1
|
Zhang Z, Sun Y, Zeng Z, Li D, Cao W, Lei S, Chen T. Identification of the clinical value and biological effects of TTN mutation in liver cancer. Mol Med Rep 2025; 31:165. [PMID: 40242970 PMCID: PMC12012433 DOI: 10.3892/mmr.2025.13530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/11/2025] [Indexed: 04/18/2025] Open
Abstract
Liver cancer, a malignant tumor of the digestive system, is a leading cause of cancer‑related mortality globally. Numerous genetic mutations associated with tumorigenesis have been identified, stemming from genomic instability. However, the clinical implications and therapeutic relevance of these mutations remain poorly understood. The present study evaluated the prognostic significance of titin (TTN) mutations in liver cancer by analyzing the mutation landscape of liver cancer tissues from The Cancer Genome Atlas (TCGA) database. The association between TTN mutations and drug susceptibility was subsequently examined using the OncoPredict algorithm and Cell Counting Kit‑8 (CCK‑8) assays. Furthermore, the impact of TTN mutations on hepatoma cell biology both in vivo and in vitro were assessed by reverse transcription‑quantitative PCR, protein stability assays, colony formation assays, tumor spheroid formation assays and subcutaneous tumor transplantation in BALB/c nude mice. Genetic analysis of the TCGA database revealed that TTN mutations are among the most frequent mutations in liver cancer. Patients with TTN mutations exhibited worse prognoses compared with those with the wild‑type allele. The OncoPredict algorithm and CCK‑8 assays revealed that TTN mutations are associated with altered drug sensitivity, particularly to GSK1904529A, nilotinib, 5‑fluorouracil (5‑FU) and sapitinib. Additionally, TTN mutations were shown to enhance TTN protein stability, decrease intracellular ferrous ion levels and significantly decrease liver cancer sensitivity to 5‑FU both in vitro and in vivo. The findings indicated that TTN mutations increase protein stability and lower intracellular ferrous ion levels, thereby suppressing ferroptosis and contributing to resistance to 5‑FU in hepatoma cells. These results suggest that TTN mutations are associated with poor prognosis in liver cancer and could serve as a predictive biomarker for liver cancer progression, prognosis and drug resistance.
Collapse
Affiliation(s)
- Zhixue Zhang
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Yating Sun
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Zhirui Zeng
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Dahuan Li
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Wenpeng Cao
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Shan Lei
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Tengxiang Chen
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| |
Collapse
|
2
|
Wang M, Li W, Zhou F, Wang Z, Jia X, Han X. A nicotinamide metabolism-related gene signature for predicting immunotherapy response and prognosis in lung adenocarcinoma patients. PeerJ 2025; 13:e18991. [PMID: 40034678 PMCID: PMC11874940 DOI: 10.7717/peerj.18991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/23/2025] [Indexed: 03/05/2025] Open
Abstract
Background Nicotinamide (NAM) metabolism fulfills crucial functions in tumor progression. The present study aims to establish a NAM metabolism-correlated gene (NMRG) signature to assess the immunotherapy response and prognosis of lung adenocarcinoma (LUAD). Methods The training set and validation set (the GSE31210 dataset) were collected The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), respectively. Molecular subtypes of LUAD were classified by consensus clustering. Mutation landscape of the top 20 somatic genes was visualized by maftools package. Subsequently, differential expression analysis was conducted using the limma package, and univariate, multivariate and LASSO regression analyses were performed on the screened genes to construct a risk model for LUAD. Next, the MCP-counter, TIMER and ESTIMATE algorithms were utilized to comprehensively assess the immune microenvironmental profile of LUAD patients in different risk groups. The efficacy of immunotherapy and chemotherapy drugs was evaluated by TIDE score and pRRophetic package. A nomogram was created by integrating RiskScore and clinical features. The mRNA expressions of independent prognostic NMRGs and the migration and invasion of LUAD cells were measured by carrying out cellular assays. Results Two subtypes (C1 and C2) of LUAD were classified, with C1 subtype showing a worse prognosis than C2. The top three genes with a high mutation frequency in C1 and C2 subtypes were TTN (45.25%), FLG (25.25%), and ZNF536 (19.8%). Four independent prognostic NMRGs (GJB3, CPA3, DKK1, KRT6A) were screened and used to construct a RiskScore model, which exhibited a strong predictive performance. High-risk group showed low immune cell infiltration, high TIDE score, and worse prognosis, and the patients in this group exhibited a high drug sensitivity to Cisplatin, Erlotinib, Paclitaxel, Saracatini, and CGP_082996. A nomogram was established with an accurate predictive and diagnostic performance. GJB3, DKK1, CPA3, and KRT6A were all high- expressed in LUAD cells, and silencing GJB3 inhibited the migration and invasion of LUAD cells. Conclusion A novel NMRG signature was developed, contributing to the prognostic evaluation and personalized treatment for LUAD patients.
Collapse
Affiliation(s)
- Meng Wang
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, China
- Chest Hospital, Tianjin University, Tianjin, China
| | - Wei Li
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, China
- Chest Hospital, Tianjin University, Tianjin, China
| | - Fang Zhou
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, China
- Chest Hospital, Tianjin University, Tianjin, China
| | - Zheng Wang
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, China
- Chest Hospital, Tianjin University, Tianjin, China
| | - Xiaoteng Jia
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
| | - Xingpeng Han
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, China
- Chest Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
3
|
Mou K, Wang H, Zhu S, Luo J, Wang J, Peng L, Lei Y, Zhang Y, Huang S, Zhao H, Li G, Xiang L, Luo Y. Comprehensive analysis of the prognostic and immunological role of cavins in non-small cell lung cancer. BMC Cancer 2024; 24:1525. [PMID: 39695458 DOI: 10.1186/s12885-024-13280-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
Caveolae, specialized and dynamic subdomains of the plasma membrane, have a crucial role in diverse cellular functions encompassing endocytosis, signal transduction, mechanosensation, lipid storage, and metabolism. Cavin family proteins are indispensable for caveolar formation and function. An increasing number of studies have found that cavins are involved in tumor growth, invasion, metastasis, and angiogenesis and may have dual roles in the regulation of cancer. However, the expression and prognostic value of cavins in non-small cell lung cancer (NSCLC) remain unexplored. In this study, the expression, survival data, immune infiltration, and functional enrichment of cavins in patients with NSCLC were investigated using multiple databases. Furthermore, different subtypes of cavin-binding proteins were identified through protein-protein interaction networks and k-means clustering. The results showed that the expression of Cavin-1-3 in NSCLC tissues was significantly lower than that in normal tissues, and that Cavin-2 is the major subtype of cavin that inhibits NSCLC progression. It regulates downstream signaling pathways, modulates the infiltration of immune cells and influences the prognosis of NSCLC. Related experiments also confirmed that Cavin-2 promotes the proliferation and metastasis of NSCLC cells. These findings suggest that cavins and their binding proteins may be novel biomarkers for NSCLC prognosis and immunotherapy, providing new treatment options for NSCLC.
Collapse
Affiliation(s)
- Kelin Mou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Huan Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Siqi Zhu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianmei Wang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lin Peng
- Department of Bone and Joint, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yulin Lei
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yunke Zhang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shike Huang
- Department of Oncology, Hejiang County People's Hospital, Luzhou, China
| | - Huarong Zhao
- Department of Oncology, Hejiang County People's Hospital, Luzhou, China
| | - Gang Li
- Department of Oncology, Luzhou People's Hospital, Luzhou, China
| | - Li Xiang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Yuhao Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
4
|
Chen R, Yao Z, Jiang L. Construction and validation of a TTN mutation associated immune prognostic model for evaluating immune microenvironment and outcomes of gastric cancer: An observational study. Medicine (Baltimore) 2024; 103:e38979. [PMID: 39029079 PMCID: PMC11398786 DOI: 10.1097/md.0000000000038979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/27/2024] [Indexed: 07/21/2024] Open
Abstract
Gastric cancer (GC) is a prevalent form of cancer worldwide, and TTN (titin) mutations are frequently observed in GC. However, the association between TTN mutations and immunotherapy for GC remains unclear, necessitating the development of novel prognostic models. The prognostic value and potential mechanisms of TTN in stomach adenocarcinoma were evaluated by TCGA (The Cancer Genome Atlas)-stomach adenocarcinoma cohort analysis, and an immune prognostic model was constructed based on TTN status. We validated it using the GSE84433 dataset. We performed Gene Set Enrichment Analysis and screened for differentially expressed genes, and used lasso (least absolute shrinkage and selection operator) regression analysis to screen for survival genes to construct a multifactorial survival model. In addition, we evaluated the relative proportions of 22 immune cells using the CIBERSORT algorithm for immunogenicity analysis. Finally, we constructed the nomogram integrating immune prognostic model and other clinical factors. GESA showed enrichment of immune-related phenotypes in patients with TTN mutations. We constructed an immune prognostic model based on 16 genes could identify gastric cancer patients with higher risk of poor prognosis. Immuno-microenvironmental analysis showed increased infiltration of naive B cells, plasma cells, and monocyte in high-risk patients. In addition, Nomo plots predicted the probability of 1-year, 3-year, and 5-year OS (overall survival) in GC patients, showing good predictive performance. In this study, we identified that TTN gene may be a potential clinical biomarker for GC and TTN mutations may be a predictor of immunotherapy in patients. We constructed and validated a new model for prognosis of GC patients based on immune characteristics associated with TTN mutations. This study may provide potential therapeutic strategies for gastric cancer.
Collapse
Affiliation(s)
- Ruyue Chen
- Medical College, Qingdao University, Qingdao, Shandong Province, China
- Department of Gastrointestinal Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong Province, China
| | - Zengwu Yao
- Department of Gastrointestinal Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong Province, China
- Department of Gastrointestinal Surgery, Yantai Yuhuangding Hospital, Shandong University, Jinan, Shandong Province, China
| | - Lixin Jiang
- Medical College, Qingdao University, Qingdao, Shandong Province, China
- Department of Gastrointestinal Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong Province, China
- Department of Gastrointestinal Surgery, Yantai Yuhuangding Hospital, Shandong University, Jinan, Shandong Province, China
- Department of General Surgery, Yantai Yeda Hospital, Yantai, Shandong Province, China
| |
Collapse
|
5
|
Wang Z, Wang H, Liu M, Ning X, Chen Y, Tang H. Neutrophil in the suppressed immune microenvironment: Critical prognostic factor for lung adenocarcinoma patients with KEAP1 mutation. Front Genet 2024; 15:1382421. [PMID: 38962454 PMCID: PMC11220125 DOI: 10.3389/fgene.2024.1382421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/20/2024] [Indexed: 07/05/2024] Open
Abstract
Purpose It is still unclear whether KEAP1 mutation is detrimental to immunotherapy of lung adenocarcinoma (LUAD) patients, we try to analyse the exact changes in the TME in LUAD patients with KEAP1 mutations and to identify key factors influencing prognosis. Experimental design A total of 1,029 patients with lung squamous carcinoma (LUSC) or LUAD with data obtained from The Cancer Genome Atlas were included in this study. The TME and OS of patients with LUAD stratified by mutant versus wild-type KEAP1 status were comprehensively measured. Moreover, we classified LUAD patients with KEAP1 mutations into three subtypes, by unsupervised consensus clustering. We further analysed the TME, OS, commutated genes and metabolic pathways of different subgroups. A total of 40 LUAD patients underwent immunotherapy were collected and classified into mutant KEAP1 group and wild-type KEAP1 group. We also conducted immunohistochemical staining in KEAP1-MT groups. Result Suppressed TME was observed not only in LUAD patients but also in LUSC patients. LUAD patients with mutant KEAP1 underwent immunotherapy had worse PFS than wild-type KEAP1. Unsupervised consensus clustering analysis suggested that the three subtypes of patients exhibited different densities of neutrophil infiltration and had different OS results: cluster 2 patients had significantly higher levels of neutrophils had significantly worse prognoses than those of patients in clusters 1 and 3 and patients with wild-type KEAP1. Univariate and multivariate Cox analyses proved that a high density of neutrophils was significantly associated with worse OS and immunohistochemical staining proved that shorter PFS showed high density of neutrophils. Conclusion KEAP1 mutation significantly suppresses the tumour immune microenvironment in LUAD patients. LUAD patients with mutant KEAP1 underwent immunotherapy had worse PFS than with wild-type KEAP1. Neutrophils may play an important role in the prognosis of LUAD patients with KEAP1 mutations and may provide a promising therapeutic target.
Collapse
Affiliation(s)
- Zhongzhao Wang
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Haojue Wang
- School of Basic Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Mingjia Liu
- School of Basic Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Xinhang Ning
- School of Basic Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Yang Chen
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Hao Tang
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
6
|
Chen W, Zhao Z, Zhou H, Dong S, Li X, Hu S, Zhong S, Chen K. Development of prognostic signatures and risk index related to lipid metabolism in ccRCC. Front Oncol 2024; 14:1378095. [PMID: 38939337 PMCID: PMC11208495 DOI: 10.3389/fonc.2024.1378095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is a metabolic disorder characterized by abnormal lipid accumulation in the cytoplasm. Lipid metabolism-related genes may have important clinical significance for prognosis prediction and individualized treatment. Methods We collected bulk and single-cell transcriptomic data of ccRCC and normal samples to identify key lipid metabolism-related prognostic signatures. qPCR was used to confirm the expression of signatures in cancer cell lines. Based on the identified signatures, we developed a lipid metabolism risk score (LMRS) as a risk index. We explored the potential application value of prognostic signatures and LMRS in precise treatment from multiple perspectives. Results Through comprehensive analysis, we identified five lipid metabolism-related prognostic signatures (ACADM, ACAT1, ECHS1, HPGD, DGKZ). We developed a risk index LMRS, which was significantly associated with poor prognosis in patients. There was a significant correlation between LMRS and the infiltration levels of multiple immune cells. Patients with high LMRS may be more likely to respond to immunotherapy. The different LMRS groups were suitable for different anticancer drug treatment regimens. Conclusion Prognostic signatures and LMRS we developed may be applied to the risk assessment of ccRCC patients, which may have potential guiding significance in the diagnosis and precise treatment of ccRCC patients.
