1
|
Png CW, Weerasooriya M, Li H, Hou X, Teo FY, Huang S, Ser Z, Weng FYK, Rethnam M, Chia G, Sobota RM, Chong CS, Tan KK, Zhang Y. DUSP6 regulates Notch1 signalling in colorectal cancer. Nat Commun 2024; 15:10087. [PMID: 39572549 PMCID: PMC11582695 DOI: 10.1038/s41467-024-54383-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
Notch1 plays various roles in cancer development, and Notch1-induced transactivation is controlled by phosphorylation of its cleaved intracellular domain. However, it is unclear whether there are phosphatases capable of dephosphorylating the cleaved Notch1 transmembrane/intracellular region (NTM) to regulate its function. Here, we show that DUSP6 can function as a phosphatase for Notch1, thereby regulating NTM stability and transcriptional activity, thus influencing colorectal cancer (CRC) development. In human CRC cells, elevated DUSP6 expression correlates with increased NTM levels, leading to enhanced CRC cell proliferation both in vitro and in vivo. High tumoral DUSP6 protein expression is associated with poorer overall CRC patient survival. In mice, DUSP6 deficiency results in reduced CRC development. Mechanistically, DUSP6 dephosphorylates phospho-Y2116, which in turn reduces NTM ubiquitination, leading to increased NTM stability and transcriptional activity. As a result, the expression of Notch1-targeted proliferation genes is increased to promote tumour cell growth.
Collapse
Affiliation(s)
- Chin Wen Png
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Madhushanee Weerasooriya
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Heng Li
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Xiaowen Hou
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Fiona Yayuan Teo
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Shiying Huang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Zheng Ser
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Franklin Yau Kok Weng
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Malini Rethnam
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, 117597, Singapore
- Institute for Health Innovation & Technology (iHealthtech), National University of Singapore, Singapore, 117597, Singapore
| | - Gloryn Chia
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, 117597, Singapore
- Institute for Health Innovation & Technology (iHealthtech), National University of Singapore, Singapore, 117597, Singapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Choon Seng Chong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Ker-Kan Tan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore.
- NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore.
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore, 117456, Singapore.
| |
Collapse
|
2
|
Zhang Q, Li Y, Zhu Q, Xie T, Xiao Y, Zhang F, Li N, Deng K, Xin H, Huang X. TRIM65 promotes renal cell carcinoma through ubiquitination and degradation of BTG3. Cell Death Dis 2024; 15:355. [PMID: 38777825 PMCID: PMC11111765 DOI: 10.1038/s41419-024-06741-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
As a typical E3 ligase, TRIM65 (tripartite motif containing 65) is involved in the regulation of antiviral innate immunity and the pathogenesis of certain tumors. However, the role of TRIM65 in renal cell carcinoma (RCC) and the underlying mechanism has not been determined yet. In this study, we identified TRIM65 as a novel oncogene in RCC, which enhanced the tumor cell proliferation and anchorage-independent growth abilities both in vitro and in vivo. Moreover, we found that TRIM65-regulated RCC proliferation mainly via direct interaction with BTG3 (BTG anti-proliferation factor 3), which in turn induced the K48-linked ubiquitination and subsequent degradation through K41 amino acid. Furthermore, TRIM65 relieved G2/M phase cell cycle arrest via degradation of BTG3 and regulated downstream factors. Further studies revealed that TRIM65 acts through TRIM65-BTG3-CyclinD1 axis and clinical sample IHC chip data indicated a negative correction between TRIM65 and BTG3. Taken together, our findings demonstrated that TRIM65 promotes RCC cell proliferation via regulation of the cell cycle through degradation of BTG3, suggesting that TRIM65 may be a promising target for RCC therapy.
Collapse
Affiliation(s)
- Qi Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Yong Li
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Qing Zhu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Tao Xie
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Yue Xiao
- First School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Feng Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Na Li
- School of Future Technology, Nanchang University, Nanchang, 330031, China
| | - Keyu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Hongbo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
3
|
Zhang S, Gu J, Shi LL, Qian B, Diao X, Jiang X, Wu J, Wu Z, Shen A. A pan-cancer analysis of anti-proliferative protein family genes for therapeutic targets in cancer. Sci Rep 2023; 13:21607. [PMID: 38062199 PMCID: PMC10703880 DOI: 10.1038/s41598-023-48961-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
The recently discovered APRO (anti-proliferative protein) family encodes a group of trans-membrane glycoproteins and includes 6 members: TOB1, TOB2, BTG1, BTG2, BTG3 and BTG4. The APRO family is reportedly associated with the initiation and progression of cancers. This study aims to undertake a comprehensive investigation of the APRO family of proteins as a prognostic biomarker in various human tumors. We performed a pan-cancer analysis of the APRO family based on The Cancer Genome Atlas (TCGA). With the bioinformatics methods, we explored the prognostic value of the APRO family and the correlation between APRO family expression and tumor mutation burden (TMB), microsatellite instability (MSI), drug sensitivity, and immunotherapy in numerous cancers. Our results show that the APRO family was primarily down-regulated in cancer samples. The expression of APRO family members was linked with patient prognosis. In addition, APRO family genes showed significant association with immune infiltrate subtypes, tumor microenvironment, and tumor cell stemness. Finally, our study also demonstrated the relationship between APRO family genes and drug sensitivity. This study provides comprehensive information to understand the APRO family's role as an oncogene and predictor of survival in some tumor types.
