2
|
Yamada T, Nakanishi Y, Hayashi H, Tanishima S, Mori R, Fujii K, Okamura K, Tsuchikawa T, Nakamura T, Noji T, Asano T, Matsui A, Tanaka K, Watanabe Y, Kurashima Y, Ebihara Y, Murakami S, Shichinohe T, Mitsuhashi T, Hirano S. Targeted amplicon sequencing for primary tumors and matched lymph node metastases in patients with extrahepatic cholangiocarcinoma. HPB (Oxford) 2022; 24:1035-1043. [PMID: 34903468 DOI: 10.1016/j.hpb.2021.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Lymph node metastasis (LNM) is one of the most adverse prognostic factors in extrahepatic cholangiocarcinoma (EHCC) cases. As next-generation sequencing technology has become more widely available, the genomic profile of biliary tract carcinoma has been clarified. However, whether LNMs have additional genomic alterations in patients with EHCC has not been investigated. Here, we aimed to compare the genomic alterations between primary tumors and matched LNMs in patients with EHCC. METHODS Sixteen patients with node-positive EHCCs were included. Genomic DNA was extracted from tissue samples of primary tumors and matched LNMs. Targeted amplicon sequencing of 160 cancer-related genes was performed. RESULTS Among the 32 tumor samples from 16 patients, 91 genomic mutations were identified. Genomic mutations were noted in 31 genes, including TP53, MAP3K1, SMAD4, APC, and ARID1A. TP53 mutations were most frequently observed (12/32; 37.5%). Genomic mutation profiles were highly concordant between primary tumors and matched LNMs (13/16; 81.3%), and an additional genomic mutation of CDK12 was observed in only one patient. CONCLUSION Genomic mutations were highly concordant between primary tumors and matched LNMs, suggesting that genotyping of archived primary tumor samples may help predict genomic mutations of metastatic tumors in patients with EHCC.
Collapse
Affiliation(s)
- Toru Yamada
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Japan; Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Yoshitsugu Nakanishi
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Japan.
| | - Hideyuki Hayashi
- Division of Clinical Cancer Genomics, Hokkaido University Hospital, Sapporo, Japan; Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | | | - Ryo Mori
- Mitsubishi Space Software, Tokyo, Japan
| | - Kyoko Fujii
- Division of Clinical Cancer Genomics, Hokkaido University Hospital, Sapporo, Japan; Department of Cancer Pathology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Keisuke Okamura
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Takahiro Tsuchikawa
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Toru Nakamura
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Takehiro Noji
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Toshimichi Asano
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Aya Matsui
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Kimitaka Tanaka
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Yusuke Watanabe
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Yo Kurashima
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Yuma Ebihara
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Soichi Murakami
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Toshiaki Shichinohe
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Tomoko Mitsuhashi
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Satoshi Hirano
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Japan
| |
Collapse
|
3
|
Hamed RA, Marks S, Mcelligott H, Kalachand R, Ibrahim H, Atyani S, Korpanty G, Osman N. Inoperable de novo metastatic colorectal cancer with primary tumour in situ: Evaluating discordant responses to upfront systemic therapy of the primary tumours and metastatic sites and complications arising from primary tumours (experiences from an Irish Cancer Centre). Mol Clin Oncol 2022; 16:40. [PMID: 35003738 PMCID: PMC8739439 DOI: 10.3892/mco.2021.2472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022] Open
Abstract
Systemic therapy is the mainstay of treatment for de novo metastatic colorectal cancer (mCRC). Heterogeneity between primary tumours and metastases may lead to discordant responses to systemic therapy at these sites. The aim of the present study was to examine these discrepancies and to evaluate the rates of complications arising from the primary tumour and the strategies employed to manage these complications. Electronic medical records were screened for patients eligible for data analysis between January 1st, 2014 and December 31st, 2019. All patients diagnosed with de novo mCRC with primary tumour in situ at the time of initial systemic therapy were included in data analysis. Responses in primary tumour and metastatic sites (according to the Response Evaluation Criteria In Solid Tumours