Collapse
Affiliation(s)
- Wenbo Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zhenyu Zhao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Zhou
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Dong
- Department of Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyu Li
- Department of Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sheng Hu
- Department of Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shan Zhong
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Wei J, Ji K, Zhang Y, Zhang J, Wu X, Ji X, Zhou K, Yang X, Lu H, Wang A, Bu Z. Exploration of molecular markers related to chemotherapy efficacy of hepatoid adenocarcinoma of the stomach. Cell Oncol (Dordr) 2024; 47:677-693. [PMID: 37943484 DOI: 10.1007/s13402-023-00892-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2023] [Indexed: 11/10/2023] Open
Abstract
PURPOSE Preoperative neoadjuvant chemotherapy may not improve the prognosis of patients with hepatoid adenocarcinoma of the stomach (HAS), a rare pathological type of gastric cancer. Thus, the study aimed at the genomic and transcriptomic impacts of preoperative chemotherapy on HAS. METHODS Patients with HAS who underwent surgical resection at Peking University Cancer Hospital were retrospectively included in this study. Whole exome sequencing and transcriptome sequencing were performed on pre-chemotherapy, non-chemotherapy and post-chemotherapy samples. We then compared the alterations in molecular markers between the post-chemotherapy and non-chemotherapy groups, and between the chemotherapy-effective and chemotherapy-ineffective groups, respectively. RESULTS A total of 79 tumor samples from 72 patients were collected. Compared to the non-chemotherapy group, the mutation frequencies of several genes were changed after chemotherapy, including TP53. In addition, there was a significant increase in the frequency of frameshift mutations and cytosine transversion to adenine (C > A), appearance of COSMIC signature 6 and 14, and a reduced gene copy number amplification. Interestingly, the same phenomenon was observed in chemotherapy-ineffective patients. In addition, many HAS patients had ERBB2, FGFR2, MET and HGF gene amplification. Moreover, the expression of immune-related genes, especially those related to lymphocyte activation, was down-regulated after chemotherapy. CONCLUSION Chemotherapy is closely associated with changes in the molecular characteristics of HAS. After chemotherapy, at genomic and transcriptome level, many features were altered. These changes may be molecular markers of poor chemotherapeutic efficacy and play an important role in chemoresistance in HAS. In addition, ERBB2, FGFR2, MET and HGF gene amplification may be potential therapeutic targets for HAS.
Collapse
Affiliation(s)
- Jingtao Wei
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Ke Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Yue Zhang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing, 100037, China
| | - Ji Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Xiaojiang Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Xin Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Kai Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Xuesong Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Hongfeng Lu
- Berry Genomics Corporation, Beijing, 102206, China
| | - Anqiang Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China.
| | - Zhaode Bu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China.
| |
Collapse
|
8
|
Shen Y, Shi K, Li D, Wang Q, Wu K, Feng C. Prognostic analysis of mutated genes and insight into effects of DNA damage and repair on mutational strand asymmetries in gastric cancer. Biochem Biophys Rep 2024; 37:101597. [PMID: 38371526 PMCID: PMC10873876 DOI: 10.1016/j.bbrep.2023.101597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 02/20/2024] Open
Abstract
Gastric cancer (GACA) is a complex and multifaceted disease influenced by a variety of environmental and genetic factors. Somatic mutations play a major role in its development, and their characteristics, including the asymmetry between two DNA strands, are of great interest and appear as a signal of information and guidance, revealing mechanisms of DNA damage and repair. Here, we analyzed the impact of High-frequency mutated genes on patient prognosis and found that the effect of expression levels of tumor protein p53 (TP53) and lysine methyltransferase 2C (KMT2C) genes remained high throughout the development of GACA, with similar expression patterns. After investigating mutation asymmetry across mutagenic processes, we found that transcriptional asymmetry was dominated by T > G mutations under the influence of transcription couples repair and damage. The apolipoprotein B mRNA editing enzyme catalytic polypeptide like (APOBEC) enzyme that induces mutations during DNA replication has been identified here and we identified a replicative asymmetry, which was dominated by C > A mutations in left-replicating. Strand bias in different mutation classes at transcription factor binding sites and enhancer regions were also confirmed, which implies the important role of non-coding regulatory elements in the occurrence of mutations. This work systematically describes mutational strand asymmetries in specific genomic regions, shedding light on the DNA damage and repair mechanisms underlying somatic mutations in cohorts of GACA patients with gastric cancer.
Collapse
Affiliation(s)
- Yangyang Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Institute of Animal Science, Jiangsu Academy of Agriculture Science, Nanjing, China
| | - Kai Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Dongfeng Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qiang Wang
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Kangkang Wu
- Department of Infectious Disease, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Chungang Feng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Shen F, Li F, Ma Y, Song X, Guo W. Identification of Novel Stemness-based Subtypes and Construction of a Prognostic Risk Model for Patients with Lung Squamous Cell Carcinoma. Curr Stem Cell Res Ther 2024; 19:400-416. [PMID: 37455452 DOI: 10.2174/1574888x18666230714142835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Although cancer stem cells (CSCs) contribute to tumorigenesis, progression, and drug resistance, stemness-based classification and prognostic signatures of lung squamous cell carcinoma (LUSC) remain unclarified. This study attempted to identify stemness-based subtypes and develop a prognostic risk model for LUSC. METHODS Based on RNA-seq data from The Cancer Genome Atlas (TCGA), Gene-Expression Omnibus (GEO) and Progenitor Cell Biology Consortium (PCBC), mRNA expression-based stemness index (mRNAsi) was calculated by one-class logistic regression (OCLR) algorithm. A weighted gene coexpression network (WGCNA) was employed to identify stemness subtypes. Differences in mutation, clinical characteristics, immune cell infiltration, and antitumor therapy responses were determined. We constructed a prognostic risk model, followed by validations in GEO cohort, pan-cancer and immunotherapy datasets. RESULTS LUSC patients with subtype C2 had a better prognosis, manifested by higher mRNAsi, higher tumor protein 53 (TP53) and Titin (TTN) mutation frequencies, lower immune scores and decreased immune checkpoints. Patients with subtype C2 were more sensitive to Imatinib, Pyrimethamine, and Paclitaxel therapy, whereas those with subtype C1 were more sensitive to Sunitinib, Saracatinib, and Dasatinib. Moreover, we constructed stemness-based signatures using seven genes (BMI1, CCDC51, CTNS, EIF1AX, FAM43A, THBD, and TRIM68) and found high-risk patients had a poorer prognosis in the TCGA cohort. Similar results were found in the GEO cohort. We verified the good performance of risk scores in prognosis prediction and therapy responses. CONCLUSION The stemness-based subtypes shed novel insights into the potential roles of LUSC-stemness in tumor heterogeneity, and our prognostic signatures offer a promising tool for prognosis prediction and guide therapeutic decisions in LUSC.
Collapse
Affiliation(s)
- Fangfang Shen
- Department of Respiratory Medicine, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030082, China
| | - Feng Li
- Department of thoracic surgery, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030082, China
| | - Yong Ma
- Department of thoracic surgery, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030082, China
| | - Xia Song
- Department of Respiratory Medicine, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030082, China
| | - Wei Guo
- Department of Respiratory Medicine, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030082, China
| |
Collapse
|
10
|
Su J, Tan S, Gong H, Luo Y, Cheng T, Yang H, Wen X, Jiang Z, Li Y, Zhang L. The Evaluation of Prognostic Value and Immune Characteristics of Ferroptosis-Related Genes in Lung Squamous Cell Carcinoma. Glob Med Genet 2023; 10:285-300. [PMID: 37915460 PMCID: PMC10615648 DOI: 10.1055/s-0043-1776386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Background The purpose of our study was to construct a prognostic model based on ferroptosis-related gene signature to improve the prognosis prediction of lung squamous carcinoma (LUSC). Methods The mRNA expression profiles and clinical data of LUSC patients were downloaded. LUSC-related essential differentially expressed genes were integrated for further analysis. Prognostic gene signatures were identified through random forest regression and univariate Cox regression analyses for constructing a prognostic model. Finally, in a preliminary experiment, we used the reverse transcription-quantitative polymerase chain reaction assay to verify the relationship between the expression of three prognostic gene features and ferroptosis. Results Fifty-six ferroptosis-related essential genes were identified by using integrated analysis. Among these, three prognostic gene signatures (HELLS, POLR2H, and POLE2) were identified, which were positively affected by LUSC prognosis but negatively affected by immune cell infiltration. Significant overexpression of immune checkpoint genes occurred in the high-risk group. In preliminary experiments, we confirmed that the occurrence of ferroptosis can reduce three prognostic gene signature expression. Conclusions The three ferroptosis-related genes could predict the LUSC prognostic risk of antitumor immunity.
Collapse
Affiliation(s)
- Jialin Su
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha, Hunan Province, People's Republic of China
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - Shuhua Tan
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - Houwu Gong
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, People's Republic of China
| | - Yongzhong Luo
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha, Hunan Province, People's Republic of China
| | - Tianli Cheng
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha, Hunan Province, People's Republic of China
| | - Hua Yang
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha, Hunan Province, People's Republic of China
| | - Xiaoping Wen
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha, Hunan Province, People's Republic of China
| | - Zhou Jiang
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha, Hunan Province, People's Republic of China
| | - Yuning Li
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - Lemeng Zhang
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha, Hunan Province, People's Republic of China
| |
Collapse
|
11
|
Zhang SM, Shen C, Gu J, Li J, Jiang X, Wu Z, Shen A. Succinylation-associated lncRNA signature to predict the prognosis of colon cancer based on integrative bioinformatics analysis. Sci Rep 2023; 13:7366. [PMID: 37147453 PMCID: PMC10163232 DOI: 10.1038/s41598-023-34503-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 05/03/2023] [Indexed: 05/07/2023] Open
Abstract
Colon cancer (CC) has a poor 5-year survival rate though the treatment techniques and strategies have been improved. Succinylation and long noncoding RNAs (lncRNAs) have prognostic value for CC patients. We analyzed and obtained succinylation-related lncRNA by co-expression in CC. A novel succinylation-related lncRNA model was developed by univariate and Least absolute shrinkage and selection operator (Lasso) regression analysis and we used principal component analysis (PCA), functional enrichment annotation, tumor immune environment, drug sensitivity and nomogram to verify the model, respectively. Six succinylation-related lncRNAs in our model were finally confirmed to distinguish the survival status of CC and showed statistically significant differences in training set, testing set, and entire set. The prognosis of with this model was associated with age, gender, M0 stage, N2 stage, T3 + T4 stage and Stage III + IV. The high-risk group showed a higher mutation rate than the low-risk group. We constructed a model to predict overall survival for 1-, 3-, and 5-year with AUCs of 0.694, 0.729, and 0.802, respectively. The high-risk group was sensitive to Cisplatin and Temozolomide compounds. Our study provided novel insights into the value of the succinylation-related lncRNA signature as a predictor of prognosis, which had high clinical application value in the future.
Collapse
Affiliation(s)
- Si-Ming Zhang
- Cancer Research Center, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Cheng Shen
- Department of Computer Science and Engineering, Tandon School of Engineering, New York University, Brooklyn, USA
| | - Jue Gu
- Affiliated Hospital of Nantong University, Nantong, China
| | - Jing Li
- Cancer Research Center, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xiaohui Jiang
- Department of General Surgery, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Zhijun Wu
- Department of Oncology, Nantong Second People's Hospital, Nantong, China
| | - Aiguo Shen
- Cancer Research Center, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province, China.
| |
Collapse
|
12
|
White K, Connor K, Meylan M, Bougoüin A, Salvucci M, Bielle F, O'Farrell AC, Sweeney K, Weng L, Bergers G, Dicker P, Ashley DM, Lipp ES, Low JT, Zhao J, Wen P, Prins R, Verreault M, Idbaih A, Biswas A, Prehn JHM, Lambrechts D, Arijs I, Lodi F, Dilcan G, Lamfers M, Leenstra S, Fabro F, Ntafoulis I, Kros JM, Cryan J, Brett F, Quissac E, Beausang A, MacNally S, O'Halloran P, Clerkin J, Bacon O, Kremer A, Chi Yen RT, Varn FS, Verhaak RGW, Sautès-Fridman C, Fridman WH, Byrne AT. Identification, validation and biological characterisation of novel glioblastoma tumour microenvironment subtypes: implications for precision immunotherapy. Ann Oncol 2023; 34:300-314. [PMID: 36494005 DOI: 10.1016/j.annonc.2022.11.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND New precision medicine therapies are urgently required for glioblastoma (GBM). However, to date, efforts to subtype patients based on molecular profiles have failed to direct treatment strategies. We hypothesised that interrogation of the GBM tumour microenvironment (TME) and identification of novel TME-specific subtypes could inform new precision immunotherapy treatment strategies. MATERIALS AND METHODS A refined and validated microenvironment cell population (MCP) counter method was applied to >800 GBM patient tumours (GBM-MCP-counter). Specifically, partition around medoids (PAM) clustering of GBM-MCP-counter scores in the GLIOTRAIN discovery cohort identified three novel patient clusters, uniquely characterised by TME composition, functional orientation markers and immune checkpoint proteins. Validation was carried out in three independent GBM-RNA-seq datasets. Neoantigen, mutational and gene ontology analysis identified mutations and uniquely altered pathways across subtypes. The longitudinal Glioma Longitudinal AnalySiS (GLASS) cohort and three immunotherapy clinical trial cohorts [treatment with neoadjuvant/adjuvant anti-programmed cell death protein 1 (PD-1) or PSVRIPO] were further interrogated to assess subtype alterations between primary and recurrent tumours and to assess the utility of TME classifiers as immunotherapy biomarkers. RESULTS TMEHigh tumours (30%) displayed elevated lymphocyte, myeloid cell immune checkpoint, programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 transcripts. TMEHigh/mesenchymal+ patients featured tertiary lymphoid structures. TMEMed (46%) tumours were enriched for endothelial cell gene expression profiles and displayed heterogeneous immune populations. TMELow (24%) tumours were manifest as an 'immune-desert' group. TME subtype transitions upon recurrence were identified in the longitudinal GLASS cohort. Assessment of GBM immunotherapy trial datasets revealed that TMEHigh patients receiving neoadjuvant anti-PD-1 had significantly increased overall survival (P = 0.04). Moreover, TMEHigh patients treated with adjuvant anti-PD-1 or oncolytic virus (PVSRIPO) showed a trend towards improved survival. CONCLUSIONS We have established a novel TME-based classification system for application in intracranial malignancies. TME subtypes represent canonical 'termini a quo' (starting points) to support an improved precision immunotherapy treatment approach.