Collapse
Affiliation(s)
- Siming Zhang
- Cancer Research Center Nantong, Nantong Tumor Hospital and Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jue Gu
- Affiliated Hospital of Nantong University, Nantong, China
| | - Ling-Ling Shi
- Affiliated Nantong Hospital Third of Nantong University, Nantong, China
| | - Bo Qian
- Maternal and Child Care Hospital of Qidong, Nantong, China
| | - Xun Diao
- Cancer Research Center Nantong, Nantong Tumor Hospital and Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaohui Jiang
- Department of General Surgery, Nantong Tumor Hospital and Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Jindong Wu
- Department of General Surgery, Nantong Tumor Hospital and Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Zhijun Wu
- Department of Oncology, Nantong Traditional Chinese Medicine Hospital, Nantong, China.
| | - Aiguo Shen
- Cancer Research Center Nantong, Nantong Tumor Hospital and Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
4
|
Zheng HC, Xue H, Zhang CY, Shi KH, Zhang R. The clinicopathological significances and related signal pathways of BTG3 mRNA expression in cancers: A bioinformatics analysis. Front Genet 2022; 13:1006582. [PMID: 36186486 PMCID: PMC9523479 DOI: 10.3389/fgene.2022.1006582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022] Open
Abstract
B cell transposition gene 3 (BTG3) is reported to be a tumor suppressor and suppresses proliferation and cell cycle progression. This study aims to analyze the clinicopathological and prognostic significances, and signal pathways of BTG3 mRNA expression in human beings through bioinformatics analysis. We analyzed BTG3 expression using Oncomine, TCGA (the cancer genome atlas), Xiantao, UALCAN (The University of ALabama at Birmingham Cancer data analysis Portal) and Kaplan-Meier plotter databases. Down-regulated BTG3 expression was observed in lung and breast cancers, compared with normal tissues (p < 0.05), but not for gastric and ovarian cancer (p < 0.05). The methylation of BTG3 was shown to be adversely correlated with its mRNA expression (p < 0.05). BTG3 expression was higher in gastric intestinal-type than diffuse-type carcinomas, G1 than G3 carcinomas (p < 0.05), in female than male cancer patients, T1-2 than T3-4, and adenocarcinoma than squamous cell carcinoma of lung cancer (p < 0.05), in invasive ductal than lobular carcinoma, N0 than N1 and N3, TNBC (triple-negative breast cancer) than luminal and Her2+, and Her2+ than luminal cancer of breast cancer (p < 0.05), and G3 than G2 ovarian carcinoma (p < 0.05). BTG3 expression was positively related to the survival rate of gastric and ovarian cancer patients (p < 0.05), but not for breast cancer (p < 0.05). KEGG and PPI (protein-protein interaction) analysis showed that the BTG3 was involved in cell cycle and DNA replication, digestion and absorption of fat and protein, spliceosome and ribosome in cancer. BTG3 expression was positively linked to carcinogenesis, histogenesis, and aggressive behaviors, and was employed to evaluate the prognosis of cancers by regulating cell cycle, metabolism, splicing and translation of RNA.
Collapse
Affiliation(s)
- Hua-Chuan Zheng
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde, China
- *Correspondence: Hua-Chuan Zheng,
| | - Hang Xue
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Cong-Yu Zhang
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Kai-Hang Shi
- Department of Dermatology, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Rui Zhang
- Department of Colorectal Surgery, Liaoning Cancer Hospital, Shenyang, China
| |
Collapse
|
5
|
Zhang F, Fan G, Wang X. Correlation between BTG3, CASP9 and LRP4 single-nucleotide polymorphisms and susceptibility to papillary thyroid carcinoma. Biomark Med 2022; 16:537-547. [PMID: 35362324 DOI: 10.2217/bmm-2021-0711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Objective: To study the association of BTG3, CASP9 and LRP4 single-nucleotide polymorphisms with susceptibility to papillary thyroid carcinoma (PTC). Methods: The BTG3 rs9977638, CASP9 rs884363 and LRP4 rs898604 genotypes of 175 PTC patients and 175 controls were analyzed. Results: Rs9977638 TC genotype and CC genotype, rs884363 CC genotype and rs898604 GG genotype were related to a lower PTC susceptibility risk (p < 0.01). The risk of PTC susceptibility was higher when carrying BTG3 rs9977638 CC, CASP9 rs884363 AC and LRP4 rs898604 AG at the same time (p < 0.01). Conclusion: Combined BTG3, CASP9 and LRP4 genotype analysis has a certain application value in the diagnosis of PTC.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Maxillofacial & E.N.T. Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy,Tianjin Cancer Institute, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Department of Thyroid Breast Hernia Surgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia Autonomous Region, 010017, China
| | - Guidong Fan
- Department of Thyroid Breast Hernia Surgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia Autonomous Region, 010017, China
| | - Xudong Wang
- Department of Maxillofacial & E.N.T. Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy,Tianjin Cancer Institute, National Clinical Research Center for Cancer, Tianjin, 300060, China
| |
Collapse
|
6
|
Vail DJ, Somoza RA, Caplan AI. MicroRNA Regulation of Bone Marrow Mesenchymal Stem Cell Chondrogenesis: Toward Articular Cartilage. Tissue Eng Part A 2022; 28:254-269. [PMID: 34328786 PMCID: PMC8971999 DOI: 10.1089/ten.tea.2021.0112] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The production of a clinically useful engineered cartilage is an outstanding and unmet clinical need. High-throughput RNA sequencing provides a means of characterizing the molecular phenotype of populations of cells and can be leveraged to better understand differences among source cells, derivative engineered tissues, and target phenotypes. In this study, small RNA sequencing is utilized to comprehensively characterize the microRNA transcriptomes (miRNomes) of native human neonatal articular cartilage and human bone marrow-derived mesenchymal stem cells (hBM-MSCs) differentiating into cartilage organoids, contrasting the microRNA regulation of engineered cartilage with that of a promising target phenotype. Five dominant microRNAs are upregulated during cartilage organoid differentiation and disproportionately regulate transcription factors: miR-148a-3p, miR-140-3p, miR-27b-3p, miR-140-5p, and miR-181a-5p. Two microRNAs that dominate the miRNomes of hBM-MSCs, miR-21-5p and miR-143-3p, persist throughout the differentiation process and may limit the ability of these cells to differentiate into an engineered cartilage resembling target native articular cartilage. By using predictive bioinformatics tools and antagomir inhibition, these persistent microRNAs are shown to destabilize the mRNA of genes with known or potential roles in cartilage biology including FGF18, TGFBR2, TET1, STOX2, ARAP2, N4BP2L1, LHX9, NFIA, and RPS6KA5. These results shed light on the extent to which only a few microRNAs contribute to the complex regulatory environment of hBM-MSCs for engineered tissues. Impact statement MicroRNAs are emerging as important controlling elements in the differentiation of human bone marrow-derived mesenchymal stem cells (hBM-MSCs). By using a robust bioinformatic approach and further validation in vitro, here we provide a comprehensive characterization of the microRNA transcriptomes (miRNomes) of a commonly studied and clinically promising source of multipotent cells (hBM-MSCs), a gold standard model of in vitro chondrogenesis (hBM-MSC-derived cartilage organoids), and an attractive in vivo target phenotype for clinically useful engineered cartilage (neonatal articular cartilage). These analyses highlighted a specific set of microRNAs involved in the chondrogenic program that could be manipulated to acquire a more robust articular cartilage-like phenotype. This characterization provides researchers in the cartilage tissue engineering field a useful atlas with which to contextualize microRNA involvement in complex differentiation pathways.
