes of therapy. We review the spectrum of disorders with known or suspected MC contribution, describe the utility and limitations of current MC markers and assays, and discuss the need for new markers that can differentiate between MC activation and burden.
Collapse
Affiliation(s)
- Cem Akin
- Division of Allergy and Clinical Immunology, University of Michigan, Ann Arbor, Mich
| | - Frank Siebenhaar
- Institute of Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Joshua B Wechsler
- Division of Gastroenterology, Hepatology, and Nutrition, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill
| | | | - Marcus Maurer
- Institute of Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany.
| |
Collapse
|
2
|
Alyamany R, Albachir CA, Alsaleh S, Hamad A, Abdulwali SK, Alotaibi AS, Ahmed SO, Alfayez M. Unraveling the Rare Entity of KIT D816V-Negative Systemic Mastocytosis. J Hematol 2024; 13:128-136. [PMID: 38993735 PMCID: PMC11236357 DOI: 10.14740/jh1279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/28/2024] [Indexed: 07/13/2024] Open
Abstract
Systemic mastocytosis (SM) is a rare type of myeloproliferative neoplasm characterized by abnormal proliferation and infiltration of different tissue by clonal mast cells. The uncontrolled proliferation and activation of mast cells trigger the release of vasoactive and inflammatory mediators, resulting in a cascade of systemic symptoms. Around 95% of SM arise from a gain-of-function mutation at the KIT gene, specifically at codon 816, which highlights its essential role in SM and makes it an attractive target for therapy. Although KIT-negative SM is exceptionally rare, the increased number of cases documented in the literature makes it an intriguing dimension of this disorder. The reported clinical manifestations of KIT-negative SM are widely variable, but many are similar to KIT-positive SM. KIT-targeted therapeutic options have been a game-changer in KIT-positive SM, however their role in KIT-negative SM remains controversial. This report aimed to further understand KIT-negative SM by presenting two cases of KIT-negative SM, one of which was responsive to KIT-targeted therapy, and analyzing reported cases in the existing literature.
Collapse
Affiliation(s)
- Ruah Alyamany
- Department of Hematology, Stem Cell Transplant and Cellular Therapy, Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | | | - Sarah Alsaleh
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Alaa Hamad
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Ahmad S Alotaibi
- Department of Hematology, Stem Cell Transplant and Cellular Therapy, Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Syed Osman Ahmed
- Department of Hematology, Stem Cell Transplant and Cellular Therapy, Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Mansour Alfayez
- Department of Hematology, Stem Cell Transplant and Cellular Therapy, Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Abdellateif MS, Bayoumi AK, Mohammed MA. c-Kit Receptors as a Therapeutic Target in Cancer: Current Insights. Onco Targets Ther 2023; 16:785-799. [PMID: 37790582 PMCID: PMC10544070 DOI: 10.2147/ott.s404648] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
c-Kit is a type III receptor tyrosine kinase (RTK) that has an essential role in various biological functions including gametogenesis, melanogenesis, hematopoiesis, cell survival, and apoptosis. c-KIT aberrations, either overexpression or loss-of-function mutations, have been implicated in the pathogenesis and development of many cancers, including gastrointestinal stromal tumors, mastocytosis, acute myeloid leukemia, breast, thyroid, and colorectal cancer, making c-KIT an attractive molecular target for the treatment of cancers. Therefore, a lot of effort has been put into investigating the utility of tyrosine kinase inhibitors for the management of c-KIT mutated tumors. This review of the literature illustrates the role of c-KIT mutations in many cancers, aiming to provide insights into the role of TKIs as a therapeutic option for cancer patients with c-KIT aberrations. In conclusion, c-KIT is implicated in different types of cancer, and it could be a successful molecular target; however, proper detection of the underlying mutation type is required before starting the appropriate personalized therapy.
Collapse
Affiliation(s)
- Mona S Abdellateif
- Medical Biochemistry and Molecular Biology, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
| | - Ahmed K Bayoumi
- Paediatric Oncology Department, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
- Children’s Cancer Hospital 57357, Cairo, 11617, Egypt
| | - Mohammed Aly Mohammed
- Medical Biochemistry and Molecular Biology, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
| |
Collapse
|
4
|
Zaremba-Pataj E, Patkowska E, Krzywdzińska A, Szumera-Ciećkiewicz A, Chlebowska-Tuz J. Acute mast cell leukemia without KIT D816V mutation and lack of CD2 and CD25-a case report of rare entity. J Hematop 2023; 16:39-47. [PMID: 38175371 DOI: 10.1007/s12308-022-00526-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/15/2022] [Indexed: 01/21/2023] Open
Abstract
Systemic mastocytosis (SM) is a rare hematological neoplasm caused by the excessive proliferation of pathological mast cells that accumulate in the bone marrow (BM) and other extracutaneous organs leading to multi-organ damage and failure. Mast cell leukemia (MCL) is a rare form of systemic mastocytosis, accounting for < 1% of all cases of mastocytosis. MCL usually behaves aggressively with poor responses to current treatment options. Here, we report a diagnostic challenge with the leukemic subtype of MCL with a primary suspicion of pancreatic cancer. A cytomorphological, immunophenotypic, and histopathological examination of the bone marrow was performed. The diagnosis was based on the presence of ≥ 20% atypical and immature mast cells in the bone marrow and ≥ 10% mast cells among the peripheral white blood cells. The neoplastic cell population was identified as mast cell lineage by the expression of CD117 and tryptase. Only 3% of neoplastic cells displayed surface markers characteristic for clonal mast cells: CD25 and CD2. The D816V KIT mutation was not found. Neoplastic mast cells expressed CD30, a marker that is currently considered as a new minor criterion for SM. In the presented case, the primary suspicion of pancreatic cancer with osteosclerotic, lung, and pleural metastases was misleading, and a differential diagnosis based on hematological findings was performed. The patient's severe symptoms were likely the result of organ damage from mast cell infiltration. Despite the use of intensive acute myeloid leukemia (AML)-like polychemotherapy, the patient died during the course of post-induction myelosuppression due to bleeding complications.
Collapse
Affiliation(s)
| | - Elżbieta Patkowska
- Hematology Clinic, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Agnieszka Krzywdzińska
- Laboratory of Immunophenotyping, Division of Hematological Diagnostics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Anna Szumera-Ciećkiewicz
- Diagnostic Hematology Department, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | |
Collapse
|
5
|
Azad F, Zhang J, Wang E. Avapritinib for the treatment of KIT mutation-negative systemic mastocytosis. Proc (Bayl Univ Med Cent) 2022; 36:81-82. [PMID: 36578586 PMCID: PMC9762747 DOI: 10.1080/08998280.2022.2123661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Systemic mastocytosis results from the spread of abnormal mast cells in different parts of the body, with variable clinical presentation. It is difficult to diagnose and to determine the appropriate therapy regimen. We present a case of a 53-year-old man diagnosed with KIT-negative advanced systemic mastocytosis based on the 2016 World Health Organization criteria. The patient presented with widespread symptoms that continued to worsen despite supportive therapy and traditional tyrosine kinase inhibitors. He was ultimately started on avapritinib, which reduced his tryptase level and provided symptomatic relief many years after his diagnosis.
Collapse
Affiliation(s)
- Farhan Azad
- University of Buffalo, Buffalo, New York,Corresponding author: Farhan Azad, DO, 462 Grider St., Buffalo, NY14215 (e-mail: )
| | | | | |
Collapse
|
6
|
Gotlib J, Schwaab J, Shomali W, George TI, Radia DH, Castells M, Carter MC, Hartmann K, Álvarez-Twose I, Brockow K, Bonadonna P, Hermine O, Niedoszytko M, Hoermann G, Sperr WR, Elberink HO, Siebenhaar F, Butterfield JH, Ustun C, Zanotti R, Triggiani M, Schwartz LB, Lyons JJ, Orfao A, Sotlar K, Horny HP, Arock M, Metcalfe DD, Akin C, Lübke J, Valent P, Reiter A. Proposed European Competence Network on Mastocytosis-American Initiative in Mast Cell Diseases (ECNM-AIM) Response Criteria in Advanced Systemic Mastocytosis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:2025-2038.e1. [PMID: 35724948 DOI: 10.1016/j.jaip.2022.05.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 12/18/2022]
Abstract
Advanced systemic mastocytosis (AdvSM) is characterized by the presence of KIT D816V and other somatic mutations (eg, in SRSF2, ASXL1, and RUNX1) in 95% and 60% to 70% of patients, respectively. The biological and clinical consequences of AdvSM include multilineage involvement (eg, associated hematologic neoplasm) in 60% to 80% of patients, variable infiltration and damage (C-findings) of predominantly bone marrow and visceral organs through affected mast cell (MC) and non-MC lineages, and elevated levels of serum tryptase. Recently, the treatment landscape has substantially changed with the introduction of the multikinase/KIT inhibitor midostaurin and the selective KIT D816V inhibitor avapritinib. In this review, we discuss the evolution of AdvSM response criteria that have been developed to better capture clinical benefit (eg, improved responses and progression-free and overall survival). We propose refined response criteria from European Competence Network on Mastocytosis and American Initiative in Mast Cell Diseases investigators that use a tiered approach to segregate the effects of histopathologic (eg, bone marrow MC burden, tryptase), molecular (eg, KIT D816V variant allele frequency), clinical (eg, C-findings), and symptom response on long-term outcomes. These response criteria require evaluation in future prospective clinical trials of selective KIT inhibitors and other novel agents.