Collapse
Affiliation(s)
- K White
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - K Connor
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - M Meylan
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université de Paris, Paris, France
| | - A Bougoüin
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université de Paris, Paris, France
| | - M Salvucci
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - F Bielle
- Paris Brain Institute (ICM), CNRS UMR 7225, Inserm U 1127, UPMC-P6 UMR S 1127, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - A C O'Farrell
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - K Sweeney
- National Centre of Neurosurgery, Beaumont Hospital, Dublin, Ireland
| | - L Weng
- VIB-KU Leuven Center for Cancer Biology, Department of Oncology, Leuven, Belgium
| | - G Bergers
- VIB-KU Leuven Center for Cancer Biology, Department of Oncology, Leuven, Belgium
| | - P Dicker
- Epidemiology & Public Health, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - D M Ashley
- Duke Cancer Institute, Duke University, Durham, USA
| | - E S Lipp
- Duke Cancer Institute, Duke University, Durham, USA
| | - J T Low
- Duke Cancer Institute, Duke University, Durham, USA
| | - J Zhao
- Department of Systems Biology at Columbia University, New York, USA
| | - P Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - R Prins
- Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - M Verreault
- Paris Brain Institute (ICM), CNRS UMR 7225, Inserm U 1127, UPMC-P6 UMR S 1127, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - A Idbaih
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Paris Brain Institute (ICM), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Paris, France
| | - A Biswas
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - J H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - D Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, Leuven, Belgium; VIB Center for Cancer Biology, Leuven, Belgium
| | - I Arijs
- Laboratory for Translational Genetics, Department of Human Genetics, Leuven, Belgium; VIB Center for Cancer Biology, Leuven, Belgium
| | - F Lodi
- Laboratory for Translational Genetics, Department of Human Genetics, Leuven, Belgium; VIB Center for Cancer Biology, Leuven, Belgium
| | - G Dilcan
- Laboratory for Translational Genetics, Department of Human Genetics, Leuven, Belgium; VIB Center for Cancer Biology, Leuven, Belgium
| | - M Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - S Leenstra
- Department of Neurosurgery, Brain Tumor Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - F Fabro
- Department of Neurosurgery, Brain Tumor Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - I Ntafoulis
- Department of Neurosurgery, Brain Tumor Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - J M Kros
- Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - J Cryan
- Department of Neuropathology, Beaumont Hospital, Dublin, Ireland
| | - F Brett
- Department of Neuropathology, Beaumont Hospital, Dublin, Ireland
| | - E Quissac
- Paris Brain Institute (ICM), CNRS UMR 7225, Inserm U 1127, UPMC-P6 UMR S 1127, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - A Beausang
- Department of Neuropathology, Beaumont Hospital, Dublin, Ireland
| | - S MacNally
- National Centre of Neurosurgery, Beaumont Hospital, Dublin, Ireland
| | - P O'Halloran
- National Centre of Neurosurgery, Beaumont Hospital, Dublin, Ireland
| | - J Clerkin
- National Centre of Neurosurgery, Beaumont Hospital, Dublin, Ireland
| | - O Bacon
- Department of Neuropathology, Beaumont Hospital, Dublin, Ireland
| | - A Kremer
- Information Technology for Translational Medicine (ITTM), Luxembourg, Luxembourg
| | - R T Chi Yen
- Information Technology for Translational Medicine (ITTM), Luxembourg, Luxembourg
| | - F S Varn
- The Jackson Laboratory for Genomic Medicine, Farmington, USA
| | - R G W Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, USA; Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, the Netherlands
| | - C Sautès-Fridman
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université de Paris, Paris, France
| | - W H Fridman
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université de Paris, Paris, France
| | - A T Byrne
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
13
|
Wu X, Yin J, Deng Y, Zu Y. Whole-genome characterization of large-cell lung carcinoma: A comparative analysis based on the histological classification. Front Genet 2023; 13:1070048. [PMID: 36685819 PMCID: PMC9845284 DOI: 10.3389/fgene.2022.1070048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Background: According to the 2015 World Health Organization classification, large cell neuroendocrine carcinoma (LCNEC) was isolated from Large-cell lung cancer (LCLC) tumors, which constitutes 2%-3% of non-small cell lung cancer (NSCLC). However, LCLC tumors are still fairly vaguely defined at the molecular level compared to other subgroups. Materials and Methods: In this study, whole-genome sequencing (WGS) was performed on 23 LCLC and 15 LCNEC tumor specimens. Meanwhile, data from the TCGA (586 LUADs and 511 LUSCs) and U Cologne (120 SCLCs) were analyzed and compared. Results: The most common driver mutations were found in TP53 (13/23, 57%), FAM135B (8/23, 35%) and FAT3 (7/23, 30%) in LCLC, while their counterparts in LCNEC were TP53 (13/15, 87%), LRP1B (6/15, 40%) and FAT1 (6/15, 40%). Notably, FAM135B mutations only occurred in LCLC (P = 0.013). Cosmic signature analysis revealed widespread defective DNA mismatch repair and tobacco-induced mutations in both LCLC and LCNEC. Additionally, LCNEC had a higher incidence of chromosomal copy number variations (CNVs) and structural variations (SVs) compared with LCLC, although the differences were not statistically significant. Particularly, chromothripsis SVs was significantly associated with CNVs. Furthermore, mutational landscape of different subtypes indicated differences between subtypes, and there seems to be more commonalty between our cohort and SCLC than with other subtypes. SMARCA4 mutations may be specific driver gene alteration in our cohort. Conclusion: Our results support that LCLC and LCNEC tumors follow distinct tumorigenic pathways. To our knowledge, this is the first genome-wide profiling comparison of LCLC and LCNEC.
Collapse
Affiliation(s)
- Xiaowei Wu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Yin
- Departments of Hematology, Tongji Hospital, Tongji Medical Collage, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Deng
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yukun Zu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Yukun Zu,
| |
Collapse
|
14
|
Liu Z, Zhao X, Wang R, Tang X, Zhao Y, Zhong G, Peng X, Zhang C. Heterogeneous pattern of gene expression driven by TTN mutation is involved in the construction of a prognosis model of lung squamous cell carcinoma. Front Oncol 2023; 13:916568. [PMID: 37035196 PMCID: PMC10080394 DOI: 10.3389/fonc.2023.916568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 02/09/2023] [Indexed: 04/11/2023] Open
Abstract
Objective To investigate the impact that TTN mutation had on the gene heterogeneity expression and prognosis in patients with lung adenocarcinoma. Methods In this study, the Cancer Genome Atlas (TCGA) dataset was used to analyze the TTN mutations in lung adenocarcinoma. Lung adenocarcinoma data was collected from the TCGA database, clinical information of patients was analyzed, and bioinformatics statistical methods were applied for mutation analysis and prognosis survival analysis. The results were verified using the GEO dataset. Results The incidence of TTN mutations in lung adenocarcinoma was found to be 73%, and it was related to the prognosis of lung adenocarcinoma. Ten genes were screened with significant contributions to prognosis. A prognosis model was constructed and verified by LASSO COX analysis in the TCGA and GEO datasets based on these ten beneficial factors. The independent prognostic factor H2BC9 for TTN mutation-driven gene heterogeneity expression was screened through multi-factor COX regression analysis. Conclusion Our data showed that the gene heterogeneity expression, which was driven by TTN mutations, prolonged the survival of lung adenocarcinoma patients and provided valuable clues for the prognosis of TTN gene mutations in lung adenocarcinoma.
Collapse
Affiliation(s)
- Zhao Liu
- Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, China
- United New Drug Research and Development Center, Biotrans Technology Co., LTD., Ningbo, China
- Institute of Bioengineering, Biotrans Technology Co., LTD., Shanghai, China
| | - Xiaowen Zhao
- Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Ruihong Wang
- Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Xiangyue Tang
- United New Drug Research and Development Center, Biotrans Technology Co., LTD., Ningbo, China
- Institute of Bioengineering, Biotrans Technology Co., LTD., Shanghai, China
| | - Yuxiang Zhao
- Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, China
- United New Drug Research and Development Center, Biotrans Technology Co., LTD., Ningbo, China
- Institute of Bioengineering, Biotrans Technology Co., LTD., Shanghai, China
| | - Guanghui Zhong
- Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, China
- *Correspondence: Guanghui Zhong, ; Xin Peng, ; Chunlin Zhang,
| | - Xin Peng
- Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, China
- *Correspondence: Guanghui Zhong, ; Xin Peng, ; Chunlin Zhang,
| | - Chunlin Zhang
- Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
- *Correspondence: Guanghui Zhong, ; Xin Peng, ; Chunlin Zhang,
| |
Collapse
|
15
|
Identification of key somatic oncogenic mutation based on a confounder-free causal inference model. PLoS Comput Biol 2022; 18:e1010529. [PMID: 36137089 PMCID: PMC9499235 DOI: 10.1371/journal.pcbi.1010529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022] Open
Abstract
Abnormal cell proliferation and epithelial-mesenchymal transition (EMT) are the essential events that induce cancer initiation and progression. A fundamental goal in cancer research is to develop an efficient method to detect mutational genes capable of driving cancer. Although several computational methods have been proposed to identify these key mutations, many of them focus on the association between genetic mutations and functional changes in relevant biological processes, but not their real causality. Causal effect inference provides a way to estimate the real induce effect of a certain mutation on vital biological processes of cancer initiation and progression, through addressing the confounder bias due to neutral mutations and unobserved latent variables. In this study, integrating genomic and transcriptomic data, we construct a novel causal inference model based on a deep variational autoencoder to identify key oncogenic somatic mutations. Applied to 10 cancer types, our method quantifies the causal effect of genetic mutations on cell proliferation and EMT by reducing both observed and unobserved confounding biases. The experimental results indicate that genes with higher mutation frequency do not necessarily mean they are more potent in inducing cancer and promoting cancer development. Moreover, our study fills a gap in the use of machine learning for causal inference to identify oncogenic mutations. Identifying key mutations of cancers is helpful to better understand the mechanisms of cancer cell transformation and is critical for therapeutic approaches. Besides sequence and structure-based computational approaches, some functional impact-based methods which consider the association between mutation events and the activity of cancer-related biological processes have also been developed to detect key mutations. However, these methods mainly consider the correlation but ignore that the correlation is far from causality due to the existence of observed and unobserved confounding factors. We develop a confounder-free machine learning-based causal inference framework to estimate the causal effect of mutations on abnormal cell proliferation and epithelial-mesenchymal transition (EMT). It fills a gap in the use of causal mechanisms to discover potential driver mutations in cancer biological systems. Applying our method to 10 cancer types, the identified key mutations are highly consistent with public well-verified ones. Additionally, some new key mutations have also been discovered.
Collapse
|
16
|
TTN mutations predict a poor prognosis in patients with thyroid cancer. Biosci Rep 2022; 42:231494. [PMID: 35766333 PMCID: PMC9310696 DOI: 10.1042/bsr20221168] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE We aimed to investigate the relationship between titin (TTN) gene mutations and thyroid cancer (THCA) and to explore the feasibility of the TTN gene as a potential prognostic indicator of THCA. METHODS From TCGA-THCA cohort, we performed a series of analyses to evaluate the prognostic value and potential mechanism of TTN in THCA. These patients were divided into the mutant-type (MUT) group and the wild-type (WT) group. Differentially expressed genes (DEGs) in the two groups were screened using the 'DESeq2' R package. Functional enrichment analysis was performed, and the protein-protein interaction (PPI) network, transcription factor (TF)-target interaction networks, and competitive endogenous RNA (ceRNA) regulatory networks were established for the DEGs. The TIMER database was applied for immune cell infiltration. Survival analysis and Cox regression analysis were used to analyze the potential prognostic value of the TTN gene. RESULTS Differential expression analysis showed that 409 genes were significantly up-regulated and 36 genes were down-regulated. Functional enrichment analysis revealed that TTN gene mutations played a potential role in the development of THCA. Analysis of the immune microenvironment indicated that TTN gene mutations were significantly associated with enrichment of M0 macrophages. Survival analysis showed that the MUT group predicted poorer prognosis than the WT group. Cox regression analysis demonstrated that TTN gene mutations were an independent risk factor for THCA. Nomograms also confirmed the prognostic values of the TTN gene in THCA. Conclusions In summary, our results demonstrated that TTN gene mutations predict poor prognosis in patients with THCA. This is the first study to research TTN gene mutations in THCA and to investigate their prognostic value in THCA.
Collapse
|
17
|
Ti W, Wei T, Wang J, Cheng Y. Comparative Analysis of Mutation Status and Immune Landscape for Squamous Cell Carcinomas at Different Anatomical sites. Front Immunol 2022; 13:947712. [PMID: 35935970 PMCID: PMC9354879 DOI: 10.3389/fimmu.2022.947712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Objective It has been controversial whether tumor mutation burden (TMB) affects the prognosis and the efficacy of immunotherapy in different tumor types. We provided a comprehensive analysis of mutation status and immune landscape of squamous cell carcinomas (SCCs) from four sites in order to investigate the relationship of TMB with prognosis and immune cell infiltration in different SCCs. Methods The transcriptome profiles and somatic mutation data of SCCs downloaded from the Cancer Genome Atlas (the Cancer Genome Atlas) database were analyzed and visualized. Then, TMB was calculated to analyze its correlations with prognosis and clinical features. Differentially expressed genes (DEGs) between the high and low TMB groups were screened for functional enrichment analysis. CIBERSORT algorithm was used to compare differences of immune cell infiltration between two groups in different SCCs. In addition, immune DEGs associated with prognosis were identified and risk prediction model was constructed via Cox regression analysis. Results Missense mutation was the most dominant mutation type in SCCs. The difference was that the top10 mutated genes varied widely among different SCCs. High TMB group had better prognosis in lung squamous cell carcinoma (LUSC) and cervical squamous cell carcinoma (CESC), while the result was reverse in head and neck squamous cell carcinoma (HNSCC) and esophageal squamous cell carcinoma (ESCC). In addition, patients with older age, smoking history, earlier pathological stage and no lymphatic invasion had higher TMB. The identified DEGs were mainly enriched in the regulation of immune system, muscular system and the activity of epidermal cells. The proportions of CD8+T cells, CD4+ memory T cells, follicular helper T cells, macrophages were distinct between two groups. The prognosis-related hub genes (CHGB, INHBA, LCN1 and VEGFC) screened were associated with poor prognosis. Conclusion This study reveals the mutation status and immune cell infiltration of SCCs at different anatomical sites. TMB is closely related to the prognosis of SCCs, and its effects on prognosis are diverse in different SCCs, which might result from the situation of immune cell infiltration. These findings contribute to the exploration of biomarkers for predicting the efficacy of immunotherapy in SCCs and providing innovative insights for accurate application of immunotherapy.
