1
|
Fan L, Na J, Shi T, Liao Y. Hepatoblastoma: From Molecular Mechanisms to Therapeutic Strategies. Curr Oncol 2025; 32:149. [PMID: 40136353 PMCID: PMC11941340 DOI: 10.3390/curroncol32030149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/23/2025] [Accepted: 03/02/2025] [Indexed: 03/27/2025] Open
Abstract
Hepatoblastoma (HB) is the most common malignant liver tumor in children under five years of age. Although globally rare, it accounts for a large proportion of liver cancer in children and has poor survival rates in high-risk and metastatic cases. This review discusses the molecular mechanisms, diagnostic methods, and therapeutic strategies of HB. Mutations in the CTNNB1 gene and the activation of the Wnt/β-catenin pathway are essential genetic factors. Furthermore, genetic syndromes like Beckwith-Wiedemann syndrome (BWS) and Familial Adenomatous Polyposis (FAP) considerably heighten the risk of associated conditions. Additionally, epigenetic mechanisms, such as DNA methylation and the influence of non-coding RNAs (ncRNAs), are pivotal drivers of tumor development. Diagnostics include serum biomarkers, immunohistochemistry (IHC), and imaging techniques. Standard treatments are chemotherapy, surgical resection, and liver transplantation (LT). Emerging therapies like immunotherapy and targeted treatments offer hope against chemotherapy resistance. Future research will prioritize personalized medicine, novel biomarkers, and molecular-targeted therapies to improve survival outcomes.
Collapse
Affiliation(s)
- Ling Fan
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China; (L.F.); (J.N.)
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China; (L.F.); (J.N.)
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China
| | - Tieliu Shi
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China; (L.F.); (J.N.)
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Key Laboratory of Advanced Theory and Application in Statistics and Data Science (MOE), School of Statistics, East China Normal University, Shanghai 200062, China
| | - Yuan Liao
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China; (L.F.); (J.N.)
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
2
|
Wang HS, Lao J, Jiang RS, Wang B, Ma XP, Wang JY. Summary of biological research on hepatoblastoma: a scoping review. Front Pediatr 2024; 12:1309693. [PMID: 38390281 PMCID: PMC10881832 DOI: 10.3389/fped.2024.1309693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Background Hepatoblastoma is the most prevalent primary hepatic malignancy in children, comprising 80% of pediatric hepatic malignancies and 1% of all pediatric malignancies. However, traditional treatments have proven inadequate in effectively curing hepatoblastoma, leading to a poor prognosis. Methods A literature search was conducted on multiple electronic databases (PubMed and Google Scholar). A total of 86 articles were eligible for inclusion in this review. Result This review aims to consolidate recent developments in hepatoblastoma research, focusing on the latest advances in cancer-associated genomics, epigenetic studies, transcriptional programs and molecular subtypes. We also discuss the current treatment approaches and forthcoming strategies to address cancer-associated biological challenges. Conclusion To provide a comprehensive summary of the molecular mechanisms associated with hepatoblastoma occurrence, this review highlights three key aspects: genomics, epigenetics, and transcriptomics. Our review aims to facilitate the exploration of novel molecular mechanisms and the development of innovative clinical treatment strategies for hepatoblastoma.
Collapse
Affiliation(s)
- Huan-sheng Wang
- Department of General Surgery, Shenzhen Children’s Hospital of China Medical University, Shenzhen, Guangdong Province, China
| | - Jing Lao
- Department of General Surgery, Shenzhen Children’s Hospital of China Medical University, Shenzhen, Guangdong Province, China
| | - Ren-sen Jiang
- Department of General Surgery, Shenzhen Children’s Hospital of ShanTou University, Shenzhen, Guangdong Province, China
| | - Bin Wang
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, Guangdong Province, China
| | - Xiao-peng Ma
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, Guangdong Province, China
| | - Jian-yao Wang
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, Guangdong Province, China
| |
Collapse
|
3
|
Gaździcka J, Świętek A, Hudy D, Dąbrowska N, Gołąbek K, Rydel M, Czyżewski D, Strzelczyk JK. Concentration of Secreted Frizzled-Related Proteins (SFRPs) in Non-Small Cell Lung Carcinoma Subtypes-A Preliminary Study. Curr Oncol 2023; 30:9968-9980. [PMID: 37999144 PMCID: PMC10670352 DOI: 10.3390/curroncol30110724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
Non-small cell lung carcinoma (NSCLC) is the most common lung cancer worldwide. Secreted frizzled-related proteins (SFRPs) are important tumour suppressors and antagonists of the Wnt signalling pathway, which is linked with cancer development. The aim of this study was to evaluate the concentrations of SFRP1, SFRP2, and SFRP5 proteins in tumour and non-tumour (NT) samples obtained from 65 patients with primary NSCLC. An enzyme-linked immunosorbent assay (ELISA) was used to measure the concentrations of SFRPs in the tissue homogenates. A significantly lower SFRP2 protein concentration was found in the total NSCLC tumour samples and the following NSCLC subtypes: squamous cell carcinoma (SCC) and adenocarcinoma (AC) (p > 0.05, p = 0.028 and p = 0.001, respectively). AC tumour samples had a higher SFRP1 level than NT samples (p = 0.022), while the highest SFRP1 concentration was found in NSCLC samples from patients with clinical stage T4 cancer. Increased concentrations of SFRP1 and SFRP5 were present in stage III NSCLC samples, while the tumour samples with high pleural invasion (PL2) had an increased level of SFRP2. The results from this study suggest that the tumour suppressor or oncogenic roles of SFRPs could be connected with the NSCLC subtype. The levels of SFRPs varied according to the clinicopathological parameters of NSCLC.