Collapse
Affiliation(s)
- Jason Gotlib
- Stanford Cancer Institute/Stanford University School of Medicine, Stanford, Calif.
| | - Juliana Schwaab
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - William Shomali
- Stanford Cancer Institute/Stanford University School of Medicine, Stanford, Calif
| | - Tracy I George
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Deepti H Radia
- Department of Clinical Haematology, Guys and St Thomas' NHS Hospitals, London, United Kingdom
| | - Mariana Castells
- Division of Allergy and Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Melody C Carter
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Karin Hartmann
- Division of Allergy, Department of Dermatology, University Hospital Basel and University of Basel, Basel, Switzerland; Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland
| | - Ivan Álvarez-Twose
- Instituto de Estudios de Mastocitosis de Castilla La Mancha and Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Hospital Virgen del Valle, Toledo, Spain
| | - Knut Brockow
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | | | - Olivier Hermine
- Imagine Institute Université de Paris, Sorbonne, INSERM U1163, Centre National de Référence des Mastocytoses, Hôpital Necker, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Gregor Hoermann
- MLL Munich Leukemia Laboratory, Munich, Germany; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang R Sperr
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria; Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Hanneke Oude Elberink
- Department of Allergology, University Medical Center Groningen and GRIAC Research Institute, University of Groningen, Groningen, The Netherlands
| | - Frank Siebenhaar
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Department of Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
| | | | - Celalettin Ustun
- Department of Medicine, Division of Hematology, Oncology, and Cell Therapy, Coleman Foundation Blood and Marrow Transplant Center at Rush University Medical Center, Chicago, Ill
| | - Roberta Zanotti
- Section of Hematology, Multidisciplinary Outpatients Clinics for Mastocytosis, Department of Medicine, University Hospital of Verona, Verona, Italy
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, Salerno, Italy
| | - Lawrence B Schwartz
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Immunology, Virginia Commonwealth University, Richmond, Va
| | - Jonathan J Lyons
- Translational Allergic Immunopathology Unit, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Alberto Orfao
- Servicio Central de Citometria (NUCLEUS), Instituto de Biología Molecular y Celular del Cáncer (IBMCC) Instituto Biosanitario de Salamanca, CIBERONC and Department of Medicine, University of Salamanca, Salamanca, Spain; Utah
| | - Karl Sotlar
- Institute of Pathology, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Hans-Peter Horny
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Michel Arock
- Department of Hematological Biology, Pitié-Salpêtrière Hospital, Pierre et Marie Curie University, Paris, France
| | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Cem Akin
- Division of Allergy and Clinical Immunology, University of Michigan, Ann Arbor, Mich
| | - Johannes Lübke
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Peter Valent
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria; Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Andreas Reiter
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
7
|
Understanding human mast cells: lesson from therapies for allergic and non-allergic diseases. Nat Rev Immunol 2022; 22:294-308. [PMID: 34611316 DOI: 10.1038/s41577-021-00622-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
Mast cells have crucial roles in allergic and other inflammatory diseases. Preclinical approaches provide circumstantial evidence for mast cell involvement in many diseases, but these studies have major limitations - for example, there is still a lack of suitable mouse models for some mast cell-driven diseases such as urticaria. Some approaches for studying mast cells are invasive or can induce severe reactions, and very few mediators or receptors are specific for mast cells. Recently, several drugs that target human mast cells have been developed. These include monoclonal antibodies and small molecules that can specifically inhibit mast cell degranulation via key receptors (such as FcεRI), that block specific signal transduction pathways involved in mast cell activation (for example, BTK), that silence mast cells via inhibitory receptors (such as Siglec-8) or that reduce mast cell numbers and prevent their differentiation by acting on the mast/stem cell growth factor receptor KIT. In this Review, we discuss the existing and emerging therapies that target mast cells, and we consider how these treatments can help us to understand mast cell functions in disease.
Collapse
|
8
|
Valent P, Akin C, Hartmann K, Reiter A, Gotlib J, Sotlar K, Sperr WR, Degenfeld-Schonburg L, Smiljkovic D, Triggiani M, Horny HP, Arock M, Galli SJ, Metcalfe DD. Drug-Induced Mast Cell Eradication: A Novel Approach to Treat Mast Cell Activation Disorders? J Allergy Clin Immunol 2022; 149:1866-1874. [PMID: 35421448 DOI: 10.1016/j.jaci.2022.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/28/2022] [Accepted: 04/06/2022] [Indexed: 11/26/2022]
Abstract
Mast cell activation is a key event in allergic reactions, other inflammatory states, and mast cell activation syndromes. Mast cell-stabilizing agents, mediator-targeting drugs and drugs interfering with mediator effects are often prescribed in these patients. However, the clinical efficacy of these drugs varies, depending on the numbers of involved mast cells and the underlying pathology. One straightforward approach would be to eradicate the primary target cell. However, to date, no mast cell-eradicating treatment approach has been developed for patients suffering from mast cell activation disorders. Nevertheless, recent data suggest that long-term treatment with agents that effectively inhibit KIT-function results in the virtual eradication of tissue mast cells and a sustained decrease in serum tryptase levels. In many of these patients, mast cell depletion is associated with a substantial improvement in mediator-induced symptoms. In patients with an underlying KIT D816V+ mastocytosis, such mast cell eradication requires an effective inhibitor of KIT D816V, such as avapritinib. However, the use of KIT inhibitors must be balanced against potential side effects. We here discuss mast cell-eradicating strategies in various disease models, the feasibility of this approach, available clinical data, and future prospects for the use of KIT-targeting drugs in mast cell activation disorders.
Collapse
Affiliation(s)
- Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Austria.
| | - Cem Akin
- Division of Allergy and Clinical Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Karin Hartmann
- Division of Allergy, Department of Dermatology, University Hospital Basel and University of Basel, Switzerland; Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland
| | - Andreas Reiter
- Department of Hematology and Oncology, University Hospital Mannheim, Germany
| | - Jason Gotlib
- Stanford Cancer Institute/Stanford University School of Medicine/Stanford Cancer Institute, Stanford, CA, USA
| | - Karl Sotlar
- Institute of Pathology, Paracelsus Medical University Salzburg, Austria
| | - Wolfgang R Sperr
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Austria
| | - Lina Degenfeld-Schonburg
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Austria
| | - Dubravka Smiljkovic
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Austria
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, Italy
| | - Hans-Peter Horny
- Institute of Pathology, Ludwig-Maximilian-University, Munich, Germany
| | - Michel Arock
- Department of Hematological Biology, Pitié-Salpêtrière Charles-Foix Hospital, AP-HP Sorbonne University, Paris, France
| | - Stephen J Galli
- Department of Pathology, Department of Microbiology and Immunology, and the Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, MD, USA
| |
Collapse
|
9
|
Precision Medicine in Systemic Mastocytosis. Medicina (B Aires) 2021; 57:medicina57111135. [PMID: 34833353 PMCID: PMC8623914 DOI: 10.3390/medicina57111135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
Mastocytosis is a rare hematological neoplasm characterized by the proliferation of abnormal clonal mast cells (MCs) in different cutaneous and extracutaneous organs. Its diagnosis is based on well-defined major and minor criteria, including the pathognomonic dense infiltrate of MCs detected in bone marrow (BM), elevated serum tryptase level, abnormal MCs CD25 expression, and the identification of KIT D816V mutation. The World Health Organization (WHO) classification subdivides mastocytosis into a cutaneous form (CM) and five systemic variants (SM), namely indolent/smoldering (ISM/SSM) and advanced SM (AdvSM) including aggressive SM (ASM), SM associated to hematological neoplasms (SM-AHN), and mast cell leukemia (MCL). More than 80% of patients with SM carry a somatic point mutation of KIT at codon 816, which may be targeted by kinase inhibitors. The presence of additional somatic mutations detected by next generation sequencing analysis may impact prognosis and drive treatment strategy, which ranges from symptomatic drugs in indolent forms to kinase-inhibitors active on KIT. Allogeneic stem cell transplant (SCT) may be considered in selected SM cases. Here, we review the clinical, diagnostic, and therapeutic issues of SM, with special emphasis on the translational implications of SM genetics for a precision medicine approach in clinical practice.
Collapse
|
10
|
Jackson CW, Pratt CM, Rupprecht CP, Pattanaik D, Krishnaswamy G. Mastocytosis and Mast Cell Activation Disorders: Clearing the Air. Int J Mol Sci 2021; 22:ijms222011270. [PMID: 34681933 PMCID: PMC8540348 DOI: 10.3390/ijms222011270] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/11/2022] Open
Abstract
Mast cells are derived from hematopoietic stem cell precursors and are essential to the genesis and manifestations of the allergic response. Activation of these cells by allergens leads to degranulation and elaboration of inflammatory mediators, responsible for regulating the acute dramatic inflammatory response seen. Mast cells have also been incriminated in such diverse disorders as malignancy, arthritis, coronary artery disease, and osteoporosis. There has been a recent explosion in our understanding of the mast cell and the associated clinical conditions that affect this cell type. Some mast cell disorders are associated with specific genetic mutations (such as the D816V gain-of-function mutation) with resultant clonal disease. Such disorders include cutaneous mastocytosis, systemic mastocytosis (SM), its variants (indolent/ISM, smoldering/SSM, aggressive systemic mastocytosis/ASM) and clonal (or monoclonal) mast cell activation disorders or syndromes (CMCAS/MMAS). Besides clonal mast cell activations disorders/CMCAS (also referred to as monoclonal mast cell activation syndromes/MMAS), mast cell activation can also occur secondary to allergic, inflammatory, or paraneoplastic disease. Some disorders are idiopathic as their molecular pathogenesis and evolution are unclear. A genetic disorder, referred to as hereditary alpha-tryptasemia (HαT) has also been described recently. This condition has been shown to be associated with increased severity of allergic and anaphylactic reactions and may interact variably with primary and secondary mast cell disease, resulting in complex combined disorders. The role of this review is to clarify the classification of mast cell disorders, point to molecular aspects of mast cell signaling, elucidate underlying genetic defects, and provide approaches to targeted therapies that may benefit such patients.