Collapse
Affiliation(s)
| | | | - Jianbo Wang
- *Correspondence: Yufeng Cheng, ; Jianbo Wang,
| | | |
Collapse
|
18
|
Chen J, Wen Y, Su H, Yu X, Hong R, Chen C, Su C. Deciphering Prognostic Value of TTN and Its Correlation With Immune Infiltration in Lung Adenocarcinoma. Front Oncol 2022; 12:877878. [PMID: 35875159 PMCID: PMC9304871 DOI: 10.3389/fonc.2022.877878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the most common type of lung cancer, accounting for around 40%. Despite achievements in the treatment approach, the prognosis is still dismal, with overall survival of fewer than five years. Thus, novel prognostic biomarkers are needed to predict the clinical outcomes of individual patients better. TTN has a high mutation rate in the LUAD, which encodes a large abundant protein of striated muscle. However, the value of TTN in prognosis and the immune environment are poorly understood. Methods We investigated the clinicopathological characteristics, transcriptional and protein level, prognostic value, biological function, and its relationship with immune infiltration of TTN gene in LUAD patients through bioinformatics analysis. Results TTN expression was significantly lower in LUAD than that in normal lung tissue. Lower TTN expression was associated with worse survival. Besides, TTN is highly expressed in alveolar type 2 cells which were surmised as the origin of LUAD. Conclusion Our findings indicated the potential prognostic value of TTN and its role as a biomarker for determining the immune infiltration levels in patients with LUAD.
Collapse
Affiliation(s)
- Jianing Chen
- School of Medicine, Tongji University, Shanghai, China
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Yaokai Wen
- School of Medicine, Tongji University, Shanghai, China
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Hang Su
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Yu
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Ruisheng Hong
- Department of Radiation Oncology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Chunxia Su, ; Chang Chen,
| | - Chunxia Su
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Chunxia Su, ; Chang Chen,
| |
Collapse
|
19
|
Zhuang J, Chen Z, Chen Z, Chen J, Liu M, Xu X, Liu Y, Yang S, Hu Z, He F. Construction of an immune-related lncRNA signature pair for predicting oncologic outcomes and the sensitivity of immunosuppressor in treatment of lung adenocarcinoma. Respir Res 2022; 23:123. [PMID: 35562727 PMCID: PMC9101821 DOI: 10.1186/s12931-022-02043-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 05/04/2022] [Indexed: 12/22/2022] Open
Abstract
Background Although immunotherapy has shown clinical activity in lung adenocarcinoma (LUAD), LUAD prognosis has been a perplexing problem. We aimed to construct an immune-related lncRNA pairs (IRLPs) score for LUAD and identify what immunosuppressor are appropriate for which group of people with LUAD. Methods Based on The Cancer Genome Atlas (TCGA)-LUAD cohort, IRLPs were identified to construct an IRLPs scoring system by Cox regression and validated in the Gene Expression Omnibus (GEO) dataset using log-rank test and the receiver operating characteristic curve (ROC). Next, we used spearman’s correlation analysis, t-test, signaling pathways analysis and gene mutation analysis to explore immune and molecular characteristics in different IRLP subgroups. The “pRRophetic” package was used to predict the sensitivity of immunosuppressant. Results The IRLPs score was constructed based on eight IRLPs calculated as 2.12 × (MIR31HG|RRN3P2) + 0.43 × (NKX2-1-AS1|AC083949.1) + 1.79 × (TMPO-AS1|LPP-AS2) + 1.60 × (TMPO-AS1|MGC32805) + 1.79 × (TMPO-AS1|PINK1-AS) + 0.65 × (SH3BP5-AS1|LINC01137) + 0.51 × (LINC01004|SH3PXD2A-AS1) + 0.62 × (LINC00339|AGAP2-AS1). Patients with a lower IRLPs risk score had a better overall survival (OS) (Log-rank test PTCGA train dataset < 0.001, PTCGA test dataset = 0.017, PGEO dataset = 0.027) and similar results were observed in the AUCs of TCGA dataset and GEO dataset (AUC TCGA train dataset = 0.777, AUC TCGA test dataset = 0.685, AUC TCGA total dataset = 0.733, AUC GEO dataset = 0.680). Immune score (Cor = -0.18893, P < 0.001), stoma score (Cor = -0.24804, P < 0.001), and microenvironment score (Cor = -0.22338, P < 0.001) were significantly decreased in the patients with the higher IRLP risk score. The gene set enrichment analysis found that high-risk group enriched in molecular changes in DNA and chromosomes signaling pathways, and in this group the tumor mutation burden (TMB) was higher than in the low-risk group (P = 0.0015). Immunosuppressor methotrexate sensitivity was higher in the high-risk group (P = 0.0052), whereas parthenolide (P < 0.001) and rapamycin (P = 0.013) sensitivity were lower in the high-risk group. Conclusions Our study established an IRLPs scoring system as a biomarker to help in the prognosis, the identification of molecular and immune characteristics, and the patient-tailored selection of the most suitable immunosuppressor for LUAD therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02043-4.
Collapse
Affiliation(s)
- Jinman Zhuang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China.,Fujian Provincial Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China.,Fujian Digital Tumor Data Research Center, Fuzhou, China
| | - Zhongwu Chen
- Department of Interventional Therapy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Zishan Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China.,Fujian Provincial Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China.,Fujian Digital Tumor Data Research Center, Fuzhou, China
| | - Jin Chen
- Department of Interventional Therapy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Maolin Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China.,Fujian Provincial Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China.,Fujian Digital Tumor Data Research Center, Fuzhou, China
| | - Xinying Xu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China.,Fujian Provincial Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China.,Fujian Digital Tumor Data Research Center, Fuzhou, China
| | - Yuhang Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China.,Fujian Provincial Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China.,Fujian Digital Tumor Data Research Center, Fuzhou, China
| | - Shuyan Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China.,Fujian Provincial Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China.,Fujian Digital Tumor Data Research Center, Fuzhou, China
| | - Zhijian Hu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China. .,Fujian Provincial Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China. .,Fujian Digital Tumor Data Research Center, Fuzhou, China.
| | - Fei He
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China. .,Fujian Provincial Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China. .,Fujian Digital Tumor Data Research Center, Fuzhou, China.
| |
Collapse
|
20
|
Shi L, Cao J, Lei X, Shi Y, Wu L. Multi-omics data identified TP53 and LRP1B as key regulatory gene related to immune phenotypes via EPCAM in HCC. Cancer Med 2022; 11:2145-2158. [PMID: 35150083 PMCID: PMC9119357 DOI: 10.1002/cam4.4594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
Background Many studies showed that the prognosis of hepatocellular carcinoma (HCC) was significantly associated with the expressions of TP53 and LRP1B. However, the potential influence of the two genes on the malignant progression of HCC is still to be expounded. Methods According to the correlation analysis between immune cells and expression levels of TP53 and LRP1B, we filtered the immune cells to perform unsupervised clustering analysis. Integration of multi‐omic data analysis identified genetic alteration and epigenetic alteration. In addition, pathway analysis was used to explore the potential function of the differentially expressed mRNAs. According to the differentially expressed genes, we established an interaction network to seek the hub gene. Least absolute shrinkage and selection operator (LASSO) regression analysis was used to build a prognosis model. Results The unsupervised clustering analysis showed that the cluster A1 showed the highest immune cell levels and the cluster B2 showed the lowest immune cell levels. Multi‐omics data analysis identified that somatic mutations, copy number variations, and DNA methylation levels had significant differences between cluster A1 and cluster B2. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that the upregulated mRNAs in the cluster A1 were mainly concentrated in T cell activation, external side of plasma membrane, receptor ligand activity, and cytokine−cytokine receptor interaction. Importantly, the EPCAM was identified as a critical node in the lncRNAs–miRNAs–mRNAs regulatory network correlated with the immune phenotypes. In addition, based on differentially expressed genes between cluster A1 and cluster B2, the prognostic model established by LASSO could predict the overall survival (OS) of HCC accurately. Conclusions The results indicated that the TP53 and LRP1B acted as the key genes in regulating the immune phenotypes of HCC via EPCAM.
Collapse
Affiliation(s)
- Liang Shi
- Department of Clinical Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jie Cao
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xin Lei
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yifen Shi
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lili Wu
- Department of Clinical Blood Transfusion, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Department of Clinical Laboratory, The Central Hospital of Wenzhou, Wenzhou, China
| |
Collapse
|
21
|
Identification of a Five-Gene Panel to Assess Prognosis for Gastric Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5593619. [PMID: 35187167 PMCID: PMC8850031 DOI: 10.1155/2022/5593619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 11/25/2022]
Abstract
Methods Two datasets were used as training and validation cohorts to establish the predictive model. We used three types of screening criteria: background analysis, pathway analysis, and functional analysis provided by the cBioportal website. Fisher's exact test and multivariable logistic regression were performed to screen out related genes. Furthermore, we performed receiver operating characteristic (ROC) and Kaplan–Meier curve analyses to evaluate the correlation between the selected genes and overall survival. Result We screened five genes (KNL1, NRXN1, C6, CCDC169-SOHLH2, and TTN) that were highly related to recurrence of GC. The area under the receiver operating characteristic (ROC) curve was 0.813, which was much higher than that of the baseline model (AUC = 0.699). This result suggested that the mutation of five selected genes had a significant effect on the prediction of recurrence compared with other factors (age, stages, history, etc.). Furthermore, the Kaplan-Meier estimator also revealed that the mutation of five genes positively correlated with patient survival. Conclusions The patients who have mutations in these five genes may experience longer survival than those who do not have mutations. This five-gene panel will likely be a practical tool for prognostic evaluation and will provide another possible way for clinicians to determine therapy.
Collapse
|
22
|
Unraveling the Expression Patterns of Immune Checkpoints Identifies New Subtypes and Emerging Therapeutic Indicators in Lung Adenocarcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3583985. [PMID: 35178154 PMCID: PMC8843963 DOI: 10.1155/2022/3583985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/06/2022] [Indexed: 12/16/2022]
Abstract
Immune checkpoint genes (ICGs) play pivotal roles in tumor immune microenvironment (TIME), and thus, targeting them represents a promising strategy for cancer immunotherapy. However, the genetic landscape of ICGs in lung adenocarcinoma (LUAD) is still unknown. Herein, we comprehensively evaluated the ICG expression profiles of 1439 LUAD samples and linked ICG expression patterns with infiltration of immune cells, clinical features, and response to immune checkpoint blockade (ICB). The ICGscore was developed to quantify ICG expression patterns of individual patient by principal component analysis algorithms. Three distinct ICG expression patterns and three ICG-related genomic clusters were determined, which were implicated in different clinical outcomes, level of immune infiltrates, and biological process. LUAD patients were subdivided into high- and low-ICGscore subgroups. Patients with higher ICGscore were characterized by favorable survival outcomes, increased immune cell infiltration, and enhanced expression of ICGs. Further analysis revealed that lower ICGscore was associated with greater tumor mutation loads and higher mutation rates of TTN, KEAP1, and ZFHX4. High ICGscore has the potential to be a robust indicator in clinical benefit of immunotherapy. Taken together, unraveling the ICG expression patterns will advance our understanding of heterogeneity of TIME and guides more effective immunotherapeutic strategies in LUAD.
Collapse
|
23
|
Yuan B, Zhao X, Wang X, Liu E, Liu C, Zong Y, Jiang Y, Hou M, Chen Y, Chen L, Zhang Y, Wang H, Fu J. Patient-derived organoids for personalized gallbladder cancer modelling and drug screening. Clin Transl Med 2022; 12:e678. [PMID: 35075805 PMCID: PMC8786696 DOI: 10.1002/ctm2.678] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Gallbladder carcinoma (GBC) is a relatively rare but highly aggressive cancer with late clinical detection and a poor prognosis. However, the lack of models with features consistent with human gallbladder tumours has hindered progress in pathogenic mechanisms and therapies. METHODS We established organoid lines derived from human GBC as well as normal gallbladder and benign gallbladder adenoma (GBA) tissues. The histopathology signatures of organoid cultures were identified by H&E staining, immunohistochemistry and immunofluorescence. The genetic and transcriptional features of organoids were analysed by whole-exome sequencing and RNA sequencing. A set of compounds targeting the most active signalling pathways in GBCs were screened for their ability to suppress GBC organoids. The antitumour effects of candidate compounds, CUDC-101 and CUDC-907, were evaluated in vitro and in vivo. RESULTS The established organoids were cultured stably for more than 6 months and closely recapitulated the histopathology, genetic and transcriptional features, and intratumour heterogeneity of the primary tissues at the single-cell level. Notably, expression profiling analysis of the organoids revealed a set of genes that varied across the three subtypes and thus may participate in the malignant progression of gallbladder diseases. More importantly, we found that the dual PI3K/HDAC inhibitor CUDC-907 significantly restrained the growth of various GBC organoids with minimal toxicity to normal gallbladder organoids. CONCLUSIONS Patient-derived organoids are potentially a useful platform to explore molecular pathogenesis of gallbladder tumours and discover personalized drugs.