v1.1), discrepancies in these responses and rates of complications arising from primary tumours were assessed along with patient, pathological or molecular factors that may be associated with these discrepant responses or primary tumour complications. A total of 50 patients were identified (median age, 62 years). Right-colon, left-colon and rectal primary tumours comprised 34, 44 and 22% of CRC cases, respectively. All patients received 5-fluorouracil-based chemotherapy (either alone or in combination with oxaliplatin or irinotecan). Disease response (DR), stable disease (SD) and progressive disease (PD) were observed as the first response to systemic therapy in 24, 62 and 12% of primary tumours and in 36, 18 and 44% of metastatic sites, respectively. Only 36% of patients demonstrated concordant responses between the primary tumours and metastases, while the remaining 62% demonstrated discordant responses between the primary tumour and distant metastases (22% had DR with SD; 36% had DR or SD with PD; and 4% had PD with SD in the primary tumour and metastases, respectively). Restaging images were not available for 2% of the patients. Approximately 30% of patients developed complications from primary tumours, including bowel obstruction (6.12%), perforation (6%), rectal pain (6%) and rectal bleeding (10%). Approximately 10% of patients underwent palliative stoma creation. Additionally, 12% required palliative radiotherapy to the primary tumour (due to localized complications arising from the tumour). Discordant responses to systemic therapy between primary tumours and metastases occurred in 60% of patients with de novo mCRC (with primary tumour in situ at the time of first systemic therapy). The observations of the present study have potential implications for molecular tissue analysis to help guide systemic therapy. Tissue from metastatic sites may be preferable to confirm biomarker status in mCRC based on this study.
Collapse
Affiliation(s)
- Ruba A Hamed
- Department of Oncology, Mid-Western Cancer Centre, University Hospital Limerick, Limerick V94 F858, Ireland
| | - Sam Marks
- Department of Oncology, Mid-Western Cancer Centre, University Hospital Limerick, Limerick V94 F858, Ireland
| | - Helen Mcelligott
- Department of Oncology, Mid-Western Cancer Centre, University Hospital Limerick, Limerick V94 F858, Ireland
| | - Roshni Kalachand
- Department of Oncology, Mid-Western Cancer Centre, University Hospital Limerick, Limerick V94 F858, Ireland
| | - Hawa Ibrahim
- Palliative Department, St. Francis Hospice, Dublin 5 D05 T9K8, Ireland
| | - Said Atyani
- Radiology Department, University Hospital Limerick, Limerick V94 F858, Ireland
| | - Greg Korpanty
- Department of Oncology, Mid-Western Cancer Centre, University Hospital Limerick, Limerick V94 F858, Ireland
| | - Nemer Osman
- Department of Oncology, Mid-Western Cancer Centre, University Hospital Limerick, Limerick V94 F858, Ireland
| |
Collapse
|
6
|
Igarashi T, Shimizu K, Usui K, Yokobori T, Ohtaki Y, Nakazawa S, Obayashi K, Yajima T, Nobusawa S, Ohkawa T, Katoh R, Motegi Y, Ogawa H, Harimoto N, Ichihara T, Mitani Y, Yokoo H, Mogi A, Shirabe K. Significance of RAS mutations in pulmonary metastases of patients with colorectal cancer. Int J Clin Oncol 2019; 25:641-650. [PMID: 31773354 DOI: 10.1007/s10147-019-01582-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND RAS/BRAF mutations of colorectal cancer (CRC) play a crucial role in carcinogenesis and cancer progression and need to be considered for the therapeutic strategy choice. We used next-generation-sequencing (NGS) technology to assess RAS/BRAF mutation differences between primary CRC and corresponding pulmonary metastases (PMs). METHODS We examined the mutation statuses of the KRAS 12/13/61/146, NRAS 12/13/61/146, and BRAF 600 codons in genomic DNA from fresh-frozen or formalin-fixed paraffin-embedded tissues derived from 34 primary lesions and 52 corresponding PMs from 36 patients with CRC. RESULTS We found RAS mutations in 76% (26/34) of primary CRC lesions and in 86% (31/36) of PMs. While 27% (7/26) of the primary CRC RAS mutations were heterogeneous, all the RAS mutations in PMs were homogeneous. Of the mutations in PMs, 71% (22/31) were KRAS G>A transitions, of which 82% (18/22) were KRAS G12D or G13D. The RAS mutation discordance between primary tumors and PMs was 12.1% (4/33). RAS mutations with the same genotyping were detected in all synchronous and metachronous PMs from 9 patients. We found no BRAF mutations in either primary or pulmonary tissues. CONCLUSION Our NGS analysis suggests that RAS mutations of PM of patients with CRC are more common than initially thought. The presence of KRAS mutations in CRC specimens, especially G12D or G13D mutations, seems to promote PM formation.