Collapse
Affiliation(s)
- Clayton Webster Jackson
- Department of Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (C.W.J.); (C.M.P.)
| | - Cristina Marie Pratt
- Department of Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (C.W.J.); (C.M.P.)
| | | | - Debendra Pattanaik
- The Division of Allergy and Immunology, UT Memphis College of Medicine, Memphis, TN 38103, USA;
| | - Guha Krishnaswamy
- Department of Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (C.W.J.); (C.M.P.)
- The Bill Hefner VA Medical Center, The Division of Allergy and Immunology, Salisbury, NC 28144, USA
- Correspondence: or
| |
Collapse
|
11
|
Below S, Michaelis LC. Avapritinib in the Treatment of Systemic Mastocytosis: an Update. Curr Hematol Malig Rep 2021; 16:464-472. [PMID: 34580817 DOI: 10.1007/s11899-021-00650-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW Patients with systemic mastocytosis, a dangerous and rare myeloid neoplasm, have long had few therapies available to them and, historically, rarely achieved from significant disease control. However, research and translational developments over the last decade have led to promising new options for disease management. In this review, we briefly outline the history of treatment for systemic mastocytosis and subsequently focus on the clinical development and potential applications of avapritinib (previously known as BLU-285), a potent and selective oral inhibitor of the tyrosine kinase most commonly mutated in this condition. RECENT FINDINGS Phase I data and recent phase II data have demonstrated both safety and efficacy of this agent used as monotherapy, even in patients who have progressed on other targeted therapy. Studies to date have focused on patients with the most aggressive disease, but new trials in indolent mastocytosis are accruing currently. Over the next several years, one may anticipate finalized, peer-reviewed, and formally published data for this agent in both advanced systemic and indolent mastocytosis. Evidence from these early studies will also likely highlight where more research is needed.
Collapse
Affiliation(s)
- Samantha Below
- Department of Medicine, Medical College of Wisconsin, 9200 W. Wisconsin Ave, Milwaukee, WI, 53226, USA
| | - Laura C Michaelis
- Department of Medicine, Medical College of Wisconsin, 9200 W. Wisconsin Ave, Milwaukee, WI, 53226, USA.
| |
Collapse
|
12
|
Sumbly V, Landry I, Iqbal S, Bhatti Z, Alshamam MS, Ashfaq S, Rizzo V. The Role of Avapritinib for the Treatment of Systemic Mastocytosis. Cureus 2021; 13:e18385. [PMID: 34729266 PMCID: PMC8556140 DOI: 10.7759/cureus.18385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 01/08/2023] Open
Abstract
Systemic mastocytosis is a rare hematologic disorder characterized by the clonal proliferation of mast cells in extra-cutaneous organs. This disease can be further subdivided into five different phenotypes: indolent systemic mastocytosis (ISM), smoldering systemic mastocytosis (SSM), aggressive systemic mastocytosis (ASM), systemic mastocytosis with an associated hematological neoplasm (SM-AHN) and mast cell leukemia (MCL). The tyrosine kinase inhibitor (and also potent KIT D816V inhibitor) avapritinib, initially approved for the treatment of gastrointestinal stromal tumors (GISTs) bearing a PDGFRA exon 18 mutation, also showed great promise in patients with systemic mastocytosis, a disease known to be driven by a mutation in KIT (D816V). We present an overview of this rare disorder, including a review of the current understanding of the genetic mechanisms which lead to the disease state, the action of the tyrosine kinase inhibitors, as well as the latest clinical trial data which led to the current recommendations for the use of avapritinib.
Collapse
Affiliation(s)
- Vikram Sumbly
- Internal Medicine, Icahn School of Medicine at Mount Sinai, New York City Health and Hospitals, Queens, USA
| | - Ian Landry
- Medicine, Icahn School of Medicine at Mount Sinai, New York City Health and Hospitals, Queens, USA
| | - Saba Iqbal
- Internal Medicine, Icahn School of Medicine at Mount Sinai, New York City Health and Hospitals, Queens, USA
| | - Zamaraq Bhatti
- Internal Medicine, Icahn School of Medicine at Mount Sinai, New York City Health and Hospitals, Queens, USA
| | - Mohsen S Alshamam
- Internal Medicine, Icahn School of Medicine at Mount Sinai, New York City Health and Hospitals, Queens, USA
| | | | - Vincent Rizzo
- Internal Medicine, Icahn School of Medicine at Mount Sinai, New York City Health and Hospitals, Queens, USA
| |
Collapse
|
13
|
Abstract
INTRODUCTION Systemic mastocytosis (SM) is a rare myeloid neoplasm driven in ≈95% of cases by activating KIT mutations, usually D816V. SM can be indolent (ISM), smoldering (SSM) and advanced (AdvSM), the latter characterized by organ damage resulting from infiltrating neoplastic mast cells. The vast majority of cases are indolent, with near-normal life expectancy, although symptoms can be severe. AdvSM, comprising aggressive SM, SM with an associated hematologic neoplasm and mast cell leukemia, however, carries a poor prognosis. Avapritinib is a highly potent and selective inhibitor of mutant KIT. AREAS COVERED We provide an overview of SM, including the current therapeutic landscape, and discuss avapritinib in detail: its chemistry and discovery, pharmacodynamic and pharmacokinetic data, current approval status and safety and efficacy profiles in both advanced and non-advanced SM. EXPERT OPINION With a response rate of 75% amongst evaluable patients with AdvSM and marked reductions observed in measures of mast cell and disease burden, avapritinib stands out as a highly effective targeted therapy for this mutant KIT-driven disease. Cognitive impairment may occur, and intracranial hemorrhage has been reported, particularly in association with severe thrombocytopenia. Early results in patients with ISM/SSM are encouraging. Avapritinib is now approved in the US for AdvSM.
Collapse
Affiliation(s)
- Prithviraj Bose
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Srdan Verstovsek
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
14
|
Systemic Mastocytosis: Molecular Landscape and Implications for Treatment. Mediterr J Hematol Infect Dis 2021; 13:e2021046. [PMID: 34276915 PMCID: PMC8265368 DOI: 10.4084/mjhid.2021.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/11/2021] [Indexed: 12/04/2022] Open
Abstract
Over the past decade, we have witnessed significant advances in the molecular characterization of systemic mastocytosis (SM). This has provided important information for a better understanding of the pathogenesis of the disease but has also practically impacted the way we diagnose and manage it. Advances in molecular testing have run in parallel with advances in therapeutic targeting of constitutive active KIT, the major driver of the disease. Therefore, assessing the molecular landscape in each SM patient is essential for diagnosis, prognosis, treatment, and therapeutic efficacy monitoring. This is facilitated by the routine availability of novel technologies like digital PCR and NGS. This review aims to summarize the pathogenesis of the disease, discuss the value of molecular diagnostic testing and how it should be performed, and provide an overview of present and future therapeutic concepts based on fine molecular characterization of SM patients.
Collapse
|
15
|
New Insights into the Pathogenesis of Systemic Mastocytosis. Int J Mol Sci 2021; 22:ijms22094900. [PMID: 34063170 PMCID: PMC8125314 DOI: 10.3390/ijms22094900] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
Mastocytosis is a type of myeloid neoplasm characterized by the clonal, neoplastic proliferation of morphologically and immunophenotypically abnormal mast cells that infiltrate one or more organ systems. Systemic mastocytosis (SM) is a more aggressive variant of mastocytosis with extracutaneous involvement, which might be associated with multi-organ dysfunction or failure and shortened survival. Over 80% of patients with SM carry the KIT D816V mutation. However, the KIT D816V mutation serves as a weak oncogene and appears to be a late event in the pathogenesis of mastocytosis. The management of SM is highly individualized and was largely palliative for patients without a targeted form of therapy in past decades. Targeted therapy with midostaurin, a multiple kinase inhibitor that inhibits KIT, has demonstrated efficacy in patients with advanced SM. This led to the recent approval of midostaurin by the United States Food and Drug Administration and European Medicines Agency. However, the overall survival of patients treated with midostaurin remains unsatisfactory. The identification of genetic and epigenetic alterations and understanding their interactions and the molecular mechanisms involved in mastocytosis is necessary to develop rationally targeted therapeutic strategies. This review briefly summarizes recent developments in the understanding of SM pathogenesis and potential treatment strategies for patients with SM.
