1
|
Chow T, Humble W, Lucarelli E, Onofrillo C, Choong PF, Di Bella C, Duchi S. Feasibility and barriers to rapid establishment of patient-derived primary osteosarcoma cell lines in clinical management. iScience 2024; 27:110251. [PMID: 39286504 PMCID: PMC11403063 DOI: 10.1016/j.isci.2024.110251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Osteosarcoma is a highly aggressive primary bone tumor that has seen little improvement in survival rates in the past three decades. Preclinical studies are conducted on a small pool of commercial cell lines which may not fully reflect the genetic heterogeneity of this complex cancer, potentially hindering translatability of in vitro results. Developing a single-site laboratory protocol to rapidly establish patient-derived primary cancer cell lines (PCCL) within a clinically actionable time frame of a few weeks will have significant scientific and clinical ramifications. These PCCL can widen the pool of available cell lines for study while patient-specific data could derive therapeutic correlation. This endeavor is exceedingly challenging considering the proposed time constraints. By proposing key definitions and a clear theoretical framework, this evaluation of osteosarcoma cell line establishment methodology over the past three decades assesses feasibility by identifying barriers and suggesting solutions, thereby facilitating systematic experimentation and optimization.
Collapse
Affiliation(s)
- Thomas Chow
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
- BioFab3D-ACMD, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - William Humble
- BioFab3D-ACMD, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
- Department of Surgery, The University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Enrico Lucarelli
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Carmine Onofrillo
- BioFab3D-ACMD, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
- Department of Surgery, The University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Peter F Choong
- BioFab3D-ACMD, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
- Department of Surgery, The University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Claudia Di Bella
- BioFab3D-ACMD, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
- Department of Surgery, The University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
- Department of Orthopaedics, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Serena Duchi
- BioFab3D-ACMD, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
- Department of Surgery, The University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
2
|
Xiao Y, Li C, Wang H, Liu Y. LINC00265 targets miR-382-5p to regulate SAT1, VAV3 and angiogenesis in osteosarcoma. Aging (Albany NY) 2020; 12:20212-20225. [PMID: 33109774 PMCID: PMC7655165 DOI: 10.18632/aging.103762] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
Abstract
We explored the mechanism by which LINC00265 regulates angiogenesis of osteosarcoma cells via the miR-382-5p/spermidine/spermine N1-acetyltransferase-1 (SAT1) and miR-382-5p/vav guanine nucleotide exchange factor 3 (VAV3) axis. Cell scratch assay, Transwell assay and tube formation assay were applied to detect cell migration, invasion and tube formation abilities. The effects of LINC00265 targeting miR-382-5p in osteosarcoma in vivo were studied using a tumour-burden assay. A total of 70 genes potentially involved in osteosarcoma angiogenesis were identified, and a Gene Ontology (GO) analysis found that SAT1 and VAV3 were closely related to angiogenesis. Bioinformatics analysis and clinical experiments confirmed that LINC00265, SAT1 and VAV3 were overexpressed in osteosarcoma and related to a poor prognosis, whereas miR-382-5p was downregulated and associated with a poor prognosis. It was confirmed that LINC00265 promoted the proliferation, migration, invasion and angiogenesis of osteosarcoma cells by targeting miR-382-5p to mediate SAT1 and VAV3. Collectively, LINC00265 might promote proliferation, migration, invasion and angiogenesis by targeting miR-382-5p/SAT1 and miR-382-5p/VAV3 in osteosarcoma.
Collapse
Affiliation(s)
- Ying Xiao
- Department of Operating Center, The First Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Chunling Li
- Department of Operating Center, The First Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Hongyue Wang
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Yijun Liu
- Department of Orthopaedics, The First Hospital of Jilin University, Changchun 130000, Jilin, China
| |
Collapse
|