Collapse
Affiliation(s)
- Bo Yuan
- International Cooperation Laboratory on Signal TransductionMinistry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver CancerShanghai Key Laboratory of Hepato‐biliary Tumor BiologyEastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghaiChina
| | - Xiaofang Zhao
- Research Center for OrganoidsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Xiang Wang
- Second Department of Biliary SurgeryEastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghaiChina
| | - Erdong Liu
- School of Life SciencesFudan UniversityShanghaiChina
| | - Chunliang Liu
- International Cooperation Laboratory on Signal TransductionMinistry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver CancerShanghai Key Laboratory of Hepato‐biliary Tumor BiologyEastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghaiChina
| | - Yali Zong
- School of Life SciencesFudan UniversityShanghaiChina
| | - Youhai Jiang
- Division of Life Sciences and MedicineCancer Research CenterThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiAnhuiChina
| | - Minghui Hou
- Research Center for OrganoidsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Yao Chen
- International Cooperation Laboratory on Signal TransductionMinistry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver CancerShanghai Key Laboratory of Hepato‐biliary Tumor BiologyEastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghaiChina
| | - Lei Chen
- International Cooperation Laboratory on Signal TransductionMinistry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver CancerShanghai Key Laboratory of Hepato‐biliary Tumor BiologyEastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghaiChina
| | - Yongjie Zhang
- Second Department of Biliary SurgeryEastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghaiChina
| | - Hongyang Wang
- International Cooperation Laboratory on Signal TransductionMinistry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver CancerShanghai Key Laboratory of Hepato‐biliary Tumor BiologyEastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghaiChina
| | - Jing Fu
- International Cooperation Laboratory on Signal TransductionMinistry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver CancerShanghai Key Laboratory of Hepato‐biliary Tumor BiologyEastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghaiChina
| |
Collapse
|
24
|
Zhu L, Yang F, Li X, Li Q, Zhong C. Glycolysis Changes the Microenvironment and Therapeutic Response Under the Driver of Gene Mutation in Esophageal Adenocarcinoma. Front Genet 2021; 12:743133. [PMID: 34956314 PMCID: PMC8693172 DOI: 10.3389/fgene.2021.743133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Esophageal cancer is one of the most leading and lethal malignancies. Glycolysis and the tumor microenvironment (TME) are responsible for cancer progressions. We aimed to study the relationships between glycolysis, TME, and therapeutic response in esophageal adenocarcinoma (EAC). Materials and Methods: We used the ESTIMATE algorithm to divide EAC patients into ESTIMATE high and ESTIMATE low groups based on the gene expression data downloaded from TCGA. Weighted gene co-expression network analysis (WGCNA) and Gene Set Enrichment Analysis (GSEA) were performed to identify different glycolytic genes in the TME between the two groups. The prognostic gene signature for overall survival (OS) was established through Cox regression analysis. Impacts of glycolytic genes on immune cells were assessed and validated. Next, we conducted the glycolytic gene mutation analysis and drug therapeutic response analysis between the two groups. Finally, the GEO database was employed to validate the impact of glycolysis on TME in patients with EAC. Results: A total of 78 EAC patients with gene expression profiles and clinical information were included for analysis. Functional enrichment results showed that the genes between ESTIMATE high and ESTIMATE low groups (N = 39, respectively) were strongly related with glycolytic and ATP/ADP metabolic pathways. Patients in the low-risk group had probabilities to survive longer than those in the high-risk group (p < 0.001). Glycolytic genes had significant impacts on the components of immune cells in TME, especially on the T-cells and dendritic cells. In the high-risk group, the most common mutant genes were TP53 and TTN, and the most frequent mutation type was missense mutation. Glycolysis significantly influenced drug sensitivity, and high tumor mutation burden (TMB) was associated with better immunotherapeutic response. GEO results confirmed that glycolysis had significant impacts on immune cell contents in TME. Conclusion: We performed a comprehensive study of glycolysis and TME and demonstrated that glycolysis could influence the microenvironment and drug therapeutic response in EAC. Evaluation of the glycolysis pattern could help identify the individualized therapeutic regime.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.,Department of Thoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fugui Yang
- Department of Thoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinrui Li
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qinchuan Li
- Department of Thoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
25
|
Liu J, Chen T, Yang M, Zhong Z, Ni S, Yang S, Shao F, Cai L, Bai J, Yu H. Development of an Oxidative Phosphorylation-Related and Immune Microenvironment Prognostic Signature in Uterine Corpus Endometrial Carcinoma. Front Cell Dev Biol 2021; 9:753004. [PMID: 34901000 PMCID: PMC8655987 DOI: 10.3389/fcell.2021.753004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
Background: As the fourth most common malignant tumors in women, uterine corpus endometrial carcinoma (UCEC) requires novel and reliable biomarkers for prognosis prediction to improve the overall survival. Oxidative phosphorylation (OXPHOS) is found to be strongly correlated with the progression of tumor. Here, we aimed to construct an OXPHOS-related and immune microenvironment prognostic signature to stratify UCEC patients for optimization of treatment strategies. Method: Prognosis-associated OXPHOS-related differentially expressed genes were identified by multivariable Cox regression from TCGA–UCEC cohort. Based on the candidate genes, an OXPHOS-related prognostic signature was constructed by the train set data and verified by the entire set. When integrated with relevant clinical characteristics, a nomogram was also created for clinical application. Through comparison of tumor microenvironment between different risk groups, the underlying mechanism of the model and the inner correlation between immune microenvironment and energy metabolism were further investigated. Results: An OXPHOS-related signature containing ATP5IF1, COX6B1, FOXP3, and NDUFB11 was constructed and had better predictive ability compared with other recently published signatures in UCEC. Patients with lower risk score showed higher immune cell infiltration, higher ESTIMATE score (p = 2.808E−18), lower tumor purity (p = 2.808E−18), higher immunophenoscores (IPSs) (p < 0.05), lower expression of mismatch repair (MMR) proteins (p < 0.05), higher microsatellite instability (MSI), lower expression of markers of N6-methyladenosine (m6A) mRNA methylation regulators, higher tumor mutation burden (TMB) (p = 1.278E−9), and more sensitivity to immune checkpoint blockade (ICB) (p < 0.001) and chemotherapy drugs, thus, possessing improved prognosis. Conclusion: An OXPHOS-related and immune microenvironment prognostic signature classifying EC patients into different risk subsets was constructed in our study, which could be used to predict the prognosis of patients and help to select a specific subset of patients who might benefit from immunotherapy and chemotherapy, thus, improving the overall survival rate of UCEC. These findings may contribute to the discovery of novel and robust biomarkers or target therapy in UCEC and give new insights into the molecular mechanism of tumorigenesis and progression of UCEC.
Collapse
Affiliation(s)
- Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tian Chen
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Yang
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, Nanjing, China
| | - Zihang Zhong
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, Nanjing, China
| | - Senmiao Ni
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, Nanjing, China
| | - Sheng Yang
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, Nanjing, China
| | - Fang Shao
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, Nanjing, China
| | - Lixin Cai
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, Nanjing, China
| | - Jianling Bai
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, Nanjing, China
| | - Hao Yu
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Chen J, Apizi A, Wang L, Wu G, Zhu Z, Yao H, Chen G, Shi X, Shi B, Tai Q, Shen C, Zhou G, Wu L, He S. TCGA database analysis of the tumor mutation burden and its clinical significance in colon cancer. J Gastrointest Oncol 2021; 12:2244-2259. [PMID: 34790389 DOI: 10.21037/jgo-21-661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Background Colon cancer is one of the most common malignant tumors, with high rates of incidence and death. The tumor mutational burden (TMB), which is characterized by microsatellite instability, has been becoming a powerful predictor which can show tumor behavior and response to immunotherapy. Methods In this study, we analyzed 437 mutation data of colon cancer samples obtained from The Cancer Genome Atlas (TCGA) and divided patients into low- and high-TMB groups according to the TMB value. Then we identified differentially-expressed genes (DEGs), conducted immune cell infiltration and survival analyses between groups. Results The higher TMB of the patients with colon cancer predicts a poorer prognosis. Functional analysis was performed to assess the prognostic value of the top 30 core genes. The CIBER-SORT algorithm was used to investigate the correlation between the immune cells and TMB subtypes. An immune prognosis model was constructed to screen out immune genes related to prognosis, and the tumor immunity assessment resource (TIMER) was then used to determine the correlation between gene expression and the abundance of tumor-infiltrating immune cell subsets in colon cancer. We observed that APC, TP53, TTN, KRAS, MUC16, SYNE1, PIK3CA have higher somatic mutations. DEGs enrichment analysis showed that they are involved in the regulation of neuroactive ligand-receptor interaction, the Cyclic adenosine monophosphate (cAMP) signaling pathway, the calcium signaling pathway, and pantothenate and Coenzyme A (CoA) biosynthesis. The difference in the abundance of various white blood cell subtypes showed that Cluster of Differentiation 8 (CD8) T cells (P=0.008), activated CD4 memory T cells (P=0.019), M1 macrophages (P=0.002), follicular helper T cells (P=0.034), activated Natural killer (NK cell) cells (P=0.017) increased remarkably, while M0 macrophages significantly reduced (P=0.025). The two immune model genes showed that secretin (SCT) was negatively correlated with survival, while Guanylate cyclase activator 2A (GUCA2A) was positively correlated. Conclusions This study conducted a systematically comprehensive analysis of the prediction and clinical significance of TMB in colon cancer in identification, monitoring, and prognosis of colon cancer, and providing reference information for immunotherapy.
Collapse
Affiliation(s)
- Junjie Chen
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Anwaier Apizi
- Department of Gastrointestinal Tumors, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Lin Wang
- Department of Gastrointestinal Tumors, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Guanting Wu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zheng Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huihui Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guoliang Chen
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinyu Shi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bo Shi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qingliang Tai
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chenglong Shen
- Department of Gastrointestinal Surgery, Changshu No. 2 Hospital, Changshu, China
| | - Guoqiang Zhou
- Department of Gastrointestinal Surgery, Changshu No. 2 Hospital, Changshu, China
| | - Lingzhi Wu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Songbing He
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
27
|
Xie J, Qi Z, Luo X, Yan F, Xing W, Zeng W, Chen D, Li Q. Integration Analysis of m6A Regulators and m6A-Related Genes in Hepatocellular Carcinoma. BIO INTEGRATION 2021. [DOI: 10.15212/bioi-2021-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract Background: N6-Methyladenosine (m6A) RNA methylation of eukaryotic mRNA is involved in the progression of various tumors. We aimed to investigate m6A-related genes and m6A regulators in hepatocellular carcinoma (HCC) and their association with prognosis in
HCC.Methods: We downloaded liver cancer sample data from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium database. A total of 21 m6A regulators and 1258 m6A-related genes were then analyzed by consensus clustering, Spearman’s correlation, GO,
KEGG, LASSO Cox regression, and univariate Cox regression analyses. Finally, we constructed a risk prognostic model.Results: We obtained 192 candidate m6A-related genes and 3 m6A regulators, including YTHDF1, YTHDF2, and YTHDC1. The expression of these genes and regulators differed
significantly in different stages of HCC. Based on Cox regression analysis, 19 of 98 m6A-related prognostic genes were obtained to construct a risk score model. The 1- and 3-year area under the curves (AUCs) among HCC patients were greater than 0.7. Finally, based on analysis of mutation differences
between high- and low-risk score groups, we determined that TP53 had the highest mutation frequency in the high-risk HCC patient group, whereas titin (TTN) had the highest mutation frequency in the low-risk HCC patient group.Conclusion: This study comprehensively analyzed
m6A regulators and m6A-related genes through an integrated bioinformatic analysis, including expression, clustering, protein‐protein interaction, and prognosis, thus providing novel insights into the roles of m6A regulators and m6A-related genes in HCC.
Collapse
Affiliation(s)
- Jingdun Xie
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510000, China
| | - Zhenhua Qi
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510000, China
| | - Xiaolin Luo
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510000, China
| | - Fang Yan
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510000, China
| | - Wei Xing
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510000, China
| | - Weian Zeng
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510000, China
| | - Dongtai Chen
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510000, China
| | - Qiang Li
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510000, China
| |
Collapse
|
28
|
Zeng D, Hu Z, Yi Y, Valeria B, Shan G, Chen Z, Zhan C, Lin M, Lin Z, Wang Q. Differences in genetics and microenvironment of lung adenocarcinoma patients with or without TP53 mutation. BMC Pulm Med 2021; 21:316. [PMID: 34635074 PMCID: PMC8507221 DOI: 10.1186/s12890-021-01671-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023] Open
Abstract
Background Differences in genetics and microenvironment of LUAD patients with or without TP53 mutation were analyzed to illustrate the role of TP53 mutation within the carcinogenesis of LUAD, which will provide new concepts for the treatment of LUAD. Methods
In this study, we used genetics and clinical info from the TCGA database, including somatic mutations data, RNA-seq, miRNA-seq, and clinical data. More than one bioinformatics tools were used to analyze the unique genomic pattern of TP53-related LUAD. Results According to TP53 gene mutation status, we divided the LUAD patients into two groups, including 265 in the mutant group (MU) and 295 in the wild-type group (WT). 787 significant somatic mutations were detected between the groups, including mutations in titin (TTN), type 2 ryanodine receptor (RYR2) and CUB and Sushi multiple domains 3(CSMD3), which were up-regulated in the MU. However, no significant survival difference was observed. At the RNA level, we obtained 923 significantly differentially expressed genes; in the MU, α-defensin 5(DEFA5), pregnancy-specific glycoprotein 5(PSG5) and neuropeptide Y(NPY) were the most up-regulated genes, glucose-6-phosphatase (G6PC), alpha-fetoprotein (AFP) and carry gametocidal (GC) were the most down-regulated genes. GSVA analysis revealed 30 significant pathways. Compared with the WT, the expression of 12 pathways in the mutant group was up-regulated, most of which pointed to cell division. There were significant differences in tumor immune infiltrating cells, such as Macrophages M1, T cells CD4 memory activated, Mast cells resting, and Dendritic cells resting. In terms of immune genes, a total of 35 immune-related genes were screened, of which VGF (VGF nerve growth factor inducible) and PGC (peroxisome proliferator-activated receptor gamma coactivator) were the most significant up-regulated and down-regulated genes, respectively. Research on the expression pattern of immunomodulators found that 9 immune checkpoint molecules and 6 immune costimulatory molecules were considerably wholly different between the two groups. Conclusions Taking the mutant group as a reference, LUAD patients in the mutant group had significant differences in somatic mutations, mRNA-seq, miRNA-seq, immune infiltration, and immunomodulators, indicating that TP53 mutation plays a crucial role in the occurrence and development of LUAD. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01671-8.