Collapse
|
16
|
Response Criteria in Advanced Systemic Mastocytosis: Evolution in the Era of KIT Inhibitors. Int J Mol Sci 2021; 22:ijms22062983. [PMID: 33804174 PMCID: PMC8001403 DOI: 10.3390/ijms22062983] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic mastocytosis (SM) is a rare clonal hematologic neoplasm, driven, in almost all cases, by the activating KIT D816V mutation that leads to the growth and accumulation of neoplastic mast cells. While patients with advanced forms of SM have a poor prognosis, the introduction of KIT inhibitors (e.g., midostaurin, and avapritinib) has changed their outlook. Because of the heterogenous nature of advanced SM (advSM), successive iterations of response criteria have tried to capture different dimensions of the disease, including measures of mast cell burden (percentage of bone marrow mast cells and serum tryptase level), and mast cell-related organ damage (referred to as C findings). Historically, response criteria have been anchored to reversion of one or more organ damage finding(s) as a minimal criterion for response. This is a central principle of the Valent criteria, Mayo criteria, and International Working Group-Myeloproliferative Neoplasms Research and Treatment and European Competence Network on Mastocytosis (IWG-MRT-ECNM) consensus criteria. Irrespective of the response criteria, an ever-present challenge is how to apply response criteria in patients with SM and an associated hematologic neoplasm, where the presence of both diseases complicates assignment of organ damage and adjudication of response. In the context of trials with the selective KIT D816V inhibitor avapritinib, pure pathologic response (PPR) criteria, which rely solely on measures of mast cell burden and exclude consideration of organ damage findings, are being explored as more robust surrogate of overall survival. In addition, the finding that avapritinib can elicit complete molecular responses of KIT D816V allele burden, establishes a new benchmark for advSM and motivates the inclusion of definitions for molecular response in future criteria. Herein, we also outline how the concept of PPR can inform a proposal for new response criteria which use a tiered evaluation of pathologic, molecular, and clinical responses.
Collapse
|
17
|
Di Raimondo C, Del Duca E, Silvaggio D, Di Prete M, Lombardo P, Mazzeo M, Spallone G, Campione E, Botti E, Bianchi L. Cutaneous mastocytosis: A dermatological perspective. Australas J Dermatol 2020; 62:e1-e7. [PMID: 33040350 DOI: 10.1111/ajd.13443] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 12/01/2022]
Abstract
Mastocytosis is a rare disease characterised by expansion and collection of clonal mast cells in various organs including the skin, bone marrow, spleen, lymph nodes and gastrointestinal tract. The prevalence of mastocytosis has been estimated to be one in 10 000, while the estimated incidence is one per 100 000 people per year. Cutaneous mastocytosis is classified into (i) maculopapular cutaneous mastocytosis, also known as urticaria pigmentosa; (ii) diffuse cutaneous mastocytosis; and (iii) mastocytoma of the skin. In adults, cutaneous lesions are usually associated with indolent systemic mastocytosis and have a chronic evolution. Paediatric patients, on the contrary, have often cutaneous manifestations without systemic involvement and usually experience a spontaneous regression. Diagnosis of cutaneous mastocytosis may be challenging due to the rarity of the disease and the overlap of cutaneous manifestations. This short review describes pathogenesis and clinical aspects of cutaneous mastocytosis with a focus on diagnosis and currently available therapies.
Collapse
Affiliation(s)
| | - Ester Del Duca
- Department of Dermatology, University of Roma Tor Vergata, Rome, Italy
| | | | - Monia Di Prete
- Department of Anatomic Pathology, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Lombardo
- Department of Dermatology, University of Roma Tor Vergata, Rome, Italy
| | - Mauro Mazzeo
- Department of Dermatology, University of Roma Tor Vergata, Rome, Italy
| | - Giulia Spallone
- Department of Dermatology, University of Roma Tor Vergata, Rome, Italy
| | - Elena Campione
- Department of Dermatology, University of Roma Tor Vergata, Rome, Italy
| | - Elisabetta Botti
- Department of Dermatology, University of Roma Tor Vergata, Rome, Italy
| | - Luca Bianchi
- Department of Dermatology, University of Roma Tor Vergata, Rome, Italy
| |
Collapse
|
18
|
New developments in diagnosis, prognostication, and treatment of advanced systemic mastocytosis. Blood 2020; 135:1365-1376. [DOI: 10.1182/blood.2019000932] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/30/2019] [Indexed: 12/26/2022] Open
Abstract
AbstractSystemic mastocytosis (SM) has greatly benefited from the broad application of precision medicine techniques to hematolymphoid neoplasms. Sensitive detection of the recurrent KIT D816V mutation and use of next-generation sequencing (NGS) panels to profile the genetic landscape of SM variants have been critical adjuncts to the diagnosis and subclassification of SM, and development of clinical-molecular prognostic scoring systems. Multilineage KIT involvement and multimutated clones are characteristic of advanced SM (advSM), especially SM with an associated hematologic neoplasm (AHN). A major challenge is how to integrate conventional markers of mast cell disease burden (percentage of bone marrow mast cell infiltration and serum tryptase levels) with molecular data (serial monitoring of both KIT D816V variant allele frequency and NGS panels) to lend more diagnostic and prognostic clarity to the heterogeneous clinical presentations and natural histories of advSM. The approval of the multikinase/KIT inhibitor midostaurin has validated the paradigm of KIT inhibition in advSM, and the efficacy and safety of second-generation agents, such as the switch-control inhibitor ripretinib (DCC-2618) and the D816V-selective inhibitor avapritinib (BLU-285) are being further defined in ongoing clinical trials. Looking forward, perhaps the most fruitful marriage of the advances in molecular genetics and treatment will be the design of adaptive basket trials that combine histopathology and genetic profiling to individualize treatment approaches for patients with diverse AHNs and relapsed/refractory SM.
Collapse
|
19
|
Piris-Villaespesa M, Alvarez-Twose I. Systemic Mastocytosis: Following the Tyrosine Kinase Inhibition Roadmap. Front Pharmacol 2020; 11:443. [PMID: 32346366 PMCID: PMC7171446 DOI: 10.3389/fphar.2020.00443] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 03/20/2020] [Indexed: 12/16/2022] Open
Abstract
Systemic mastocytosis is a rare and heterogeneous disease characterized by mast cell proliferation and activation. KIT is a transmembrane tyrosine kinase which plays a key role in mast cell growth, differentiation and survival. After interaction with its ligand, the stem cell factor, KIT dimerizes activating downstream pathways involving multiple tyrosine kinases (PI3K, JAK/STAT, RAS/ERK). Activating mutations in KIT are detected in most cases of systemic mastocytosis, being the most common KIT D816V. Therefore, since the emergence of tyrosine kinase inhibitors, KIT inhibition has been an attractive approach when facing mastocytosis treatment. Initial reports showed that only the rare KIT D816V negative cases were responsive to tyrosine kinase inhibitors. However, the development of new tyrosine kinase inhibitors such as midostaurin or avapritinib with activity against mast cells carrying the D816V KIT mutation, has changed the landscape of this disease.
Collapse
Affiliation(s)
- Miguel Piris-Villaespesa
- Servicio de Hematología y Hemoterapia and IRYCIS, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Ivan Alvarez-Twose
- Instituto de Estudios de Mastocitosis de Castilla La Mancha (CLMast) and CIBERONC, Hospital Virgen del Valle, Toledo, Spain
| |
Collapse
|
20
|
Tamlin VS, Bottema CDK, Peaston AE. Comparative aspects of mast cell neoplasia in animals and the role of KIT in prognosis and treatment. Vet Med Sci 2019; 6:3-18. [PMID: 31650704 PMCID: PMC7036313 DOI: 10.1002/vms3.201] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mast cell neoplasia clinical presentation and biological behaviour vary considerably across mammalian species, ranging from a solitary benign mass to an aggressive systemic malignancy. Mutations in the KIT Proto‐Oncogene Receptor Tyrosine Kinase (KIT) gene are common molecular abnormalities involved in mast cell tumorigenesis. KIT mutations often occur in dog, cat and human neoplastic mast cells and result in altered Kit protein structure and function. In dogs, certain KIT mutations are associated with more malignant and lethal disease. In contrast, KIT mutations in feline and human mast cell neoplasms are not correlated with prognosis, but are of value in diagnosis and treatment planning in humans. KIT genetic abnormalities have not been well investigated in other species, although aberrant cytoplasmic Kit protein staining detected in neoplasms of the ferret, horse and cow resembles aberrant Kit staining patterns detected in neoplastic mast cells of dogs, cats and humans. Mutations within KIT are classified as either regulatory‐type or enzymatic pocket‐type mutations according to their location within the KIT Proto‐Oncogene. Mutations within the enzymatic pocket domain confer tumour resistance to tyrosine kinase inhibitors (TKIs). Hence, knowledge of tumour KIT mutation status adds valuable information for optimizing patient treatment strategies. The use of TKIs in combination with conventional chemotherapeutics has opened a new treatment avenue for patients unresponsive to existing drugs. This review highlights the similarities and differences of mast cell neoplasia in mammals with a special focus on the involvement of KIT in the canine and feline forms in comparison to human mast cell neoplasia.
Collapse
Affiliation(s)
- Vanessa S Tamlin
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Cynthia D K Bottema
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Anne E Peaston
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
21
|
Gilreath JA, Tchertanov L, Deininger MW. Novel approaches to treating advanced systemic mastocytosis. Clin Pharmacol 2019; 11:77-92. [PMID: 31372066 PMCID: PMC6630092 DOI: 10.2147/cpaa.s206615] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/26/2019] [Indexed: 12/20/2022] Open
Abstract
Mastocytosis is a myeloproliferative neoplasm characterized by expansion of abnormal mast cells (MCs) in various tissues, including skin, bone marrow, gastrointestinal tract, liver, spleen, or lymph nodes. Subtypes include indolent systemic mastocytosis, smoldering systemic mastocytosis and advanced systemic mastocytosis (AdvSM), a term collectively used for the three most aggressive forms of the disease: aggressive systemic mastocytosis, mast cell leukemia, and systemic mastocytosis with an associated clonal hematological non-mast cell disease (SM-AHNMD). MC activation and proliferation is physiologically controlled in part through stem cell factor (SCF) binding to its cognate receptor, KIT. Gain-of-function KIT mutations that lead to ligand-independent kinase activation are found in most SM subtypes, and the overwhelming majority of AdvSM patients harbor the KITD816V mutation. Several approved tyrosine kinase inhibitors (TKIs), such as imatinib and nilotinib, have activity against wild-type KIT but lack activity against KITD816V. Midostaurin, a broad spectrum TKI with activity against KITD816V, has a 60% clinical response rate, and is currently the only drug specifically approved for AdvSM. While this agent improves the prognosis of AdvSM patients and provides proof of principle for targeting KITD816V as a driver mutation, most responses are partial and/or not sustained, indicating that more potent and/or specific inhibitors are required. Avapritinib, a KIT and PDGFRα inhibitor, was specifically designed to inhibit KITD816V. Early results from a Phase 1 trial suggest that avapritinib has potent antineoplastic activity in AdvSM, extending to patients who failed midostaurin. Patients exhibited a rapid reduction in both symptoms as well as reductions of bone marrow MCs, serum tryptase, and KITD816V mutant allele burden. Adverse effects include expected toxicities such as myelosuppression and periorbital edema, but also cognitive impairment in some patients. Although considerable excitement about avapritinib exists, more data are needed to assess long-term responses and adverse effects of this novel TKI.