Collapse
Affiliation(s)
- Daniel J. Vail
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.,Address correspondence to: Daniel J. Vail, PhD, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, 2109 Adelbert Road, Biomedical Research Building, Room 647C, Cleveland, OH 44106, USA
| | - Rodrigo A. Somoza
- Department of Biology, Skeletal Research Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Arnold I. Caplan
- Department of Biology, Skeletal Research Center, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
7
|
Ye Z, Wei L, Yin X, Li H, Qin G, Li S, Peng T, Liu B, Zhao S, Zhuo Q. Long non-coding RNA cancer susceptibility candidate 2 regulates the function of human fibroblast-like synoviocytes via the microRNA-18a-5p/B-cell translocation gene 3 signaling axis in rheumatoid arthritis. Bioengineered 2022; 13:3240-3250. [PMID: 35045800 PMCID: PMC8974001 DOI: 10.1080/21655979.2021.2022075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is a perennial inflammatory condition. Preliminary research indicated that long non-coding (lnc)RNA cancer susceptibility candidate 2 (CASC2) was downregulated in the serum of RA patients. Our study was designed to reveal the roles of lncRNA CASC2 in RA and the latent mechanisms underlying its role. Bioinformatics method (Starbase) and dual-luciferase reporter assay revealed that microRNA (miR)-18a-5p directly interacted with lncRNA CASC2. Furthermore, lncRNA CASC2 and miR-18a-5p expression in the serum samples of RA patients and healthy controls were measured via reverse transcription-quantitative PCR. Compared with the healthy subjects, lncRNA CASC2 was downregulated, whereas miR-18a-5p was upregulated in patients with RA. Overexpression of lncRNA CASC2 decreased the viability of human fibroblast-like synoviocytes (HFLSs) and induced apoptosis, as revealed by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and flow cytometry analyses. Furthermore, the Western blotting assay suggested that Bax was upregulated and Bcl-2 was downregulated in lncRNA CASC2 up-regulated HFLSs. Downregulation of tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, IL-6, matrix metalloproteinase (MMP)1, and MMP3 levels by lncRNA CASC2 up-regulation was determined using enzyme-linked immunosorbent assays (ELISAs). However, HFLSs co-transfected with miR-18a-5p mimic exhibited opposite effects compared with the case for the overexpression of lncRNA CASC2. The aforementioned methods were used to verify that a binding site exists between B-cell translocation gene 3 (BTG3) and miR-18a-5p. The effects of miR-18a-5p inhibitor on HFLSs were reversed by BTG3 silencing. Overall, lncRNA CASC2 alleviated RA by adjusting the miR-18a-5p/BTG3 signaling axis and could serve as a novel therapeutic option for RA.
Collapse
Affiliation(s)
- Zhiqin Ye
- Department of Rheumatism Immunology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.,Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Province, Wuhan, China.,Hubei Institute of Traditional Chinese Medicine, Wuhan, Hubei Province, China
| | - Lu Wei
- Department of Rheumatism Immunology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.,Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Province, Wuhan, China.,Hubei Institute of Traditional Chinese Medicine, Wuhan, Hubei Province, China
| | - Xietian Yin
- Department of Rheumatism Immunology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.,College of the First Clinical, Hubei University of Traditional Chinese Medicine, Wuhan, China
| | - Huiling Li
- Department of Rheumatism Immunology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.,Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Province, Wuhan, China.,Hubei Institute of Traditional Chinese Medicine, Wuhan, Hubei Province, China
| | - Guifu Qin
- Department of Rheumatism Immunology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.,Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Province, Wuhan, China.,Hubei Institute of Traditional Chinese Medicine, Wuhan, Hubei Province, China
| | - Siqi Li
- Department of Rheumatism Immunology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.,Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Province, Wuhan, China.,Hubei Institute of Traditional Chinese Medicine, Wuhan, Hubei Province, China
| | - Tingting Peng
- Department of Rheumatism Immunology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.,Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Province, Wuhan, China.,Hubei Institute of Traditional Chinese Medicine, Wuhan, Hubei Province, China
| | - Bo Liu
- Department of Rheumatism Immunology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.,Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Province, Wuhan, China.,Hubei Institute of Traditional Chinese Medicine, Wuhan, Hubei Province, China
| | - Shichao Zhao
- Department of Rheumatism Immunology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.,Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Province, Wuhan, China.,Hubei Institute of Traditional Chinese Medicine, Wuhan, Hubei Province, China
| | - Qin Zhuo
- Department of Rheumatism Immunology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.,College of the First Clinical, Hubei University of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
8
|
Xu B, Liu F, Gao Y, Sun J, Li Y, Lin Y, Liu X, Wen Y, Yi S, Dang J, Tu P, Wang Y. High Expression of IKZF2 in Malignant T Cells Promotes Disease Progression in Cutaneous T Cell Lymphoma. Acta Derm Venereol 2021; 101:adv00613. [PMID: 34853863 PMCID: PMC9472098 DOI: 10.2340/actadv.v101.570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cutaneous T cell lymphoma is a generally indolent disease derived from skin-homing mature T cells. However, in advanced stages, cutaneous T cell lymphoma may manifest aggressive clinical behaviour and lead to a poor prognosis. The mechanism of disease progression in cutaneous T cell lymphoma remains unknown. This study, based on a large clinical cohort, found that IKZF2, an essential transcription factor during T cell development and differentiation, showed stage-dependent overexpression in the malignant T cells in mycosis fungoides lesions. IKZF2 is specifically over-expressed in advanced-stage mycosis fungoides lesions, and correlates with poor prognosis. Mechanistically, overexpression of IKZF2 promotes cutaneous T cell lymphoma progression via inhibiting malignant cell apoptosis and may contribute to tumour immune escape by downregulating major histocompatibility complex II molecules and up-regulating the production of anti-inflammatory cytokine interleukin-10 by malignant T cells. These results demonstrate the important role of IKZF2 in high-risk cutaneous T cell lymphoma and pave the way for future targeted therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Yang Wang
- Department of Dermatology and Venereology, Peking University First Hospital, No.8 Xishiku Street, Xi Cheng District, Beijing 100034, China.