Collapse
Affiliation(s)
- Takamichi Igarashi
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.,Integrative Center of General Surgery, Gunma University Hospital, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Kimihiro Shimizu
- Integrative Center of General Surgery, Gunma University Hospital, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan. .,Division of General Thoracic Surgery, Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| | - Kengo Usui
- Genetic Diagnosis Technology Unit, RIKEN Center of Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Takehiko Yokobori
- Integrative Center of General Surgery, Gunma University Hospital, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.,Department of Innovative Cancer Immunotherapy, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.,Gunma University Initiative for Advanced Research (GIAR), Maebashi, Gunma, 371-8511, Japan
| | - Yoichi Ohtaki
- Integrative Center of General Surgery, Gunma University Hospital, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.,Division of General Thoracic Surgery, Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Seshiru Nakazawa
- Integrative Center of General Surgery, Gunma University Hospital, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.,Division of General Thoracic Surgery, Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Kai Obayashi
- Integrative Center of General Surgery, Gunma University Hospital, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.,Division of General Thoracic Surgery, Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Toshiki Yajima
- Integrative Center of General Surgery, Gunma University Hospital, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.,Division of General Thoracic Surgery, Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.,Department of Innovative Cancer Immunotherapy, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Sumihito Nobusawa
- Department of Human Pathology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Takahiro Ohkawa
- Genetic Diagnosis Technology Unit, RIKEN Center of Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Ryuji Katoh
- Integrative Center of General Surgery, Gunma University Hospital, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Yoko Motegi
- Integrative Center of General Surgery, Gunma University Hospital, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Hiroomi Ogawa
- Integrative Center of General Surgery, Gunma University Hospital, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Norifumi Harimoto
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.,Integrative Center of General Surgery, Gunma University Hospital, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Tatsuo Ichihara
- K.K. DNAFORM, 75-1 Ono-machi, Tsurumi-ku, Yokohama, Kanagawa, 230-0046, Japan
| | - Yasumasa Mitani
- K.K. DNAFORM, 75-1 Ono-machi, Tsurumi-ku, Yokohama, Kanagawa, 230-0046, Japan
| | - Hideaki Yokoo
- Department of Human Pathology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Akira Mogi
- Integrative Center of General Surgery, Gunma University Hospital, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.,Division of General Thoracic Surgery, Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Ken Shirabe
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.,Integrative Center of General Surgery, Gunma University Hospital, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
7
|
Zhou W, Liu T, Saren G, Liao L, Fang W, Zhao H. Comprehensive analysis of differentially expressed long non-coding RNAs in non-small cell lung cancer. Oncol Lett 2019; 18:1145-1156. [PMID: 31423174 PMCID: PMC6607379 DOI: 10.3892/ol.2019.10414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 04/17/2019] [Indexed: 12/20/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the primary subtype of lung cancer. Long non-coding RNAs (lncRNAs) have been reported to serve prominent roles in cancer progression. However, the expression patterns and potential roles of lncRNAs in NSCLC remain to be elucidated. In the present study, four public datasets were analyzed to identify differentially expressed lncRNAs (DElncs) in NSCLC. A further dataset, GSE19188, was analyzed to validate the findings. A total of 38 upregulated and 31 downregulated lncRNAs were identified in NSCLC, compared with samples from healthy controls. Among these, 12 lncRNAs were associated with the progression of NSCLC, and dysregulated between high grade (stage III and IV) and low grade (stage II) NSCLC samples. Moreover, dysregulation of lncRNA-SIGLEC17P, GGTA1P, A2M-AS1, LINC00938, GVINP1, LINC00667 and TMPO-AS1 was associated with overall survival time in patients with NSCLC. Co-expression analyses, combined with the construction of protein-protein interaction networks, were performed to reveal the potential roles of key lncRNAs in NSCLC. The present study revealed a series of lncRNAs involved in the progression of NSCLS, which may serve as novel biomarkers for the disease.
Collapse
Affiliation(s)
- Wenyong Zhou
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Tao Liu
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Gaowa Saren
- Department of Intensive Care, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Li Liao
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Wentao Fang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Heng Zhao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|