Collapse
Affiliation(s)
- J A Gilreath
- Department of Pharmacotherapy, College of Pharmacy and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - L Tchertanov
- Centre de Mathématiques et de Leurs Applications (CMLA-CNRS), ENS Paris-Saclay, Cachan 94235, France
| | - M W Deininger
- Division of Hematology and Hematologic Malignancies and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
22
|
Bibi S, Arock M. Tyrosine Kinase Inhibition in Mastocytosis: KIT and Beyond KIT. Immunol Allergy Clin North Am 2019; 38:527-543. [PMID: 30007468 DOI: 10.1016/j.iac.2018.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mastocytosis is a group of rare disorders characterized by abnormal accumulation of mast cells in one or several organs. Mastocytosis can be seen at any age; but, in adults, the disease is usually systemic and chronic. Patients with indolent systemic mastocytosis (SM) are usually treated symptomatically, but cytoreductive treatments are needed in more advanced SM. In most patients with SM, an activating KIT D816V mutation is found. Thus, patients with advanced SM benefit from treatment with KIT-targeting tyrosine kinase inhibitors. However, none of these drugs are curative; new targeted drugs or combinations are still needed to improve patients' outcome.
Collapse
Affiliation(s)
- Siham Bibi
- Cellular and Molecular Oncology, LBPA CNRS UMR8113, Ecole Normale Supérieure de Paris Saclay, 61, Avenue du Président Wilson, Cachan Cedex 94235, France
| | - Michel Arock
- Cellular and Molecular Oncology, LBPA CNRS UMR8113, Ecole Normale Supérieure de Paris Saclay, 61, Avenue du Président Wilson, Cachan Cedex 94235, France; Laboratory of Hematology, Pitié-Salpêtrière Hospital, 83, Boulevard de l'Hôpital, Paris 75013, France.
| |
Collapse
|
23
|
Shomali W, Gotlib J. The new tool " KIT" in advanced systemic mastocytosis. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:127-136. [PMID: 30504301 PMCID: PMC6245986 DOI: 10.1182/asheducation-2018.1.127] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mastocytosis is a rare disease characterized by KIT-driven expansion and accumulation of neoplastic mast cells in various tissues. Although mediator symptoms related to mast cell activation can impose a symptom burden in cutaneous disease and across the spectrum of systemic mastocytosis subtypes, the presence of an associated hematologic neoplasm and/or organ damage denotes advanced disease and the potential for increased morbidity and mortality. In addition to the revised 2016 World Health Organization classification of mastocytosis, a new diagnostic and treatment toolkit, tethered to enhanced molecular characterization and monitoring, is poised to transform the management of patients with advanced systemic mastocytosis (advSM). Although the efficacy of midostaurin and novel selective KIT D816V inhibitors, such as avapritinib (BLU-285), have validated KIT as a therapeutic target, the clinical and biologic heterogeneity of advSM requires that we reimagine the blueprint for tackling these diseases and use tools that move beyond KIT-centric approaches.
Collapse
Affiliation(s)
- William Shomali
- Divisions of Hematology and
- Medical Oncology, Stanford University School of Medicine/Stanford Cancer Institute, Stanford, CA
| | | |
Collapse
|
24
|
Abstract
Mast cells (MCs) are physiologically activated by binding of stem cell factor (SCF) to the extracellular domains of the Kit receptor. This binding increases the proliferation and prolongs the survival of normal mature MCs, as well as intensifies the release of mediators. In mastocytosis, somatic mutations of the coding Kit gene cause autocrine dysregulation and lead to constitutive KIT activation even in the absence of its ligand SCF. Clinical symptoms are caused by MC-mediator release and/or infiltration of MCs into tissues. Aberrant KIT activation may result in increased production of MCs in the skin and extracutaneous organs. Depending on the affected organ(s), the disease can be divided into cutaneous mastocytosis (CM), systemic mastocytosis (SM), and localized MC tumors. The updated classification of WHO discriminates between several distinct subvariants of CM and SM. While the prognosis in CM and indolent SM (ISM) is excellent with (almost) normal life expectancy, the prognosis in aggressive SM (ASM) and MC leukemia (MCL) is dismal. The symptoms may comprise urticaria, angioedema, flush, pruritus, abdominal pain, diarrhea, hypotension, syncope, and musculoskeletal pain and are the results of MC infiltration and mediator release into target organs, i.e., the skin, gastrointestinal tract, liver, spleen, lymph nodes, and bone marrow. Mastocytosis differs from a lot of other hematological disorders because its pathology is not only based on the lack of normal function of a specific pathway or of a specific cell type but additionally is a proliferative disease. Currently available treatments of mastocytosis include symptomatic, antimediator and cytoreductive targeted therapies.
Collapse
|
25
|
Willmann M, Hadzijusufovic E, Hermine O, Dacasto M, Marconato L, Bauer K, Peter B, Gamperl S, Eisenwort G, Jensen-Jarolim E, Müller M, Arock M, Vail DM, Valent P. Comparative oncology: The paradigmatic example of canine and human mast cell neoplasms. Vet Comp Oncol 2018; 17:1-10. [PMID: 30136349 PMCID: PMC6378619 DOI: 10.1111/vco.12440] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 12/13/2022]
Abstract
In humans, advanced mast cell (MC) neoplasms are rare malignancies with a poor prognosis. Only a few preclinical models are available, and current treatment options are limited. In dogs, MC neoplasms are the most frequent malignant skin tumours. Unlike low‐grade MC neoplasms, high‐grade MC disorders usually have a poor prognosis with short survival. In both species, neoplastic MCs display activating KIT mutations, which are considered to contribute to disease evolution. Therefore, tyrosine kinase inhibitors against KIT have been developed. Unfortunately, clinical responses are unpredictable and often transient, which remains a clinical challenge in both species. Therefore, current efforts focus on the development of new improved treatment strategies. The field of comparative oncology may assist in these efforts and accelerate human and canine research regarding diagnosis, prognostication, and novel therapies. In this article, we review the current status of comparative oncology approaches and perspectives in the field of MC neoplasms.
Collapse
Affiliation(s)
- Michael Willmann
- Department of Companion Animals and Horses, Clinic for Internal Medicine, University of Veterinary Medicine Vienna, Vienna, Austria.,Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - Emir Hadzijusufovic
- Department of Companion Animals and Horses, Clinic for Internal Medicine, University of Veterinary Medicine Vienna, Vienna, Austria.,Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria.,Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Olivier Hermine
- Department of Hematology, Necker Hospital, Imagine Institute Université Paris Descartes, Sorbonne, Paris, France
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | | | - Karin Bauer
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria.,Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Barbara Peter
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria.,Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Susanne Gamperl
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Gregor Eisenwort
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria.,Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Erika Jensen-Jarolim
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University of Vienna, Vienna, Austria
| | - Mathias Müller
- Biomodels Austria and Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Michel Arock
- LBPA CNRS UMR8113, Ecole Normale Supérieure de Cachan, Cachan, France.,Laboratory of Hematology, Pitié-Salpêtrière Hospital, Paris, France
| | - David M Vail
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin.,Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Peter Valent
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria.,Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
26
|
Clinical Validation of KIT Inhibition in Advanced Systemic Mastocytosis. Curr Hematol Malig Rep 2018; 13:407-416. [DOI: 10.1007/s11899-018-0469-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
27
|
|
28
|
Arock M, Wedeh G, Hoermann G, Bibi S, Akin C, Peter B, Gleixner KV, Hartmann K, Butterfield JH, Metcalfe DD, Valent P. Preclinical human models and emerging therapeutics for advanced systemic mastocytosis. Haematologica 2018; 103:1760-1771. [PMID: 29976735 PMCID: PMC6278969 DOI: 10.3324/haematol.2018.195867] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022] Open
Abstract
Mastocytosis is a term used to denote a group of rare diseases characterized by an abnormal accumulation of neoplastic mast cells in various tissues and organs. In most patients with systemic mastocytosis, the neoplastic cells carry activating mutations in KIT Progress in mastocytosis research has long been hindered by the lack of suitable in vitro models, such as permanent human mast cell lines. In fact, only a few human mast cell lines are available to date: HMC-1, LAD1/2, LUVA, ROSA and MCPV-1. The HMC-1 and LAD1/2 cell lines were derived from patients with mast cell leukemia. By contrast, the more recently established LUVA, ROSA and MCPV-1 cell lines were derived from CD34+ cells of non-mastocytosis donors. While some of these cell lines (LAD1/2, LUVA, ROSAKIT WT and MCPV-1) do not harbor KIT mutations, HMC-1 and ROSAKIT D816V cells exhibit activating KIT mutations found in mastocytosis and have thus been used to study disease pathogenesis. In addition, these cell lines are increasingly employed to validate new therapeutic targets and to screen for effects of new targeted drugs. Recently, the ROSAKIT D816V subclone has been successfully used to generate a unique in vivo model of advanced mastocytosis by injection into immunocompromised mice. Such a model may allow in vivo validation of data obtained in vitro with targeted drugs directed against mastocytosis. In this review, we discuss the major characteristics of all available human mast cell lines, with particular emphasis on the use of HMC-1 and ROSAKIT D816V cells in preclinical therapeutic research in mastocytosis.