| |
Collapse
|
9
|
Arora C, Kaur D, Raghava GPS. Universal and cross-cancer prognostic biomarkers for predicting survival risk of cancer patients from expression profile of apoptotic pathway genes. Proteomics 2021; 22:e2000311. [PMID: 34637591 DOI: 10.1002/pmic.202000311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/25/2021] [Accepted: 09/30/2021] [Indexed: 11/12/2022]
Abstract
Numerous cancer-specific prognostic models have been developed in the past, wherein one model is applicable for only one type of cancer. In this study, an attempt has been made to identify universal or multi-cancer prognostic biomarkers and develop models for predicting survival risk across different types of cancer patients. In order to accomplish this, we gauged the prognostic role of mRNA expression of 165 apoptosis-related genes across 33 cancers in the context of patient survival. Firstly, we identified specific prognostic biomarker genes for 30 cancers. The cancer-specific prognostic models achieved a minimum Hazard Ratio, HRSKCM = 1.99 and maximum HRTHCA = 41.59. Secondly, a comprehensive analysis was performed to identify universal biomarkers across many cancers. Our best prognostic model consisted of 11 genes (TOP2A, ISG20, CD44, LEF1, CASP2, PSEN1, PTK2, SATB1, SLC20A1, EREG, and CD2) and stratified risk groups across 27 cancers (HROV = 1.53-HRUVM = 11.74). The model was validated on eight independent cancer cohorts and exhibited a comparable performance. Further, we clustered cancer-types on the basis of shared survival related apoptosis genes. This approach proved helpful in development of cross-cancer prognostic models. To show its efficacy, a prognostic model consisting of 15 genes was thereby developed for LGG-KIRC pair (HRKIRC = 3.27, HRLGG = 4.23). Additionally, we predicted potential therapeutic candidates for LGG-KIRC high risk patients.
Collapse
Affiliation(s)
- Chakit Arora
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Dilraj Kaur
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| |
Collapse
|
10
|
Hypoxia-induced downregulation of B-cell translocation gene 3 confers resistance to radiation therapy of colorectal cancer. J Cancer Res Clin Oncol 2020; 146:2509-2517. [PMID: 32620986 DOI: 10.1007/s00432-020-03307-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/27/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is now a major human cancer, and B-cell translocation gene 3 (BTG3) has been reported as a tumor-suppressor in CRC, but its upstream regulator has not been identified. METHODS Endogenous expression levels of BTG3 were compared between normal colorectal cell line CCD-18Co and two CRC cell lines SW480 and HT29, as well as between CRC patient tumor and adjacent normal tissues. Analysis of BTG3 genomic region was performed which identified a putative hypoxia response element (HRE). Effects of hypoxia condition, BTG3 overexpression, and their combination on the radiation sensitivity of CRC cell lines were assessed. RESULTS BTG3 was downregulated in CRC cell lines and patient tumor samples, via the HRE in its promoter region. Hypoxia and BTG3 overexpression could both induce radiation resistance in CRC cells. Combining hypoxia with BTG3 overexpression effectively rendered the resistance of CRC cells to radiation to a level lower than hypoxia alone and higher than normoxia alone, indicating the essential role of BTG3 in hypoxia-induced radiation resistance of CRC cells. CONCLUSION We therefore propose a novel signaling cascade involving hypoxia/BTG3 to be a potential risk factor for CRC patients undergoing radiation therapy, which could possibly serve as therapeutic targets among CRC patients with acquired radiotherapy resistance.
Collapse
|
11
|
Lyu J, Quan Y, Wang JB, Gong SP. Whole Exome Sequencing of Multiple Atypical Meningiomas in a Patient without History of Neurofibromatosis Type II: A Case Report. AMERICAN JOURNAL OF CASE REPORTS 2020; 21:e923928. [PMID: 32461543 PMCID: PMC7286185 DOI: 10.12659/ajcr.923928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The pathogenesis of sporadic multiple meningiomas in the patients without history of neurofibromatosis type II remains unclear. We report whole exome sequencing (WES) of 2 metachronous multiple meningiomas of the same patient. CASE REPORT A 39-year-old female had a 5-month history of headache and her magnetic resonance imaging (MRI) revealed a significantly enhanced intracranial space-occupying pathology with dura tail sign and skull invasion. She had no history of neurofibromatosis type II or other tumors. Tumor resection achieved Simpson grade I and the pathological studies revealed an atypical meningioma. After surgery, she accepted focal external-beam radiation therapy. One year later, MRI showed a significantly enhanced intracranial space-occupying pathology near the primary site of the previous tumor. She had only a mild headache. Simpson grade I resection of the tumor was achieved. The pathological diagnosis was still an atypical meningioma. WES on both tumors identified 220 common somatic gene mutations and 43 different somatic gene mutations. Three deleterious mutated genes including QRICH2, KIF2C, and MUC16 were identified only in the first tumor, and 9 deleterious mutated genes including FCGBP, RPS6KA5, GOLGA6L2, IGHV3-66, RPTN, AGRN, USP6, CLTCL1, and PABPC3 were identified only in the second tumor. As shown by the identical result of 3 prediction tools, RPS6KA5 and AGRN were most likely to be related to the progress of multiple atypical meningiomas. CONCLUSIONS The metachronous meningiomas with same World Health Organization (WHO) grades in the same patient could have distinct genetic aberration patterns. The roles of RPS6KA5 and AGRN in the rapid progress of multiple atypical meningiomas need further studies.