Collapse
Affiliation(s)
- Dejun Zeng
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yanjun Yi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Besskaya Valeria
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Guangyao Shan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Miao Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Zongwu Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| |
Collapse
|
29
|
Wang D, Liu S, Wang G. Establishment of an Endocytosis-Related Prognostic Signature for Patients With Low-Grade Glioma. Front Genet 2021; 12:709666. [PMID: 34552618 PMCID: PMC8450508 DOI: 10.3389/fgene.2021.709666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/09/2021] [Indexed: 12/15/2022] Open
Abstract
Background Low-grade glioma (LGG) is a heterogeneous tumor that might develop into high-grade malignant glioma, which markedly reduces patient survival time. Endocytosis is a cellular process responsible for the internalization of cell surface proteins or external materials into the cytosol. Dysregulated endocytic pathways have been linked to all steps of oncogenesis, from initial transformation to late invasion and metastasis. However, endocytosis-related gene (ERG) signatures have not been used to study the correlations between endocytosis and prognosis in cancer. Therefore, it is essential to develop a prognostic model for LGG based on the expression profiles of ERGs. Methods The Cancer Genome Atlas and the Genotype-Tissue Expression database were used to identify differentially expressed ERGs in LGG patients. Gene ontology, Kyoto Encyclopedia of Genes and Genomes, and Gene set enrichment analysis methodologies were adopted for functional analysis. A protein-protein interaction (PPI) network was constructed and hub genes were identified based on the Search Tool for the Retrieval of Interacting Proteins database. Univariate and multivariate Cox regression analyses were used to develop an ERG signature to predict the overall survival (OS) of LGG patients. Finally, the association between the ERG signature and gene mutation status was further analyzed. Results Sixty-two ERGs showed distinct mRNA expression patterns between normal brain tissues and LGG tissues. Functional analysis indicated that these ERGs were strikingly enriched in endosomal trafficking pathways. The PPI network indicated that EGFR was the most central protein. We then built a 29-gene signature, dividing patients into high-risk and low-risk groups with significantly different OS times. The prognostic performance of the 29-gene signature was validated in another LGG cohort. Additionally, we found that the mutation scores calculated based on the TTN, PIK3CA, NF1, and IDH1 mutation status were significantly correlated with the endocytosis-related prognostic signature. Finally, a clinical nomogram with a concordance index of 0.881 predicted the survival probability of LGG patients by integrating clinicopathologic features and ERG signatures. Conclusion Our ERG-based prediction models could serve as an independent prognostic tool to accurately predict the outcomes of LGG.
Collapse
Affiliation(s)
- Dawei Wang
- Shandong Academy of Clinical Medicine, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Shandong Academy of Clinical Medicine, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shiguang Liu
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guangxin Wang
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Innovation Center of Intelligent Diagnosis, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
30
|
Yuan D, Wei Z, Wang Y, Cheng F, Zeng Y, Yang L, Zhang S, Li J, Tang R. DNA Methylation Regulator-Meditated Modification Patterns Define the Distinct Tumor Microenvironment in Lung Adenocarcinoma. Front Oncol 2021; 11:734873. [PMID: 34552879 PMCID: PMC8450540 DOI: 10.3389/fonc.2021.734873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/16/2021] [Indexed: 12/09/2022] Open
Abstract
Background Epigenetic changes of lung adenocarcinoma (LUAD) have been reported to be a relevant factor in tumorigenesis and cancer progression. However, the molecular mechanisms responsible for DNA methylation patterns in the tumor immune-infiltrating microenvironment and in cancer immunotherapy remain unclear. Methods We conducted a global analysis of the DNA methylation modification pattern (DMP) and immune cell-infiltrating characteristics of LUAD patients based on 21 DNA methylation regulators. A DNA methylation score (DMS) system was constructed to quantify the DMP model in each patient and estimate their potential benefit from immunotherapy. Results Two DNA methylation modification patterns able to distinctly characterize the immune microenvironment characterization were identified among 513 LUAD samples. A lower DMS, characterized by increased CTLA-4/PD-1/L1 gene expression, greater methylation modifications, and tumor mutation burden, characterized a noninflamed phenotype with worse survival. A higher DMS, characterized by decreased methylation modification, a greater stromal-relevant response, and immune hyperactivation, characterized an inflamed phenotype with better prognosis. Moreover, a lower DMS indicated an increased mutation load and exhibited a poor immunotherapeutic response in the anti-CTLA-4/PD-1/PD-L1 cohort. Conclusion Evaluating the DNA methylation modification pattern of LUAD patients could enhance our understanding of the features of tumor microenvironment characterization and may promote more favorable immunotherapy strategies.
Collapse
Affiliation(s)
- Didi Yuan
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Zehong Wei
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yicheng Wang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Fang Cheng
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yujie Zeng
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Li Yang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Shangyu Zhang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Jianbo Li
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Renkuan Tang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
31
|
Hu W, Li M, Zhang Q, Liu C, Wang X, Li J, Qiu S, Li L. Establishment of a novel CNV-related prognostic signature predicting prognosis in patients with breast cancer. J Ovarian Res 2021; 14:103. [PMID: 34364397 PMCID: PMC8349487 DOI: 10.1186/s13048-021-00823-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/10/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Copy number variation (CNVs) is a key factor in breast cancer development. This study determined prognostic molecular characteristics to predict breast cancer through performing a comprehensive analysis of copy number and gene expression data. METHODS Breast cancer expression profiles, CNV and complete information from The Cancer Genome Atlas (TCGA) dataset were collected. Gene Expression Omnibus (GEO) chip data sets (GSE20685 and GSE31448) containing breast cancer samples were used as external validation sets. Univariate survival COX analysis, multivariate survival COX analysis, least absolute shrinkage and selection operator (LASSO), Chi square, Kaplan-Meier (KM) survival curve and receiver operating characteristic (ROC) analysis were applied to build a gene signature model and assess its performance. RESULTS A total of 649 CNV related-differentially expressed gene obtained from TCGA-breast cancer dataset were related to several cancer pathways and functions. A prognostic gene sets with 9 genes were developed to stratify patients into high-risk and low-risk groups, and its prognostic performance was verified in two independent patient cohorts (n = 327, 246). The result uncovered that 9-gene signature could independently predict breast cancer prognosis. Lower mutation of PIK3CA and higher mutation of TP53 and CDH1 were found in samples with high-risk score compared with samples with low-risk score. Patients in the high-risk group showed higher immune score, malignant clinical features than those in the low-risk group. The 9-gene signature developed in this study achieved a higher AUC. CONCLUSION The current research established a 5-CNV gene signature to evaluate prognosis of breast cancer patients, which may innovate clinical application of prognostic assessment.
Collapse
Affiliation(s)
- Wei Hu
- Department of Thyroid and Breast Surgery, Zibo Central Hospital, Zibo, 255036, China
| | - Mingyue Li
- Department of Rehabilitation Medicine, The Third Affilated Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Qi Zhang
- Blood Transfusion Department, Zibo Central Hospital, Zibo, 255036, China
| | - Chuan Liu
- Department of Thyroid and Breast Surgery, Zibo Central Hospital, Zibo, 255036, China
| | - Xinmei Wang
- Department of Pathology, ZiBo Central Hospital, Zibo, 255036, China
| | - Jing Li
- Department of Pathology, ZiBo Central Hospital, Zibo, 255036, China.
| | - Shusheng Qiu
- Department of Thyroid and Breast Surgery, Zibo Central Hospital, Zibo, 255036, China.
| | - Liang Li
- Department of Thyroid and Breast Surgery, Zibo Central Hospital, Zibo, 255036, China.
| |
Collapse
|
32
|
Guo X, Liang X, Wang Y, Cheng A, Zhang H, Qin C, Wang Z. Significance of Tumor Mutation Burden Combined With Immune Infiltrates in the Progression and Prognosis of Advanced Gastric Cancer. Front Genet 2021; 12:642608. [PMID: 34306002 PMCID: PMC8299211 DOI: 10.3389/fgene.2021.642608] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer (GC) is a serious malignant tumor with high mortality and poor prognosis. The prognosis and survival are much worse for advanced gastric cancer (AGC). Recently, immunotherapy has been widely promoted for AGC patients, and studies have shown that tumor mutation burden (TMB) is closely related to immunotherapy response. Here, RNA-seq data, matched clinical information, and MAF files were downloaded from the cancer genome atlas (TCGA)-STAD project in the TCGA database. The collation and visual analysis of mutation data were implemented by the “maftools” package in R. We calculated the TMB values for AGC patients and divided the patients into high- and low-TMB groups according to the median value of TMB. Then, the correlation between high or low TMB and clinicopathological parameters was calculated. Next, we examined the differences in gene expression patterns between the two groups by using the “limma” R package and identified the immune-related genes among the DEGs. Through univariate Cox regression analysis, 15 genes related to prognosis were obtained. Furthermore, the two hub genes (APOD and SLC22A17) were used to construct a risk model to evaluate the prognosis of AGC patients. ROC and survival curves and GEO data were used as a validation set to verify the reliability of this risk model. In addition, the correlation between TMB and tumor-infiltrating immune cells was examined. In conclusion, our results suggest that AGC patients with high TMB have a better prognosis. By testing the patient’s TMB, we could better guide immunotherapy and understand patient response to immunotherapy.
Collapse
Affiliation(s)
- Xiong Guo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaolong Liang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yujun Wang
- Department of Pathology, Daping Hospital, Army Military Medical University, Chongqing, China
| | - Anqi Cheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Han Zhang
- Department of Digestive Oncology, Three Gorges Hospital, Chongqing University, Chongqing, China
| | - Chuan Qin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Gastrointestinal Surgery, Three Gorges Hospital, Chongqing University, Chongqing, China
| | - Ziwei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
33
|
Guo X, Liang X, Wang Y, Cheng A, Zhang H, Qin C, Wang Z. Significance of Tumor Mutation Burden Combined With Immune Infiltrates in the Progression and Prognosis of Advanced Gastric Cancer. Front Genet 2021. [DOI: 10.3389/fgene.2021.642608
expr 881161437 + 993839471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Gastric cancer (GC) is a serious malignant tumor with high mortality and poor prognosis. The prognosis and survival are much worse for advanced gastric cancer (AGC). Recently, immunotherapy has been widely promoted for AGC patients, and studies have shown that tumor mutation burden (TMB) is closely related to immunotherapy response. Here, RNA-seq data, matched clinical information, and MAF files were downloaded from the cancer genome atlas (TCGA)-STAD project in the TCGA database. The collation and visual analysis of mutation data were implemented by the “maftools” package in R. We calculated the TMB values for AGC patients and divided the patients into high- and low-TMB groups according to the median value of TMB. Then, the correlation between high or low TMB and clinicopathological parameters was calculated. Next, we examined the differences in gene expression patterns between the two groups by using the “limma” R package and identified the immune-related genes among the DEGs. Through univariate Cox regression analysis, 15 genes related to prognosis were obtained. Furthermore, the two hub genes (APOD and SLC22A17) were used to construct a risk model to evaluate the prognosis of AGC patients. ROC and survival curves and GEO data were used as a validation set to verify the reliability of this risk model. In addition, the correlation between TMB and tumor-infiltrating immune cells was examined. In conclusion, our results suggest that AGC patients with high TMB have a better prognosis. By testing the patient’s TMB, we could better guide immunotherapy and understand patient response to immunotherapy.
Collapse
|
34
|
Fan T, Lu Z, Liu Y, Wang L, Tian H, Zheng Y, Zheng B, Xue L, Tan F, Xue Q, Gao S, Li C, He J. A Novel Immune-Related Seventeen-Gene Signature for Predicting Early Stage Lung Squamous Cell Carcinoma Prognosis. Front Immunol 2021; 12:665407. [PMID: 34177903 PMCID: PMC8226174 DOI: 10.3389/fimmu.2021.665407] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022] Open
Abstract
With the increasingly early stage lung squamous cell carcinoma (LUSC) being discovered, there is an urgent need for a comprehensive analysis of the prognostic characteristics of early stage LUSC. Here, we developed an immune-related gene signature for outcome prediction of early stage LUSC based on three independent cohorts. Differentially expressed genes (DEGs) were identified using CIBERSORT and ESTMATE algorithm. Then, a 17-immune-related gene (RPRM, APOH, SSX1, MSGN1, HPR, ISM2, FGA, LBP, HAS1, CSF2, RETN, CCL2, CCL21, MMP19, PTGIS, F13A1, C1QTNF1) signature was identified using univariate Cox regression, LASSO regression and stepwise multivariable Cox analysis based on the verified DEGs from 401 cases in The Cancer Genome Atlas (TCGA) database. Subsequently, a cohort of GSE74777 containing 107 cases downloaded from Gene Expression Omnibus (GEO) database and an independent data set consisting of 36 frozen tissues collected from National Cancer Center were used to validate the predictive value of the signature. Seventeen immune-related genes were identified from TCGA cohort, which were further used to establish a classification system to construct cases into high- and low-risk groups in terms of overall survival. This classifier was still an independent prognostic factor in multivariate analysis. In addition, another two independent cohorts and different clinical subgroups validated the significant predictive value of the signature. Further mechanism research found early stage LUSC patients with high risk had special immune cell infiltration characteristics and gene mutation profiles. In conclusion, we characterized the tumor microenvironment and established a highly predictive model for evaluating the prognosis of early stage LUSC, which may provide a lead for effective immunotherapeutic options tailored for each subtype.