Collapse
Affiliation(s)
- Michel Arock
- LBPA CNRS UMR8113, Ecole Normale Supérieure Paris-Saclay, Cachan, France .,Laboratory of Hematology, Pitié-Salpêtrière Hospital, Paris, France
| | - Ghaith Wedeh
- LBPA CNRS UMR8113, Ecole Normale Supérieure Paris-Saclay, Cachan, France
| | - Gregor Hoermann
- Department of Laboratory Medicine, Medical University of Vienna, Austria.,Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Austria
| | - Siham Bibi
- LBPA CNRS UMR8113, Ecole Normale Supérieure Paris-Saclay, Cachan, France
| | - Cem Akin
- Michigan Medicine Allergy Clinic, University of Michigan, Ann Arbor, MI, USA
| | - Barbara Peter
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Austria.,Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Austria
| | - Karoline V Gleixner
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Austria.,Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Austria
| | - Karin Hartmann
- Department of Dermatology, University of Luebeck, Germany
| | | | - Dean D Metcalfe
- Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Peter Valent
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Austria.,Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Austria
| |
Collapse
|
29
|
Mast Cells as Drivers of Disease and Therapeutic Targets. Trends Immunol 2018; 39:151-162. [DOI: 10.1016/j.it.2017.10.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 10/18/2017] [Accepted: 10/18/2017] [Indexed: 02/07/2023]
|
30
|
Wilhelm T, Bick F, Peters K, Mohta V, Tirosh B, Patterson JB, Kharabi-Masouleh B, Huber M. Infliction of proteotoxic stresses by impairment of the unfolded protein response or proteasomal inhibition as a therapeutic strategy for mast cell leukemia. Oncotarget 2017; 9:2984-3000. [PMID: 29423023 PMCID: PMC5790440 DOI: 10.18632/oncotarget.23354] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 12/03/2017] [Indexed: 01/05/2023] Open
Abstract
The intensity and duration of endoplasmic reticulum (ER) stress converts the unfolded protein response (UPR) from an adaptive into a terminal response. The first regulates homeostasis, the latter triggers apoptosis. Cells that rapidly proliferate and possess developed secretory capabilities, such as leukemia cells, depend on an efficiently operating UPR to maintain proteostasis. Activation of terminal UPR by either blockade of adaptive UPR or exaggeration of ER stress has been explored as a novel approach in cancer therapy. For mast cell leukemia (MCL) the efficacy of both approaches, by utilizing the KITV560G,D816V-positive MCL cell line HMC-1.2, was investigated. We show that HMC-1.2 cells display a tonic activation of the IRE1α arm of the UPR, which constitutively generates spliced XBP1. Inhibition of IRE1α by different types of inhibitors (MKC-8866, STF-083010, and KIRA6) suppressed proliferation at concentrations needed for blockade of IRE1α-mediated XBP1 splicing. At higher concentrations, these inhibitors triggered an apoptotic response. Blocking the proteasome by bortezomib, which confers an exaggerated UPR, resulted in a marked cytotoxic response. Bortezomib treatment also caused activation of the kinase JNK, which played a pro-proliferative and anti-apoptotic role. Hence, the combination of bortezomib with a JNK inhibitor synergized to induce cell death. In summary, the UPR can be addressed as an effective therapeutic target against KITD816V-positive MCL.
Collapse
Affiliation(s)
- Thomas Wilhelm
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Fabian Bick
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Kerstin Peters
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Vrinda Mohta
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Boaz Tirosh
- The Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Behzad Kharabi-Masouleh
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
31
|
Kayser S, Levis MJ, Schlenk RF. Midostaurin treatment in FLT3-mutated acute myeloid leukemia and systemic mastocytosis. Expert Rev Clin Pharmacol 2017; 10:1177-1189. [PMID: 28960095 DOI: 10.1080/17512433.2017.1387051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION A number of tyrosine kinase inhibitors (TKIs) have been developed that inhibit the constitutively activated kinase activity caused by activating tyrosine kinase mutations, such as FLT3 or KIT, thus interrupting signaling pathways. Currently, midostaurin is the only approved TKI as monotherapy for aggressive systemic mastocytosis (SM), SM with associated hematological neoplasm, or mast cell leukemia displaying a KIT mutation as well as in combination with standard intensive chemotherapy for adult patients with newly diagnosed FLT3-mutated acute myeloid leukemia (AML). Areas covered: We provide a concise review of the pharmacology, tolerability and clinical efficacy of midostaurin and emerging new treatment options for ASM and FLT3-mutated AML. Expert commentary: Currently, midostaurin is the only approved TKI in aggressive SM, SM with associated hematological neoplasm, or mast cell leukemia inducing responses including complete remissions. With regard to AML, midostaurin is the first drug to receive regulatory approval in this indication in the molecularly defined subgroup of AML with FLT3 mutations. By introduction of this new standard in AML with FLT3 mutations, the bare has been raised for future approvals of next generation FLT3 inhibitors which will be based increasingly on head to head comparisons with midostaurin.
Collapse
Affiliation(s)
- Sabine Kayser
- a Department of Internal Medicine V , University Hospital of Heidelberg , Heidelberg , Germany.,b Clinical Cooperation Unit Molecular Hematology/Oncology , German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg , Heidelberg , Germany
| | - Mark J Levis
- c Sidney Kimmel Comprehensive Cancer Center , Johns Hopkins University , Baltimore , MD , USA
| | | |
Collapse
|
32
|
Gotlib J. Tyrosine Kinase Inhibitors in the Treatment of Eosinophilic Neoplasms and Systemic Mastocytosis. Hematol Oncol Clin North Am 2017; 31:643-661. [PMID: 28673393 DOI: 10.1016/j.hoc.2017.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The World Health Organization's semimolecular classification of eosinophilias emphasizes neoplasms driven by fusion tyrosine kinases. More than 80% of patients with systemic mastocytosis carry the KIT D816V mutation, the primary driver of disease pathogenesis. Genetic annotation of these diseases is critical and affords opportunities for targeted therapy. This article discusses our understanding of the mutated tyrosine kinome of eosinophilic neoplasms and systemic mast cell disease, and the successes and limitations of available therapies. Use of tyrosine kinase inhibitors as a bridge to hematopoietic stem cell transplantation, and development of more selective and potent tyrosine kinase inhibitors is also highlighted.
Collapse
Affiliation(s)
- Jason Gotlib
- Division of Hematology, Stanford Cancer Institute/Stanford University School of Medicine, 875 Blake Wilbur Drive, Room 2324, Stanford, CA 94305-5821, USA.
| |
Collapse
|
33
|
Iqbal MF, Soriano PMK, Nagendra S, Sana S. Systemic Mastocytosis in Association with Small Lymphocytic Lymphoma. AMERICAN JOURNAL OF CASE REPORTS 2017; 18:1053-1057. [PMID: 28970467 PMCID: PMC5637574 DOI: 10.12659/ajcr.905759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Patient: Female, 59 Final Diagnosis: Systemic mastocytosis in association with small lymphocytic lymphoma Symptoms: Skin rash Medication: — Clinical Procedure: Bone marrow biopsy Specialty: Hematology
Collapse
Affiliation(s)
- Muhammad F Iqbal
- Department of Internal Medicine, Southern Illinois University, Springfield, IL, USA
| | | | - Sanjai Nagendra
- Department of Pathology, Memorial Medical Center, Springfield, IL, USA
| | - Sherjeel Sana
- Division of Hematology/Oncology, Simmons Cancer Institute at Southern Illinois University (SIU), Springfield, IL, USA
| |
Collapse
|
34
|
Metcalfe DD, Mekori YA. Pathogenesis and Pathology of Mastocytosis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 12:487-514. [PMID: 28135563 DOI: 10.1146/annurev-pathol-052016-100312] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Systemic mastocytosis is a clonal disorder of mast cells that may variably present with characteristic skin lesions, episodes of mast cell mediator release, and disturbances of hematopoiesis. No curative therapy presently exists. Conventional management has relied on agents that antagonize mediators released by mast cells, inhibit mediator secretion, or modulate mast cell proliferation. Recent advances in the molecular understanding of the pathophysiology of systemic mastocytosis have provided new therapeutic considerations, including new and novel tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Dean D Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892;
| | - Yoseph A Mekori
- Tel Hai College, Upper Galilee, 1220800 Israel; .,Meir Medical Center, Kfar Saba 44281, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
35
|
DeAngelo DJ, George TI, Linder A, Langford C, Perkins C, Ma J, Westervelt P, Merker JD, Berube C, Coutre S, Liedtke M, Medeiros B, Sternberg D, Dutreix C, Ruffie PA, Corless C, Graubert TJ, Gotlib J. Efficacy and safety of midostaurin in patients with advanced systemic mastocytosis: 10-year median follow-up of a phase II trial. Leukemia 2017; 32:470-478. [PMID: 28744009 DOI: 10.1038/leu.2017.234] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/02/2017] [Accepted: 07/10/2017] [Indexed: 01/08/2023]
Abstract
Patients with advanced systemic mastocytosis (SM) (e.g. aggressive SM (ASM), SM with an associated hematologic neoplasm (SM-AHN) and mast cell leukemia (MCL)) have limited treatment options and exhibit reduced survival. Midostaurin is an oral multikinase inhibitor that inhibits D816V-mutated KIT, a primary driver of SM pathogenesis. We conducted a phase II trial of midostaurin 100 mg twice daily, administered as 28-day cycles, in 26 patients (ASM, n=3; SM-AHN, n= 17; MCL, n=6) with at least one sign of organ damage. During the first 12 cycles, the overall response rate was 69% (major/partial response: 50/19%) with clinical benefit in all advanced SM variants. With ongoing therapy, 2 patients achieved a complete remission of their SM. Midostaurin produced a ⩾50% reduction in bone marrow mast cell burden and serum tryptase level in 68% and 46% of patients, respectively. Median overall survival for the entire cohort was 40 months, and 18.5 months for MCL patients. Low-grade gastrointestinal side effects were common and manageable with antiemetics. The most frequent grade 3/4 nonhematologic and hematologic toxicities were asymptomatic hyperlipasemia (15%) and anemia (12%). With median follow-up of 10 years, no unexpected toxicities emerged. These data establish the durable activity and tolerability of midostaurin in advanced SM.