Collapse
Affiliation(s)
- Jian Lyu
- Neurosurgical Department, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Yu Quan
- Neurosurgical Department, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Ju-Bo Wang
- Neurosurgical Department, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Shou-Ping Gong
- Neurosurgical Department, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
12
|
Zhang N, Jiang T, Wang Y, Hu L, Bu Y. BTG4 is A Novel p53 Target Gene That Inhibits Cell Growth and Induces Apoptosis. Genes (Basel) 2020; 11:genes11020217. [PMID: 32093041 PMCID: PMC7074044 DOI: 10.3390/genes11020217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 01/09/2023] Open
Abstract
BTG4 is the last cloned and poorly studied member of BTG/Tob family. Studies have suggested that BTG4 is critical for the degradation of maternal mRNAs in mice during the process of maternal-to-zygotic transition, and downregulated in cancers, such as gastric cancer. However, the regulatory mechanism of BTG4 and its function in cancers remain elusive. In this study, we have for the first time identified the promoter region of the human BTG4 gene. Serial luciferase reporter assay demonstrated that the core promoter of BTG4 is mainly located within the 388 bp region near its transcription initiation site. Transcription factor binding site analysis revealed that the BTG4 promoter contains binding sites for canonical transcription factors, such as Sp1, whereas its first intron contains two overlapped consensus p53 binding sites. However, overexpression of Sp1 has negligible effects on BTG4 promoter activity, and site-directed mutagenesis assay further suggested that Sp1 is not a critical transcription factor for the transcriptional regulation of BTG4. Of note, luciferase assay revealed that one of the intronic p53 binding sites is highly responsive to p53. Both exogenous p53 overexpression and adriamycin-mediated endogenous p53 activation result in the transcriptional upregulation of BTG4. In addition, BTG4 is downregulated in lung and colorectal cancers, and overexpression of BTG4 inhibits cell growth and induces apoptosis in cancer cells. Taken together, our results strongly suggest that BTG4 is a novel p53-regulated gene and probably functions as a tumor suppressor in lung and colorectal cancers.
Collapse
Affiliation(s)
- Na Zhang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; (N.Z.); (T.J.); (Y.W.); (L.H.)
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Tinghui Jiang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; (N.Z.); (T.J.); (Y.W.); (L.H.)
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Yitao Wang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; (N.Z.); (T.J.); (Y.W.); (L.H.)
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Lanyue Hu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; (N.Z.); (T.J.); (Y.W.); (L.H.)
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; (N.Z.); (T.J.); (Y.W.); (L.H.)
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
- Correspondence: ; Tel.: +86-23-68485991
| |
Collapse
|
13
|
Zhan W, Liao X, Chen Z, Li L, Tian T, Yu L, Li R. LINC00858 promotes colorectal cancer by sponging miR-4766-5p to regulate PAK2. Cell Biol Toxicol 2020; 36:333-347. [PMID: 31902050 DOI: 10.1007/s10565-019-09506-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVES LncRNAs (long noncoding RNAs) have been reported to critically regulate colorectal cancer (CRC). We prospectively investigated effects and mechanisms of lncRNA LINC00858 on regulation of CRC progression. METHODS Expression of LINC00858 and its target were analyzed by quantitative real-time polymerase chain reaction and in situ hybridization. MTT and bromodeoxyuridine/5-bromo-2'-deoxyuridine (BrdU) staining to assess cell proliferation ability. Flow cytometry, wound healing, and transwell assays were conducted to evaluate cell apoptosis, migration, and invasion, respectively. Interaction between LINC00858 and its target was confirmed by luciferase activity assay and RNA immunoprecipitation. Subcutaneous xenotransplanted tumor model was established and employed to detect tumorigenic functions of LINC00858, and further evaluated by qRT-PCR, western blot, immunohistochemistry, and hematoxylin and eosin staining. RESULTS With a predicted poor prognosis, LINC00858 was upregulated in CRC patients. LINC00858 knockdown suppressed cell proliferation, invasion, and migration abilities, meanwhile induced cell apoptosis. Moreover, LINC00858 could target and inhibit the miR-4766-5p expression, thus promoting CRC progression. miR-4766-5p further suppressed serine/threonine kinase PAK2. Interestingly, interference of LINC00858 suppressed tumorigenic ability of CRC in vivo by downregulating PAK2. CONCLUSIONS LINC00858 promoted CRC progression by sponging miR-4766 to upregulate PAK2, shedding lights on LINC00858 as a potential therapeutic target candidate in CRC treatment from bench to clinic.
Collapse
Affiliation(s)
- Wei Zhan
- Surgery of Colorectal, Affiliated Hospital of Guizhou Medical University, Guiyang City, 550004, Guizhou, China
| | - Xin Liao
- Department of Imaging, Affiliated Hospital of Guizhou Medical University, Guiyang City, 550004, Guizhou, China
| | - Zhongsheng Chen
- Graduate Student of Surgery, Guizhou Medical University, Guiyang City, 550004, Guizhou, China
| | - Lianghe Li
- Graduate Student of Surgery, Guizhou Medical University, Guiyang City, 550004, Guizhou, China
| | - Tian Tian
- Graduate Student of Surgery, Guizhou Medical University, Guiyang City, 550004, Guizhou, China
| | - Lei Yu
- Department of Pathology, Guiyang Maternal and Child Health Hospital, Guiyang City, 550004, Guizhou, China
| | - Rui Li
- Department of Traditional Chinese Medicine, Guizhou Provincial People's Hospital, Zhongshan East Road 83, Guiyang, 550002, People's Republic of China.