Collapse
Affiliation(s)
- Tao Fan
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiliang Lu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liyu Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Zheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liyan Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
35
|
Gui CP, Wei JH, Chen YH, Fu LM, Tang YM, Cao JZ, Chen W, Luo JH. A new thinking: extended application of genomic selection to screen multiomics data for development of novel hypoxia-immune biomarkers and target therapy of clear cell renal cell carcinoma. Brief Bioinform 2021; 22:6273240. [PMID: 34237133 DOI: 10.1093/bib/bbab173] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/30/2021] [Accepted: 04/11/2021] [Indexed: 12/12/2022] Open
Abstract
Increasing evidences show the clinical significance of the interaction between hypoxia and immune in clear cell renal cell carcinoma (ccRCC) microenvironment. However, reliable prognostic signatures based on a combination of hypoxia and immune have not been well established. Moreover, many studies have only used RNA-seq profiles to screen the prognosis feature of ccRCC. Presently, there is no comprehensive analysis of multiomics data to mine a better one. Thus, we try and get it. First, t-SNE and ssGSEA analysis were used to establish tumor subtypes related to hypoxia-immune, and we investigated the hypoxia-immune-related differences in three types of genetic or epigenetic characteristics (gene expression profiles, somatic mutation, and DNA methylation) by analyzing the multiomics data from The Cancer Genome Atlas (TCGA) portal. Additionally, a four-step strategy based on lasso regression and Cox regression was used to construct a satisfying prognostic model, with average 1-year, 3-year and 5-year areas under the curve (AUCs) equal to 0.806, 0.776 and 0.837. Comparing it with other nine known prognostic biomarkers and clinical prognostic scoring algorithms, the multiomics-based signature performs better. Then, we verified the gene expression differences in two external databases (ICGC and SYSU cohorts). Next, eight hub genes were singled out and seven hub genes were validated as prognostic genes in SYSU cohort. Furthermore, it was indicated high-risk patients have a better response for immunotherapy in immunophenoscore (IPS) analysis and TIDE algorithm. Meanwhile, estimated by GDSC and cMAP database, the high-risk patients showed sensitive responses to six chemotherapy drugs and six candidate small-molecule drugs. In summary, the signature can accurately predict the prognosis of ccRCC and may shed light on the development of novel hypoxia-immune biomarkers and target therapy of ccRCC.
Collapse
Affiliation(s)
- Cheng-Peng Gui
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jin-Huan Wei
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu-Hang Chen
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liang-Min Fu
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi-Ming Tang
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jia-Zheng Cao
- Affiliated Jiangmen Hospital, Sun Yat-sen University, Jiangmen, Guangdong, China
| | - Wei Chen
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jun-Hang Luo
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
36
|
Chemical complementarity between immune receptors and cancer mutants, independent of antigen presentation protein binding, is associated with increased survival rates. Transl Oncol 2021; 14:101069. [PMID: 33780706 PMCID: PMC8039726 DOI: 10.1016/j.tranon.2021.101069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/19/2021] [Accepted: 03/08/2021] [Indexed: 01/09/2023] Open
Abstract
Establishment of an immunological distinction between endometrioid and serous uterine cancers. High priority CDR3s, mutant amino acids (AA) for endometrioid cancer prognosis, therapy tools. Further understanding of CDR3-mutant AA complementarity scoring factors, such as HLA binding.
Uterine cancer has been associated with a T-cell immune response that leads to increased survival. Therefore, we used several bioinformatics approaches to explore specific interactions between T-cell receptor (TCR) and tumor mutant peptide sequences. Using endometrioid uterine cancer exome files from the The Cancer Genome Atlas database, we obtained tumor resident V-J recombinations for the T-Cell Receptor alpha gene (TRA). The charged-based, chemical complementarity for each patient's LRP2 or TTN mutant amino acids (AAs) and the recovered, TRA complementarity determining region-3 (CDR3) sequences was calculated, allowing a division of patients into complementary and noncomplementary groups. Complementary groups with TTN mutants had increased disease-free survival and increased expression of complement genes. Furthermore, the survival distinction based on CDR3-mutant peptide complementarity was independent of programmatically assessed HLA class II binding and was not observable based on the CDR3 AA chemical features alone. The above approach provides a potential, highly efficient method for identifying TCR targets in uterine cancer and may aid in the development of novel prognostic tools.
Collapse
|
37
|
Xue D, Lin H, Lin L, Wei Q, Yang S, Chen X. TTN/ TP53 mutation might act as the predictor for chemotherapy response in lung adenocarcinoma and lung squamous carcinoma patients. Transl Cancer Res 2021; 10:1284-1294. [PMID: 35116455 PMCID: PMC8798240 DOI: 10.21037/tcr-20-2568] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/18/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Chemotherapy is the preferred treatment in many types of cancer including lung cancer. However, most of patients resist chemotherapy resulting in disease progressive and recurrence. Titin (TTN) mutation is proved as a beneficial role in lung squamous carcinoma (LUSC), but the predictive role on chemotherapy resistance of lung cancer is still limited and discussable. METHODS Clinical information and related somatic mutation profiles were obtained from The Cancer Genome Atlas (TCGA) database and analyzed by R-Studio using R-package. Overall survival (OS) curve and the association between gene mutation and clinical features were determined by GraphPad 6.0 software. RESULTS Available data including 563 lung adenocarcinoma (LUAD) and 505 LUSC subjects were included in this study. Among all patients, 205 out of 563 LUAD and 326 out of 505 LUSC patients displayed TTN gene mutation. When comparing the clinical features in TTN-mutated patients to patients without TTN mutation who received chemotherapy, the tumors were always located in the upper lung in LUAD patients with TTN mutation and most of TTN-mutated subjects were at low pathological stage, which was not observed in LUSC patients. However, patients with TTN-mutation, particularly missense mutation, had a higher chemosensitivity and longer OS period than that patients without TTN mutation in both LUAD and LUSC. Of note, LUAD and LUSC patients possessed favorable OS and better chemotherapy response benefiting from TTN/tumor protein 53 (TP53) double mutation compared to TTN and TP53 mutation alone, respectively. Additionally, TTN/TP53 double mutation-initiated high rate of chemotherapy response were largely concentrated within LUAD and LUSC patients whose anatomic neoplasm subdivision were located in the upper lung. CONCLUSIONS Collectively, TTN/TP53 co-mutation is possibly served as an effective predictor for OS and chemotherapy response in lung cancer.
Collapse
Affiliation(s)
- Dan Xue
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hongguang Lin
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lan Lin
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Qiongying Wei
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Sheng Yang
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiangqi Chen
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
38
|
Xu Y, Luo H, Hu Q, Zhu H. Identification of Potential Driver Genes Based on Multi-Genomic Data in Cervical Cancer. Front Genet 2021; 12:598304. [PMID: 33664766 PMCID: PMC7921803 DOI: 10.3389/fgene.2021.598304] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/07/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Cervical cancer became the third most common cancer among women, and genome characterization of cervical cancer patients has revealed the extensive complexity of molecular alterations. However, identifying driver mutation and depicting molecular classification in cervical cancer remain a challenge. Methods: We performed an integrative multi-platform analysis of a cervical cancer cohort from The Cancer Genome Atlas (TCGA) based on 284 clinical cases and identified the driver genes and possible molecular classification of cervical cancer. Results: Multi-platform integration showed that cervical cancer exhibited a wide range of mutation. The top 10 mutated genes were TTN, PIK3CA, MUC4, KMT2C, MUC16, KMT2D, SYNE1, FLG, DST, and EP300, with a mutation rate from 12 to 33%. Applying GISTIC to detect copy number variation (CNV), the most frequent chromosome arm-level CNVs included losses in 4p, 11p, and 11q and gains in 20q, 3q, and 1q. Then, we performed unsupervised consensus clustering of tumor CNV profiles and methylation profiles and detected four statistically significant expression subtypes. Finally, by combining the multidimensional datasets, we identified 10 potential driver genes, including GPR107, CHRNA5, ZBTB20, Rb1, NCAPH2, SCA1, SLC25A5, RBPMS, DDX3X, and H2BFM. Conclusions: This comprehensive analysis described the genetic characteristic of cervical cancer and identified novel driver genes in cervical cancer. These results provide insight into developing precision treatment in cervical cancer.
Collapse
Affiliation(s)
- Yuexun Xu
- Department of Gynecology and Obstetrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Luo
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qunchao Hu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haiyan Zhu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
39
|
Wang X, Duanmu J, Fu X, Li T, Jiang Q. Analyzing and validating the prognostic value and mechanism of colon cancer immune microenvironment. J Transl Med 2020; 18:324. [PMID: 32859214 PMCID: PMC7456375 DOI: 10.1186/s12967-020-02491-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/20/2020] [Indexed: 02/08/2023] Open
Abstract
Background Colon cancer is a disease with high malignancy and incidence in the world. Tumor immune microenvironment (TIM) and tumor mutational burden (TMB) have been proved to play crucial roles in predicting clinical outcomes and therapeutic efficacy, but the correlation between them and the underlying mechanism were not completely understood in colon cancer. Methods In this study, we used Single-Sample Gene Set Enrichment Analysis (ssGSEA) and unsupervised consensus clustering analysis to divide patients from the TCGA cohort into three immune subgroups. Then we validated their differences in immune cell infiltration, overall survival outcomes, clinical phenotypes and expression levels of HLA and checkpoint genes by Mann–Whitney tests. We performed weighted correlation network analysis (WGCNA) to obtain immunity-related module and hub genes. Then we explored the underlying mechanism of hub genes by gene set enrichment analysis (GSEA) and gene set evaluation analysis (GSVA). Finally, we gave an overall view of gene variants and verified the correlation between TIM and TMB by comparing microsatellite instability (MSI) and gene mutations among three immune subgroups. Results The colon cancer patients were clustered into low immunity, median immunity and high immunity groups. The median immunity group had a favorable survival probability compared with that of the low and high immunity groups. Three groups had significant differences in immune cell infiltration, tumor stage, living state and T classification. We got 8 hub genes (CCDC69, CLMP, FAM110B, FAM129A, GUCY1B3, PALLD, PLEKHO1 and STY11) and predicted that immunity may correlated with inflammatory response, KRAS signaling pathway and T cell infiltration. With higher immunity, the TMB was higher. The most frequent mutations in low and median immunity groups were APC, TP53 and KRAS, while TTN and MUC16 showed higher mutational frequency in high immunity group. Conclusions We performed a comprehensive evaluation of the immune microenvironment landscape of colon cancer and demonstrated the positive correlation between immunity and TMB. The hub genes and frequently mutated genes were strongly related to immunity and may give suggestion for immunotherapy in the future.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China.,Queen Mary college, Medical Department, Nanchang University, Nanchang, Jiangxi, China
| | - Jinzhong Duanmu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Xiaorui Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China.,Queen Mary college, Medical Department, Nanchang University, Nanchang, Jiangxi, China
| | - Taiyuan Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Qunguang Jiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China.
| |
Collapse
|
40
|
Chen Z, Yao N, Zhang S, Song Y, Shao Q, Gu H, Ma J, Chen B, Zhao H, Tian Y. Identification of critical radioresistance genes in esophageal squamous cell carcinoma by whole-exome sequencing. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:998. [PMID: 32953798 PMCID: PMC7475461 DOI: 10.21037/atm-20-5196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is one of the most lethal cancer due to insufficient actionable molecules. Radiotherapy (RT) plays a vital role in the treatment of ESCC, while radioresistance is a significant challenge to RT and results in locoregional and distant failure. Methods Radioresistance is a complex involving confounding factors, and its genetic mechanism is challenging to study. Postoperative recurrence after RT is more likely to be due to genetic causes than recurrence in unoperated patients. Therefore, two independent cohorts of ESCC patients who had received postoperative radiotherapy (PORT) and had opposite prognoses were set up, and whole-exome sequencing (WES) technology was applied. We compared the differences in the mutant spectra between the two groups. Results The mutation rate was slightly higher in the relapsed group than in the stable group [average mutation rate, 1.15 vs. 0.73 mutations per megabyte (Mb)], while the mutation types and proportions in the two groups were not significantly different. In particular, three mutated genes (TTN, MUC19, and NPIPA5) and two copy number alterations (CNAs) (1q amplification and 14q deletion) were identified to be associated with poor RT prognosis, while MUC4 was a favorable factor. Conclusions These radioresistance biomarkers may supply insight into predicting the radioresponse. Further, these findings offer the first data on the mutational landscape of ESCC radioresistance.
Collapse
Affiliation(s)
- Zhiming Chen
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of Radiotherapy & Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Ninghua Yao
- Department of Radiotherapy & Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Shu Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yao Song
- Department of Radiation oncology, Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Qi Shao
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong, China
| | - Hongmei Gu
- Department of Radiotherapy & Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jianbo Ma
- Department of Radiotherapy & Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Buyou Chen
- Department of Radiotherapy & Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Hongyu Zhao
- Department of Radiotherapy & Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Ye Tian
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
41
|
Zeng Z, Xie D, Gong J. Genome-wide identification of CpG island methylator phenotype related gene signature as a novel prognostic biomarker of gastric cancer. PeerJ 2020; 8:e9624. [PMID: 32821544 PMCID: PMC7396145 DOI: 10.7717/peerj.9624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 07/07/2020] [Indexed: 12/24/2022] Open
Abstract
Background Gastric cancer (GC) is one of the most fatal cancers in the world. Results of previous studies on the association of the CpG island methylator phenotype (CIMP) with GC prognosis are conflicting and mainly based on selected CIMP markers. The current study attempted to comprehensively assess the association between CIMP status and GC survival and to develop a CIMP-related prognostic gene signature of GC. Methods We used a hierarchical clustering method based on 2,082 GC-related methylation sites to stratify GC patients from the cancer genome atlas into three different CIMP subgroups according to the CIMP status. Gene set enrichment analysis, tumor-infiltrating immune cells, and DNA somatic mutations analysis were conducted to reveal the genomic characteristics in different CIMP-related patients. Cox regression analysis and the least absolute shrinkage and selection operator were performed to develop a CIMP-related prognostic signature. Analyses involving a time-dependent receiver operating characteristic (ROC) curve and calibration plot were adopted to assess the performance of the prognostic signature. Results We found a positive relationship between CIMP and prognosis in GC. Gene set enrichment analysis indicated that cancer-progression-related pathways were enriched in the CIMP-L group. High abundances of CD8+ T cells and M1 macrophages were found in the CIMP-H group, meanwhile more plasma cells, regulatory T cells and CD4+ memory resting T cells were detected in the CIMP-L group. The CIMP-H group showed higher tumor mutation burden, more microsatellite instability-H, less lymph node metastasis, and more somatic mutations favoring survival. We then established a CIMP-related prognostic gene signature comprising six genes (CST6, SLC7A2, RAB3B, IGFBP1, VSTM2L and EVX2). The signature was capable of classifying patients into high‐and low‐risk groups with significant difference in overall survival (OS; p < 0.0001). To assess performance of the prognostic signature, the area under the ROC curve (AUC) for OS was calculated as 0.664 at 1 year, 0.704 at 3 years and 0.667 at 5 years. When compared with previously published gene-based signatures, our CIMP-related signature was comparable or better at predicting prognosis. A multivariate Cox regression analysis indicated the CIMP-related prognostic gene signature was an independent prognostic indicator of GC. In addition, Gene ontology analysis indicated that keratinocyte differentiation and epidermis development were enriched in the high-risk group. Conclusion Collectively, we described a positive association between CIMP status and prognosis in GC and proposed a CIMP-related gene signature as a promising prognostic biomarker for GC.