Collapse
Affiliation(s)
- D J DeAngelo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - T I George
- Department of Pathology, University of New Mexico, Albuquerque, NM, USA
| | - A Linder
- Division of Hematology, Department of Medicine, Stanford University School of Medicine/Stanford Cancer Institute, Stanford, CA, USA
| | - C Langford
- Division of Hematology, Department of Medicine, Stanford University School of Medicine/Stanford Cancer Institute, Stanford, CA, USA
| | - C Perkins
- Division of Hematology, Department of Medicine, Stanford University School of Medicine/Stanford Cancer Institute, Stanford, CA, USA
| | - J Ma
- Division of Hematology, Department of Medicine, Stanford University School of Medicine/Stanford Cancer Institute, Stanford, CA, USA
| | - P Westervelt
- Division of Hematology/Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - J D Merker
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - C Berube
- Division of Hematology, Department of Medicine, Stanford University School of Medicine/Stanford Cancer Institute, Stanford, CA, USA
| | - S Coutre
- Division of Hematology, Department of Medicine, Stanford University School of Medicine/Stanford Cancer Institute, Stanford, CA, USA
| | - M Liedtke
- Division of Hematology, Department of Medicine, Stanford University School of Medicine/Stanford Cancer Institute, Stanford, CA, USA
| | - B Medeiros
- Division of Hematology, Department of Medicine, Stanford University School of Medicine/Stanford Cancer Institute, Stanford, CA, USA
| | - D Sternberg
- Novartis Pharmaceuticals, Florham Park, NJ, USA.,Novartis Pharmaceuticals, Basel, Switzerland
| | - C Dutreix
- Novartis Pharmaceuticals, Florham Park, NJ, USA.,Novartis Pharmaceuticals, Basel, Switzerland
| | - P-A Ruffie
- Novartis Pharmaceuticals, Florham Park, NJ, USA.,Novartis Pharmaceuticals, Basel, Switzerland
| | - C Corless
- Department of Pathology, Oregon Health and Sciences University, Portland, OR, USA
| | - T J Graubert
- Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - J Gotlib
- Division of Hematology, Department of Medicine, Stanford University School of Medicine/Stanford Cancer Institute, Stanford, CA, USA
| |
Collapse
|
36
|
Vaes M, Benghiat FS, Hermine O. Targeted Treatment Options in Mastocytosis. Front Med (Lausanne) 2017; 4:110. [PMID: 28775983 PMCID: PMC5517467 DOI: 10.3389/fmed.2017.00110] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/03/2017] [Indexed: 12/12/2022] Open
Abstract
Mastocytosis refers to a heterogeneous group of disorders resulting from the clonal proliferation of abnormal mast cells and their accumulation in the skin (cutaneous mastocytosis when only in the skin, CM) or in various organs (systemic mastocytosis, SM). This leads to a wide variety of clinical manifestations resulting from excessive mediator release in CM and benign forms of SM (indolent SM, ISM) and from tissue mast cell infiltration causing multiorgan dysfunction and failure in more aggressive subtypes (aggressive SM, ASM, or mast cell leukemia). In addition, SM may be associated with hematological neoplasms (AHN). While treatment of ISM primarily aims at symptom management with anti-mediator therapies, cytoreductive and targeted therapies are needed to control the expansion of neoplastic mast cells in advanced forms of SM, in order to improve overall survival. Mast cell accumulation results from a gain-of-function mutation (mostly the D816V mutation) within the KIT tyrosine kinase domain expressed by mast cells and additional genetic and epigenetic mutations may further determine the features of the disease (ASM and AHN). Consequently, tyrosine kinase inhibitors and targeted therapies directed against the oncogenic signaling machinery downstream of KIT are attractive therapeutic approaches. A better understanding of the relative contribution of these genetic and epigenetic events to the molecular pathogenesis of mastocytosis is of particular interest for the development of targeted therapies and therefore to better choose patient subgroups that would best benefit from a given therapeutic strategy.
Collapse
Affiliation(s)
- Mélanie Vaes
- Department of Hematology, Université Libre de Bruxelles, Hopital Erasme, Brussels, Belgium.,Department of Hematology, Université Libre de Bruxelles, CHU Tivoli, La Louvière, Belgium
| | | | - Olivier Hermine
- French Reference Center for Mastocytosis (CEREMAST), Department of Hematology, Necker Children's Hospital, APHP, Paris, France.,Imagine Institute for Genetic Diseases (INSERM U1163 CNRS ERL 8654), Paris Descartes University, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
37
|
Yang M, Pan Z, Huang K, Büsche G, Feuerhake F, Chaturvedi A, Nie D, Heuser M, Thol F, von Neuhoff N, Ganser A, Li Z. Activation of TRKA receptor elicits mastocytosis in mice and is involved in the development of resistance to KIT-targeted therapy. Oncotarget 2017; 8:73871-73883. [PMID: 29088753 PMCID: PMC5650308 DOI: 10.18632/oncotarget.18027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/08/2017] [Indexed: 12/03/2022] Open
Abstract
The neurotrophins (NTs) play a key role in neuronal survival and maintenance. The TRK (tropomyosin-related kinase) tyrosine kinase receptors (TRKA, TRKB, TRKC) are high affinity receptors for NTs. There is increasing data demonstrating an important role of the TRK family in cancer initiation and progression. NTs have been known for many years to promote chemotaxis, maturation, and survival of mast cells. However, the role of NT signaling in the pathogenesis of mastocytosis is not well understood. In this study, we demonstrate that activation of TRKA by its ligand nerve growth factor (NGF) is potent to trigger a disease in mice with striking similarities to human systemic mastocytosis (SM). Moreover, activation of TRKA by NGF strongly rescues KIT inhibition-induced cell death of mast cell lines and primary mast cells from patients with SM, and this rescue effect can be efficiently blocked by entrectinib (a new pan TRK specific inhibitor). HMC-1 mast cell leukemia cells that are resistant to KIT inhibition induced by TRKA activation show reactivation of MAPK/ERK (extracellular signal-regulated kinase) and strong upregulation of early growth response 3 (EGR3), suggesting an important role of MAPK-EGR3 axis in the development of resistance to KIT inhibition. Targeting both TRK and KIT significantly prolongs survival of mice xenotransplanted with HMC-1 cells compared with targeting KIT alone. Thus, these data strongly suggest that TRKA signaling can improve neoplastic mast cell fitness. This might explain at least in part why treatment with KIT inhibitors alone so far has been disappointing in most published clinical trials for mastocytosis. Our data suggest that targeting both KIT and TRKs might improve efficacy of molecular therapy in SM with KIT mutations.