| |
Collapse
|
14
|
The long non-coding RNA HOTAIRM1 suppresses cell progression via sponging endogenous miR-17-5p/ B-cell translocation gene 3 (BTG3) axis in 5-fluorouracil resistant colorectal cancer cells. Biomed Pharmacother 2019; 117:109171. [DOI: 10.1016/j.biopha.2019.109171] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 01/03/2023] Open
|
15
|
Zhang Y, Ding J, Wang L. The role of P2X7 receptor in prognosis and metastasis of colorectal cancer. Adv Med Sci 2019; 64:388-394. [PMID: 31276917 DOI: 10.1016/j.advms.2019.05.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/11/2019] [Accepted: 05/24/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE Colorectal cancer (CRC) is one of the leading causes of cancer mortality in the world. P2X7 receptor (P2X7R), encoded by the P2rx7 gene, is a trimeric ion channel activated by extracellular Adenosine triphosphate and is widely expressed in various types of tissues and tumors to regulate inflammation, cell proliferation, or death. The discovery of new biomarkers and understanding the role of P2X7R in CRC are therefore critical to improving the prognosis and treatment of CRC. MATERIALS AND METHODS P2X7R expression was analyzed in CRC tumor samples and normal colorectal tissues from 97 patients and various colon cancer cell lines. The correlation of tumor antigens, survival periods, and P2X7R expression were documented. RESULTS P2X7RHigh and P2X7RLow populations were observed in CRC patients. P2X7RHigh patients had relatively shorter survival periods, higher levels of serum carcinoembryonic antigen, and greater numbers of advanced tumors. In addition, P2X7R expression had a significant up-regulation in metastatic CRC and metastatic CRC cell lines, which indicates that P2X7R expression is positively associated with metastasis. CONCLUSIONS P2X7R expression might be a potential biomarker for prognosis and metastasis of CRC.
Collapse
|
16
|
Ahluwalia P, Mondal AK, Bloomer C, Fulzele S, Jones K, Ananth S, Gahlay GK, Heneidi S, Rojiani AM, Kota V, Kolhe R. Identification and Clinical Validation of a Novel 4 Gene-Signature with Prognostic Utility in Colorectal Cancer. Int J Mol Sci 2019; 20:ijms20153818. [PMID: 31387239 PMCID: PMC6696416 DOI: 10.3390/ijms20153818] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is a high burden disease with several genes involved in tumor progression. The aim of the present study was to identify, generate and clinically validate a novel gene signature to improve prediction of overall survival (OS) to effectively manage colorectal cancer. We explored The Cancer Genome Atlas (TCGA), COAD and READ datasets (597 samples) from The Protein Atlas (TPA) database to extract a total of 595 candidate genes. In parallel, we identified 29 genes with perturbations in > 6 cancers which are also affected in CRC. These genes were entered in cBioportal to generate a 17 gene panel with highest perturbations. For clinical validation, this gene panel was tested on the FFPE tissues of colorectal cancer patients (88 patients) using Nanostring analysis. Using multivariate analysis, a high prognostic score (composite 4 gene signature-DPP7/2, YWHAB, MCM4 and FBXO46) was found to be a significant predictor of poor prognosis in CRC patients (HR: 3.42, 95% CI: 1.71-7.94, p < 0.001 *) along with stage (HR: 4.56, 95% CI: 1.35-19.15, p = 0.01 *). The Kaplan-Meier analysis also segregated patients on the basis of prognostic score (log-rank test, p = 0.001 *). The external validation using GEO dataset (GSE38832, 122 patients) corroborated the prognostic score (HR: 2.7, 95% CI: 1.99-3.73, p < 0.001 *). Additionally, higher score was able to differentiate stage II and III patients (130 patients) on the basis of OS (HR: 2.5, 95% CI: 1.78-3.63, p < 0.001 *). Overall, our results identify a novel 4 gene prognostic signature that has clinical utility in colorectal cancer.
Collapse
Affiliation(s)
- Pankaj Ahluwalia
- Department of Pathology, Anatomic Pathology Section, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Ashis K Mondal
- Department of Pathology, Anatomic Pathology Section, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Chance Bloomer
- Department of Pathology, Anatomic Pathology Section, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Sadanand Fulzele
- Department of Orthopedics, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Kimya Jones
- Department of Pathology, Anatomic Pathology Section, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Sudha Ananth
- Department of Pathology, Anatomic Pathology Section, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Gagandeep K Gahlay
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Saleh Heneidi
- Department of Pathology, Anatomic Pathology Section, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Amyn M Rojiani
- Department of Pathology, Anatomic Pathology Section, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Vamsi Kota
- Department of Medicine, Hematology Oncology Section, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| | - Ravindra Kolhe
- Department of Pathology, Anatomic Pathology Section, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
17
|
Wang L, Mo H, Jiang Y, Wang Y, Sun L, Yao B, Chen T, Liu R, Li Q, Liu Q, Yin G. MicroRNA-519c-3p promotes tumor growth and metastasis of hepatocellular carcinoma by targeting BTG3. Biomed Pharmacother 2019; 118:109267. [PMID: 31387005 DOI: 10.1016/j.biopha.2019.109267] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/15/2019] [Accepted: 07/24/2019] [Indexed: 12/16/2022] Open
Abstract
Tumor recurrence and metastasis after surgical resection are the major causes for the cancer-related death of hepatocellular carcinoma (HCC). Thus, better understanding the mechanisms involved in tumor progression will benefit to improve HCC treatment. Accumulating evidence demonstrates that microRNAs (miRNAs) play critical roles in the development and progression of HCC. However, the function of miR-519c-3p in HCC and its related mechanism remain unexplored. Here, we reported that miR-519c-3p was strongly overexpressed in HCC tissues, which was significantly correlated with poor prognosis and clinicopathological features including tumor size ≥5 cm, vascular invasion and advanced tumor-node-metastasis (TNM) stages (III + IV). Furthermore, the elevated levels of miR-519c-3p were observed in HCC cell lines. Subsequently, gain- or loss-of-function assays demonstrated that miR-519c-3p promoted HCC cell proliferation, migration as well as invasion in vitro, and facilitated the growth and metastasis of HCC cells in vivo. Mechanistically, B-cell translocation gene 3 (BTG3) was identified as a direct downstream target of miR-519c-3p. The level of BTG3 mRNA was downregulated in HCC and negatively correlated with miR-519c-3p expression. Western blotting confirmed that BTG3 was negatively regulated by miR-519c-3p in HCC cells. Luciferase reporter assays illustrated the direct interaction between miR-519c-3p and the 3'UTR of BTG3 mRNA. Recuse experiments demonstrated that BTG3 mediated the promoting effects of miR-519c-3p on the proliferation and motility of HCC cells. Collectively, our results suggest that miR-519c-3p functions as a tumor promotor in regulating the growth and metastasis of HCC by targeting BTG3, and potentially serves as a novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Liang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Huanye Mo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Yezhen Jiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China; Department of General Surgery, Xi'an Beihuan Hospital, Xi'an, Shaanxi Province 710032, China
| | - Yufeng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Liankang Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Bowen Yao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Tianxiang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Runkun Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Qing Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China.