Collapse
Affiliation(s)
- Zhuo Zeng
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Daxing Xie
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianping Gong
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
42
|
Zhang Y, Yang M, Ng DM, Haleem M, Yi T, Hu S, Zhu H, Zhao G, Liao Q. Multi-omics Data Analyses Construct TME and Identify the Immune-Related Prognosis Signatures in Human LUAD. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:860-873. [PMID: 32805489 PMCID: PMC7452010 DOI: 10.1016/j.omtn.2020.07.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/15/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
Lung cancer has been the focus of attention for many researchers in recent years for the leading contribution to cancer-related death worldwide, in which lung adenocarcinoma (LUAD) is the most common histological type. However, the potential mechanism behind LUAD initiation and progression remains unclear. Aiming to dissect the tumor microenvironment of LUAD and to discover more informative prognosis signatures, we investigated the immune-related differences in three types of genetic or epigenetic characteristics (expression status, somatic mutation, and DNA methylation) and considered the potential roles that these alterations have in the immune response and both the immune-related metabolic and neural systems by analyzing the multi-omics data from The Cancer Genome Atlas (TCGA) portal. Additionally, a four-step strategy based on lasso regression and Cox regression was used to construct the prognostic prediction model. For the prognostic predictions on the independent test set, the performance of the trained models (average concordance index [C-index] = 0.839) is satisfied, with average 1-year, 3-year, and 5-year areas under the curve (AUCs) equal to 0.796, 0.786, and 0.777. Finally, the overall model was constructed based on all samples, which comprised 27 variables and achieved a high degree of accuracy on the 1-year (AUC = 0.861), 3-year (AUC = 0.850), and 5-year (AUC = 0.916) survival predictions.
Collapse
Affiliation(s)
- Yuwei Zhang
- Hwa Mei Hospital, University of Chinese Academy of Science, Ningbo, Zhejiang, China; Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathophysiology Technology, Medical School of Ningbo University, Ningbo, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences
| | - Minglei Yang
- Hwa Mei Hospital, University of Chinese Academy of Science, Ningbo, Zhejiang, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences
| | - Derry Minyao Ng
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathophysiology Technology, Medical School of Ningbo University, Ningbo, China
| | - Maria Haleem
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathophysiology Technology, Medical School of Ningbo University, Ningbo, China
| | - Tianfei Yi
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathophysiology Technology, Medical School of Ningbo University, Ningbo, China
| | - Shiyun Hu
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathophysiology Technology, Medical School of Ningbo University, Ningbo, China
| | - Huangkai Zhu
- Hwa Mei Hospital, University of Chinese Academy of Science, Ningbo, Zhejiang, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences
| | - Guofang Zhao
- Hwa Mei Hospital, University of Chinese Academy of Science, Ningbo, Zhejiang, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences.
| | - Qi Liao
- Hwa Mei Hospital, University of Chinese Academy of Science, Ningbo, Zhejiang, China; Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathophysiology Technology, Medical School of Ningbo University, Ningbo, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences.
| |
Collapse
|
43
|
The Expressions and Mechanisms of Sarcomeric Proteins in Cancers. DISEASE MARKERS 2020; 2020:8885286. [PMID: 32670437 PMCID: PMC7346232 DOI: 10.1155/2020/8885286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/07/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023]
Abstract
The sarcomeric proteins control the movement of cells in diverse species, whereas the deregulation can induce tumours in model organisms and occurs in human carcinomas. Sarcomeric proteins are recognized as oncogene and related to tumor cell metastasis. Recent insights into their expressions and functions have led to new cancer therapeutic opportunities. In this review, we appraise the evidence for the sarcomeric proteins as cancer genes and discuss cancer-relevant biological functions, potential mechanisms by which sarcomeric proteins activity is altered in cancer.
Collapse
|
44
|
Chava S, Gupta R. Identification of the Mutational Landscape of Gynecological Malignancies. J Cancer 2020; 11:4870-4883. [PMID: 32626534 PMCID: PMC7330690 DOI: 10.7150/jca.46174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/30/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Cancer is a complex disease that arises from the accumulation of multiple genetic and non-genetic changes. Advances in sequencing technologies have allowed unbiased and global analysis of patient-derived tumor samples and the discovery of genetic and transcriptional changes in key genes and oncogenic pathways. That in turn has facilitated a better understanding of the underlying causes of cancer initiation and progression, resulting in new therapeutic targets. Methods: In our study, we have analyzed the mutational landscape of gynecological malignancies using datasets from The Cancer Genome Atlas (TCGA). We have also analyzed Oncomine datasets to establish the impact of their alteration on disease recurrence and survival of patients. Results: In this study, we analyzed a series of different gynecological malignancies for commonly occurring genetic and non-genetic alterations. These studies show that white women have higher incidence of gynecological malignancies. Furthermore, our study identified 16 genes that are altered at a frequency >10% among all of the gynecological malignancies and tumor suppressor TP53 is the most altered gene in these malignancies (>50% of the cases). The top 16 genes fall into the categories of either tumor suppressor or oncogenes and a subset of these genes are associated with poor prognosis, some affecting recurrence and survival of ovarian cancer patients. Conclusion: In sum, our study identified 16 major genes that are broadly mutated in a large majority of gynecological malignancies and in some cases predict survival and recurrence in patients with gynecological malignancies. We predict that the functional studies will determine their relative role in the initiation and progression of gynecological malignancies and also establish if some of them represents drug targets for anti-cancer therapy.
Collapse
Affiliation(s)
| | - Romi Gupta
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| |
Collapse
|
45
|
Song Z, Chen X, Shi Y, Huang R, Wang W, Zhu K, Lin S, Wang M, Tian G, Yang J, Chen G. Evaluating the Potential of T Cell Receptor Repertoires in Predicting the Prognosis of Resectable Non-Small Cell Lung Cancers. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:73-83. [PMID: 32995352 PMCID: PMC7488751 DOI: 10.1016/j.omtm.2020.05.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/19/2020] [Indexed: 01/07/2023]
Abstract
For resectable cancer patients, a method that could precisely predict the risk of postoperative recurrence would be crucial for guiding adjuvant treatment. Since T cell receptor (TCR) repertoires had been shown to be closely related to the dynamics of cancers, here we enrolled a cohort of patients to evaluate the potential of TCR repertoires in predicting the prognosis of resectable non-small cell lung cancers. Specifically, TCRβ repertoires were analyzed in surgical tumor tissues and matched adjacent non-tumor tissues from 39 patients enrolled with resectable non-small cell lung cancer, through target enrichment and high-throughput sequencing. As a result, there are significant differences between the TCR repertories of tumor samples and those of matched adjacent non-tumor samples as evaluated by criteria like the number of clonotypes. In addition, TCR repertoires were significantly associated with a few clinical features, as well as somatic mutations. Finally, certain TCRβ variable-joining (V-J) pairings were featured to build a logistic regression model in predicting postoperative recurrence of resectable non-small cell lung cancers with a testing area under the receiver operating characteristic curve (AUC) of around 0.9. Thus, we hypothesize that TCR repertoires could be potentially used to predict prognosis after curative surgery for non-small cell lung cancer patients.
Collapse
Affiliation(s)
- Zhengbo Song
- Department of Medical Oncology, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | | | - Yi Shi
- Department of Molecular Pathology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou 350014, China
| | - Rongfang Huang
- Department of Pathology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou 350014, China
| | - Wenxian Wang
- Department of Medical Oncology, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Kunshou Zhu
- Department of Thoracic Surgery, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, China
| | - Shaofeng Lin
- Department of Thoracic Surgery, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, China
| | - Minxian Wang
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA
| | - Geng Tian
- Geneis Beijing, Beijing 100102, China
| | | | - Gang Chen
- Department of Pathology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou 350014, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China
| |
Collapse
|
46
|
Huang S, Liu S, Niu Y, Fu L. Scriptaid/exercise-induced lysine acetylation is another type of posttranslational modification occurring in titin. J Appl Physiol (1985) 2020; 128:276-285. [DOI: 10.1152/japplphysiol.00617.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Titin serves important functions in skeletal muscle during exercise, and posttranslational modifications of titin participate in the regulation of titin-based sarcomeric functions. Scriptaid has exercise-like effects through the inhibition of HDAC and regulatory acetylation of proteins. However, it remains mostly unclear if exercise could result in titin’s acetylation and whether Scriptaid could regulate acetylation of titin. We treated C57BL/6 mice with 6-wk treadmill exercise and 6-wk Scriptaid administration to explore Scriptaid’s effects on mice exercise capacity and whether Scriptaid administration/exercise could induce titin’s acetylation modification. An exercise endurance test was conducted to explore their effects on mice exercise capacity, and proteomic studies were conducted with gastrocnemius muscle tissue of mice from different groups to explore titin’s acetylation modification. We found that Scriptaid and exercise did not change titin’s protein expression, but they did induce acetylation modification changes of titin. In total, 333 acetylated lysine sites were identified. Exercise changed the acetylation levels of 33 lysine sites of titin, whereas Scriptaid changed acetylation levels of 31 titin lysine sites. Exercise treatment and Scriptaid administration shared 11 lysine sites. In conclusion, Scriptaid increased exercise endurance of mice by increasing the time mice spent running to fatigue. Acetylation is a common type of posttranslational modification of titin, and exercise/Scriptaid changed the acetylation levels of titin and titin-interacting proteins. Most importantly, titin may be a mediator through which Scriptaid and exercise modulate the properties and functions of exercise-induced skeletal muscle at the molecular level. NEW & NOTEWORTHY Scriptaid administration increased mouse exercise endurance. Acetylation is another type of posttranslational modification of titin. Scriptaid/exercise changed acetylation levels of titin and titin-interacting proteins. Titin may mediate exercise-induced skeletal muscle properties and functions.
Collapse
Affiliation(s)
- Song Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Sujuan Liu
- Department of Anatomy and Embryology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Yanmei Niu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Li Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
47
|
Deng Y, Xie Q, Zhang G, Li S, Wu Z, Ma Z, He X, Gao Y, Wang Y, Kang X, Wang J. Slow skeletal muscle troponin T, titin and myosin light chain 3 are candidate prognostic biomarkers for Ewing's sarcoma. Oncol Lett 2019; 18:6431-6442. [PMID: 31807166 PMCID: PMC6876326 DOI: 10.3892/ol.2019.11044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 09/17/2019] [Indexed: 11/29/2022] Open
Abstract
Ewing's sarcoma (ES) is a common malignant bone tumor in children and adolescents. Although great efforts have been made to understand the pathogenesis and development of ES, the underlying molecular mechanism remains unclear. The present study aimed to identify new key genes as potential biomarkers for the diagnosis, targeted therapy or prognosis of ES. mRNA expression profile chip data sets GSE17674, GSE17679 and GSE45544 were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened using the R software limma package, and functional and pathway enrichment analyses were performed using the enrichplot package and GSEA software. The NetworkAnalyst online tool, as well as Cytoscape and its plug-ins cytoHubba and NetworkAnalyzer, were used to construct a protein-protein interaction network (PPI) and conduct module analysis to screen key (hub) genes. LABSO COX regression and overall survival (OS) analysis of the Hub genes were performed. A total of 211 DEGs were obtained by integrating and analyzing the three data sets. The functions and pathways of the DEGs were mainly associated with the regulation of small-molecule metabolic processes, cofactor-binding, amino acid, proteasome and ribosome biosynthesis in eukaryotes, as well as the Rac1, cell cycle and P53 signaling pathways. A total of one important module and 20 hub genes were screened from the PPI network using the Maximum Correlation Criteria algorithm of cytoHubba. LASSO COX regression results revealed that titin (TTN), fast skeletal muscle troponin T, skeletal muscle actin α-actin, nebulin, troponin C type 2 (fast), myosin light-chain 3 (MYL3), slow skeletal muscle troponin T (TNNT1), myosin-binding protein C1 slow-type, tropomyosin 3 and myosin heavy-chain 7 were associated with prognosis in patients with ES. The Kaplan-Meier curves demonstrated that high mRNA expression levels of TNNT1 (P<0.001), TTN (P=0.049), titin-cap (P=0.04), tropomodulin 1 (P=0.011), troponin I2 fast skeletal type (P=0.021) and MYL3 (P=0.017) were associated with poor OS in patients with ES. In conclusion, the DEGs identified in the present study may be key genes in the pathogenesis of ES, three of which, namely TNNT1, TTN and MYL3, may be potential prognostic biomarkers for ES.
Collapse
Affiliation(s)
- Yajun Deng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Qiqi Xie
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Guangzhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Shaoping Li
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Zuolong Wu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Zhanjun Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Xuegang He
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Yicheng Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Yonggang Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Jing Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|