Collapse
Affiliation(s)
- Min Yang
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Zengkai Pan
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Kezhi Huang
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.,Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Guntram Büsche
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | | | - Anuhar Chaturvedi
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Danian Nie
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Felicitas Thol
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Nils von Neuhoff
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Zhixiong Li
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
38
|
Zick A, Peretz T, Lotem M, Hubert A, Katz D, Temper M, Rottenberg Y, Uziely B, Nechushtan H, Meirovitz A, Sonnenblick A, Sapir E, Edelman D, Goldberg Y, Lossos A, Rosenberg S, Fried I, Finklstein R, Pikarsky E, Goldshmidt H. Treatment inferred from mutations identified using massive parallel sequencing leads to clinical benefit in some heavily pretreated cancer patients. Medicine (Baltimore) 2017; 96:e6931. [PMID: 28514312 PMCID: PMC5440149 DOI: 10.1097/md.0000000000006931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Molecular portraits of numerous tumors have flooded oncologists with vast amounts of data. In parallel, effective inhibitors of central pathways have shown great clinical benefit. Together, this promises potential clinical benefits to otherwise end-stage cancer patients. Here, we report a clinical service offering mutation detection of archived samples using the ion Ampliseq cancer panel coupled with clinical consultation.A multidisciplinary think tank consisting of oncologists, molecular-biologists, genetic counselors, and pathologists discussed 67 heavily pretreated, advanced cancer patient cases, taking into account mutations identified using ion Ampliseq cancer panel, medical history, and relevant literature.The team generated a treatment plan, targeting specific mutations, for 41 out of 64 cases. Three patients died before results were available. For 32 patients, the treating oncologists chose not to include the panel recommendation in the treatment plan for various reasons. Nine patients were treated as recommended by the panel, 5 with clinical benefit, and 4 with disease progression.This study suggests that routine use of massive parallel tumor sequencing is feasible and can judiciously affect treatment decisions when coupled with multidisciplinary team-based decision making. Administration of personalized based therapies at an earlier stage of disease, expansion of genetic alterations examined, and increased availability of targeted therapies may lead to further improvement in the clinical outcome of metastatic cancer patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Alexander Lossos
- Leslie and Michael Gaffin Center for Oncology, Departments of Oncology and Neurology, Hebrew University-Hadassah Medical Center
| | - Shai Rosenberg
- Leslie and Michael Gaffin Center for Oncology, Departments of Oncology and Neurology, Hebrew University-Hadassah Medical Center
| | - Iris Fried
- Department of Pediatrics, Hadassah Medical Center, Division of Pediatric Hematology and Oncology
| | - Ruth Finklstein
- Lautenberg Center for Immunology, IMRIC, The Hebrew University-Hadassah Medical School
| | - Eli Pikarsky
- Lautenberg Center for Immunology, IMRIC, The Hebrew University-Hadassah Medical School
- Department of Pathology, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Hanoch Goldshmidt
- Department of Pathology, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
39
|
Mastocytosis: 2016 updated WHO classification and novel emerging treatment concepts. Blood 2016; 129:1420-1427. [PMID: 28031180 DOI: 10.1182/blood-2016-09-731893] [Citation(s) in RCA: 456] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/17/2016] [Indexed: 12/13/2022] Open
Abstract
Over the past few years, substantial advances have been made in understanding the pathogenesis, evolution, and complexity of mast cell neoplasms. New diagnostic and prognostic parameters and novel therapeutic targets with demonstrable clinical impact have been identified. Several of these new markers, molecular targets, and therapeutic approaches have been validated and translated into clinical practice. At the same time, the classification of mastocytosis and related diagnostic criteria have been refined and updated by the consensus group and the World Health Organization (WHO). As a result, more specific therapies tailored toward prognostic subgroups of patients have been developed. Emerging treatment concepts use drugs directed against KIT and other relevant targets in neoplastic mast cells and will hopefully receive recognition by health authorities in the near future. This article provides an overview of recent developments in the field, with emphasis on the updated WHO classification, refined criteria, additional prognostic parameters, and novel therapeutic approaches. Based on these emerging concepts, the prognosis, quality of life, and survival of patients with advanced mastocytosis are expected to improve in the coming years.
Collapse
|
40
|
Molderings GJ, Haenisch B, Brettner S, Homann J, Menzen M, Dumoulin FL, Panse J, Butterfield J, Afrin LB. Pharmacological treatment options for mast cell activation disease. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:671-94. [PMID: 27132234 PMCID: PMC4903110 DOI: 10.1007/s00210-016-1247-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/11/2016] [Indexed: 12/20/2022]
Abstract
Mast cell activation disease (MCAD) is a term referring to a heterogeneous group of disorders characterized by aberrant release of variable subsets of mast cell (MC) mediators together with accumulation of either morphologically altered and immunohistochemically identifiable mutated MCs due to MC proliferation (systemic mastocytosis [SM] and MC leukemia [MCL]) or morphologically ordinary MCs due to decreased apoptosis (MC activation syndrome [MCAS] and well-differentiated SM). Clinical signs and symptoms in MCAD vary depending on disease subtype and result from excessive mediator release by MCs and, in aggressive forms, from organ failure related to MC infiltration. In most cases, treatment of MCAD is directed primarily at controlling the symptoms associated with MC mediator release. In advanced forms, such as aggressive SM and MCL, agents targeting MC proliferation such as kinase inhibitors may be provided. Targeted therapies aimed at blocking mutant protein variants and/or downstream signaling pathways are currently being developed. Other targets, such as specific surface antigens expressed on neoplastic MCs, might be considered for the development of future therapies. Since clinicians are often underprepared to evaluate, diagnose, and effectively treat this clinically heterogeneous disease, we seek to familiarize clinicians with MCAD and review current and future treatment approaches.
Collapse
Affiliation(s)
- Gerhard J Molderings
- Institute of Human Genetics, University Hospital of Bonn, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany.
| | - Britta Haenisch
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Stefan Brettner
- Department of Oncology, Hematology and Palliative Care, Kreiskrankenhaus Waldbröl, Waldbröl, Germany
| | - Jürgen Homann
- Allgemeine Innere Medizin, Gastroenterologie und Diabetologie, Gemeinschaftskrankenhaus, Bonn, Germany
| | - Markus Menzen
- Allgemeine Innere Medizin, Gastroenterologie und Diabetologie, Gemeinschaftskrankenhaus, Bonn, Germany
| | - Franz Ludwig Dumoulin
- Allgemeine Innere Medizin, Gastroenterologie und Diabetologie, Gemeinschaftskrankenhaus, Bonn, Germany
| | - Jens Panse
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Joseph Butterfield
- Program for the Study of Mast Cell and Eosinophil Disorders, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lawrence B Afrin
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
41
|
Ustun C, Gotlib J, Popat U, Artz A, Litzow M, Reiter A, Nakamura R, Kluin-Nelemans HC, Verstovsek S, Gajewski J, Perales MA, George T, Shore T, Sperr W, Saber W, Kota V, Yavuz AS, Pullarkat V, Rogosheske J, Hogan W, Van Besien K, Hagglund H, Damaj G, Arock M, Horny HP, Metcalfe DD, Deeg HJ, Devine S, Weisdorf D, Akin C, Valent P. Consensus Opinion on Allogeneic Hematopoietic Cell Transplantation in Advanced Systemic Mastocytosis. Biol Blood Marrow Transplant 2016; 22:1348-1356. [PMID: 27131865 DOI: 10.1016/j.bbmt.2016.04.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 04/20/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Celalettin Ustun
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota.
| | - Jason Gotlib
- Division of Hematology, Stanford University, Stanford, California
| | - Uday Popat
- Department of Stem Cell Transplantation, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Andrew Artz
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Mark Litzow
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Minneapolis, Minnesota
| | - Andreas Reiter
- Department of Hematology and Oncology, University Medical Centre Mannheim, Mannheim, Germany
| | - Ryotaro Nakamura
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, California
| | - Hanneke C Kluin-Nelemans
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Srdan Verstovsek
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - James Gajewski
- Department of Hematology, Oregon Health and Science University, Portland, Oregon
| | - Miguel-Angel Perales
- Division of Hematologic Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Tracy George
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico
| | - Tsiporah Shore
- Division of Hematology and Oncology, Weill Cornell Medical College, New York, New York
| | - Wolfgang Sperr
- Department of Internal Medicine I, Division of Hematology and Hemostaseology and Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - Wael Saber
- Department of Medicine, Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Vamsi Kota
- Division of Hematology, Department of Hematology and Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Akif Selim Yavuz
- Division of Hematology, Istanbul Medical School, University of Istanbul, Istanbul, Turkey
| | - Vinod Pullarkat
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, California
| | - John Rogosheske
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - William Hogan
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Minneapolis, Minnesota
| | - Koen Van Besien
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Hans Hagglund
- Division of Hematology, Department of Medical Sciences Uppsala University, Uppsala, Sweden
| | - Gandhi Damaj
- Department of Hematology, Hematology Institute, University Hospital, School of Medicine, University of Basse-Normandie, Caen, France
| | - Michel Arock
- Cellular and Molecular Oncology Unit, CNRS UMR 8113, Ecole Normale Supériede Cachan, Cachan, France and Laboratoire d'Hématologie, Centre Hospitalier Universitaire Pitié-Salpêtrière, Paris, France
| | | | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - H Joachim Deeg
- Fred Hutchinson Cancer Research Center and the University of Washington School of Medicine, University of Washington, Seattle, Washington
| | - Steven Devine
- Division of Hematology, Department of Medicine, Ohio State University and the Ohio State University Comprehensive Cancer Center, Ohio
| | - Daniel Weisdorf
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Cem Akin
- Division of Rheumatology, Immunology, and Allergy, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology and Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
42
|
Systemic Mastocytosis: Clinical Update and Future Directions. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2015; 15:728-38. [PMID: 26382091 DOI: 10.1016/j.clml.2015.07.644] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/13/2015] [Accepted: 07/28/2015] [Indexed: 12/20/2022]
Abstract
Systemic mastocytosis (SM) is defined as the accumulation of abnormal mast cells (MC) in 1 or more extracutaneous tissues. Symptoms are due to either MC activation or organ infiltration and vary depending on disease subtype. More benign forms of SM, such as indolent SM, result in a life expectancy similar to the general population, while more aggressive subtypes, such as MC leukemia (MCL), have a median survival measured on the order of months. Treatment of indolent SM is directed at controlling the symptoms associated with MC activation. In advanced forms, such as aggressive SM and MCL, agents targeting MC proliferation such as KIT tyrosine kinase inhibitors, cladribine, and thalidomide may be provided. Newer agents based on preclinical rationale are also being actively investigated. However, the only potentially curative therapy for aggressive SM/MCL remains hematopoietic stem cell transplantation. Given that SM is a relatively rare disease, clinicians are often underprepared to evaluate, diagnose, and effectively treat this clinically heterogeneous condition. Here we seek to familiarize clinicians with this orphan disease and review current and future treatment approaches.
Collapse
|