| | - Guozhi Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China.
| |
Collapse
|
18
|
Peng L, Li S, Li Y, Wan M, Fang X, Zhao Y, Zuo W, Long D, Xuan Y. Regulation of BTG3 by microRNA-20b-5p in non-small cell lung cancer. Oncol Lett 2019; 18:137-144. [PMID: 31289482 DOI: 10.3892/ol.2019.10333] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 03/14/2019] [Indexed: 12/23/2022] Open
Abstract
The present study aimed to evaluate microRNA- 20b-5p (miR-20b-5p) expression in non-small cell lung cancer (NSCLC), and investigate the effects of miR-20b-5p expression on NSCLC cell proliferation and migration. Reverse transcription-quantitative polymerase chain reaction was performed to measure the expression level of miR-20b-5p in NSCLC tissues and cell lines. Cell Counting Kit-8 and wound healing assays were used to measure cell proliferation and migration. A dual-luciferase reporter assay was performed to validate B-cell translocation gene 3 (BTG3) as a target of miR-20b-5p. It was identified that the expression level of miR-20b-5p is elevated in NSCLC tissues and cell lines. miR-20b-5p overexpression was revealed to promote NSCLC cell proliferation and migration. Furthermore, BTG3 was identified as a direct target of miR-20b-5p, and BTG3 overexpression reversed a miR-20b-5p mimic-induced increase in cell proliferation and migration. In summary, the present study revealed that miR-20b-5p promotes NSCLC cell proliferation and migration by targeting BTG3, which may assist with the development of a novel therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Lijun Peng
- Department of Thoracic Surgery, Guangzhou General Hospital of The People's Liberation Army, Guangzhou, Guangdong 510010, P.R. China
| | - Shaobin Li
- Department of Cardiothoracic Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Yuchan Li
- Oncology Department 2, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Minghui Wan
- Department of Radiation Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Xisheng Fang
- Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China.,Department of Medical Oncology, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Yongxin Zhao
- Department of Oncology, The Cooperation of Chinese and Western Medicine Hospital in Guangzhou, Guangzhou, Guangdong 510800, P.R. China
| | - Wei Zuo
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 33000, P.R. China
| | - De Long
- Department of Oncology, The Cooperation of Chinese and Western Medicine Hospital in Guangzhou, Guangzhou, Guangdong 510800, P.R. China
| | - Yiwen Xuan
- Department of Thoracic Surgery, Guangzhou General Hospital of The People's Liberation Army, Guangzhou, Guangdong 510010, P.R. China
| |
Collapse
|
19
|
Suppression of miR-93-5p inhibits high-risk HPV-positive cervical cancer progression via targeting of BTG3. Hum Cell 2019; 32:160-171. [DOI: 10.1007/s13577-018-00225-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/23/2018] [Indexed: 12/25/2022]
|
20
|
Chermuła B, Brązert M, Jeseta M, Ożegowska K, Sujka-Kordowska P, Konwerska A, Bryja A, Kranc W, Jankowski M, Nawrocki MJ, Kocherova I, Celichowski P, Borowiec B, Popis M, Budna-Tukan J, Antosik P, Bukowska D, Brussow KP, Pawelczyk L, Bruska M, Zabel M, Nowicki M, Kempisty B. The Unique Mechanisms of Cellular Proliferation, Migration and Apoptosis are Regulated through Oocyte Maturational Development-A Complete Transcriptomic and Histochemical Study. Int J Mol Sci 2018; 20:ijms20010084. [PMID: 30587792 PMCID: PMC6337548 DOI: 10.3390/ijms20010084] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/06/2018] [Accepted: 12/21/2018] [Indexed: 12/16/2022] Open
Abstract
The growth and development of oocyte affect the functional activities of the surrounding somatic cells. These cells are regulated by various types of hormones, proteins, metabolites, and regulatory molecules through gap communication, ultimately leading to the development and maturation of oocytes. The close association between somatic cells and oocytes, which together form the cumulus-oocyte complexes (COCs), and their bi-directional communication are crucial for the acquisition of developmental competences by the oocyte. In this study, oocytes were extracted from the ovaries obtained from crossbred landrace gilts and subjected to in vitro maturation. RNA isolated from those oocytes was used for the subsequent microarray analysis. The data obtained shows, for the first time, variable levels of gene expression (fold changes higher than |2| and adjusted p-value < 0.05) belonging to four ontological groups: regulation of cell proliferation (GO:0042127), regulation of cell migration (GO:0030334), and regulation of programmed cell death (GO:0043067) that can be used together as proliferation, migration or apoptosis markers. We have identified several genes of porcine oocytes (ID2, VEGFA, BTG2, ESR1, CCND2, EDNRA, ANGPTL4, TGFBR3, GJA1, LAMA2, KIT, TPM1, VCP, GRID2, MEF2C, RPS3A, PLD1, BTG3, CD47, MITF), whose expression after in vitro maturation (IVM) is downregulated with different degrees. Our results may be helpful in further elucidating the molecular basis and functional significance of a number of gene markers associated with the processes of migration, proliferation and angiogenesis occurring in COCs.
Collapse
Affiliation(s)
- Błażej Chermuła
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 60-535 Poznań, Poland.
| | - Maciej Brązert
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 60-535 Poznań, Poland.
| | - Michal Jeseta
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 601 77 Brno, Czech Republic.
| | - Katarzyna Ożegowska
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 60-535 Poznań, Poland.
| | - Patrycja Sujka-Kordowska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland.
| | - Aneta Konwerska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland.
| | - Artur Bryja
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland.
| | - Wiesława Kranc
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland.
| | - Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland.
| | - Mariusz J Nawrocki
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland.
| | - Ievgeniia Kocherova
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland.
| | - Piotr Celichowski
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland.
| | - Blanka Borowiec
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland.
| | - Małgorzata Popis
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland.
| | - Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland.
| | - Paweł Antosik
- Veterinary Center, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland.
| | - Dorota Bukowska
- Veterinary Center, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland.
| | - Klaus P Brussow
- Veterinary Center, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland.
| | - Leszek Pawelczyk
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 60-535 Poznań, Poland.
| | - Małgorzata Bruska
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland.
| | - Maciej Zabel
- Department of Histology and Embryology, Wroclaw University of Medical Sciences, 50-368 Wrocław, Poland.
- Division of Anatomy and Histology, University of Zielona Gora, 65-046 Zielona Góra, Poland.
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland.
| | - Bartosz Kempisty
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 601 77 Brno, Czech Republic.
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland.
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland.
| |
Collapse
|
21
|
Gupta A, Ajith A, Singh S, Panday RK, Samaiya A, Shukla S. PAK2-c-Myc-PKM2 axis plays an essential role in head and neck oncogenesis via regulating Warburg effect. Cell Death Dis 2018; 9:825. [PMID: 30068946 PMCID: PMC6070504 DOI: 10.1038/s41419-018-0887-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/07/2018] [Accepted: 07/18/2018] [Indexed: 12/21/2022]
Abstract
The histone modifiers (HMs) are crucial for chromatin dynamics and gene expression; however, their dysregulated expression has been observed in various abnormalities including cancer. In this study, we have analyzed the expression of HMs in microarray profiles of head and neck cancer (HNC), wherein a highly significant overexpression of p21-activated kinase 2 (PAK2) was identified which was further validated in HNC patients. The elevated expression of PAK2 positively correlated with enhanced cell proliferation, aerobic glycolysis and chemoresistance and was associated with the poor clinical outcome of HNC patients. Further, dissection of molecular mechanism revealed an association of PAK2 with c-Myc and c-Myc-dependent PKM2 overexpression, wherein we showed that PAK2 upregulates c-Myc expression and c-Myc thereby binds to PKM promoter and induces PKM2 expression. We observed that PAK2-c-Myc-PKM2 axis is critical for oncogenic cellular proliferation. Depletion of PAK2 disturbs the axis and leads to downregulation of c-Myc and thereby PKM2 expression, which resulted in reduced aerobic glycolysis, proliferation and chemotherapeutic resistance of HNC cells. Moreover, the c-Myc complementation rescued PAK2 depletion effects and restored aerobic glycolysis, proliferation, migration and invasion in PAK2-depleted cells. The global transcriptome analysis of PAK2-depleted HNC cells revealed the downregulation of various genes involved in active cell proliferation, which indicates that PAK2 overexpression is critical for HNC progression. Together, these results suggest that the axis of PAK2-c-Myc-PKM2 is critical for HNC progression and could be a therapeutic target to reduce the cell proliferation and acquired chemoresistance and might enhance the efficacy of standard chemotherapy which will help in better management of HNC patients.
Collapse
Affiliation(s)
- Amit Gupta
- Epigenetics and RNA Processing Lab, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, 462066, India
| | - Athira Ajith
- Epigenetics and RNA Processing Lab, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, 462066, India
- Lab No. 315, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Tamil Nadu, 600036, India
| | - Smriti Singh
- Epigenetics and RNA Processing Lab, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, 462066, India
| | | | - Atul Samaiya
- Department of Surgical Oncology, Bansal Hospital, Bhopal, Madhya Pradesh, 462016, India
| | - Sanjeev Shukla
- Epigenetics and RNA Processing Lab, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, 462066, India.
| |
Collapse
|
22
|
Yan R, Xu H, Fu X. Salidroside protects hypoxia-induced injury by up-regulation of miR-210 in rat neural stem cells. Biomed Pharmacother 2018; 103:1490-1497. [PMID: 29864934 DOI: 10.1016/j.biopha.2018.04.184] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 10/17/2022] Open
Abstract
Neonatal brain hypoxia is a disease that affects the nervous system in children. Salidroside is a compound that has an anti-hypoxic effect, but the mechanism of salidroside in neonatal cerebral hypoxia is unclear. Hence, we investigated the regulatory effect and mechanism of salidroside on hypoxic-induced injury of neural stem cells (NSCs). NSCs derived from embryo 14 Sprague-Dawley rats were treated by hypoxia, followed by the treatment of 0.8 mM salidroside. The expression levels of miR-210 and BTG3 in NSCs were altered by transfection. Cell viability and apoptosis were examined by CCK-8 and flow cytometry analysis. qRT-PCR and Western blot were performed to assess the expression changes of miR-210, BTG3, apoptosis-related factors and core factors in PI3K/AKT/mTOR pathway. We found that hypoxia induced an apoptosis-dependent death in NSCs. Salidroside exerted bFGF-like effect, as it alleviated hypoxia-induced viability impairment and apoptosis in NSCs. Further studies showed that hypoxia plus salidroside elevated miR-210 expression, and the protective actions of salidroside on hypoxia-modulated death in NSCs were attenuated by miR-210 suppression, while were enhanced by miR-210 overexpression. Besides, BTG3 was negatively regulated by miR-210. Overexpression of BTG3 inhibited the activation of PI3K/AKT/mTOR signaling pathway; of contrast, suppression of BTG3 promoted it. To conclude, this study provide in vitro evidence that salidroside protected NSCs against hypoxia-induced injury by up-regulation of miR-210, which in turn inhibited the expression of BTG3 and activated PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Rui Yan
- Department of Children Rehabilitation, Women & Children's Health Care Hospital of Linyi, Linyi 276016, Shandong, China
| | - Hua Xu
- Children's Hospital of Kaifeng City, Kaifeng 475000, Henan, China
| | - Xiaoxiang Fu
- Department of Child Health Care, Women & Children's Health Care Hospital of Linyi, Linyi 276016, Shandong, China.
| |
Collapse
|