Collapse
Affiliation(s)
- Jadwiga Gaździcka
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Agata Świętek
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
- Silesia LabMed Research and Implementation Center, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Dorota Hudy
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Natalia Dąbrowska
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Karolina Gołąbek
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Mateusz Rydel
- Department of Thoracic Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 13/15 3-Go Maja St., 41-800 Zabrze, Poland
| | - Damian Czyżewski
- Department of Thoracic Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 13/15 3-Go Maja St., 41-800 Zabrze, Poland
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| |
Collapse
|
4
|
Wu B, Shi X, Jiang M, Liu H. Cross-talk between cancer stem cells and immune cells: potential therapeutic targets in the tumor immune microenvironment. Mol Cancer 2023; 22:38. [PMID: 36810098 PMCID: PMC9942413 DOI: 10.1186/s12943-023-01748-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Ongoing research has revealed that the existence of cancer stem cells (CSCs) is one of the biggest obstacles in the current cancer therapy. CSCs make an influential function in tumor progression, recurrence and chemoresistance due to their typical stemness characteristics. CSCs are preferentially distributed in niches, and those niche sites exhibit characteristics typical of the tumor microenvironment (TME). The complex interactions between CSCs and TME illustrate these synergistic effects. The phenotypic heterogeneity within CSCs and the spatial interactions with the surrounding tumor microenvironment led to increased therapeutic challenges. CSCs interact with immune cells to protect themselves against immune clearance by exploiting the immunosuppressive function of multiple immune checkpoint molecules. CSCs also can protect themselves against immune surveillance by excreting extracellular vesicles (EVs), growth factors, metabolites and cytokines into the TME, thereby modulating the composition of the TME. Therefore, these interactions are also being considered for the therapeutic development of anti-tumor agents. We discuss here the immune molecular mechanisms of CSCs and comprehensively review the interplay between CSCs and the immune system. Thus, studies on this topic seem to provide novel ideas for reinvigorating therapeutic approaches to cancer.
Collapse
Affiliation(s)
- Bo Wu
- grid.459742.90000 0004 1798 5889Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042 China
| | - Xiang Shi
- grid.459742.90000 0004 1798 5889Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042 China
| | - Meixi Jiang
- grid.412644.10000 0004 5909 0696Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032 China
| | - Hongxu Liu
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China.
| |
Collapse
|
5
|
State of the art and perspectives in pediatric hepatocellular carcinoma. Biochem Pharmacol 2023; 207:115373. [PMID: 36513143 DOI: 10.1016/j.bcp.2022.115373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Hepatoblastoma (HB) and pediatric hepatocellular carcinoma (HCC) are rare primary malignant liver cancers in children and young adults. HB is the most common and accounts for about 70 % cases; it is usually diagnosed during the first 3 years of life. Instead, pediatric HCC is uncommon, and it is associated with a poor prognosis. Overall, the prognosis of pediatric HCC is dismal with 5-year event-free survival of <30 % as compared to >80 % for HB. Surgery approaches, either resection or transplant, remain the best chance for the cure of pediatric HCC. However, chemotherapy can be helpful as an adjuvant or neoadjuvant treatment. International groups have done trials in pediatric HCC with a chemotherapy regimen, based on cisplatin and doxorubicin (PLADO) as for HB, but the efficacy is limited. Sorafenib, a multi-kinase inhibitor, following positive results in adults and in a pilot study in children, is now tested in conjunction with chemotherapy in the PHITT phase III clinical trial. Some studies have been exploring the genetic profiles of patients to find biological hallmarks that determine the aggressiveness of pediatric HCC. Pathways involved in growth and differentiation are dysregulated and as demonstrated in HB and adult HCC, an important role of the Wnt/CTNNB1 pathway in the pathogenesis of pediatric HCC is also emerging. An extended molecular analysis of tumor samples could give information about pathways as possible targets of biological and immunotherapeutic agents bringing new pharmacological options for the treatment of pediatric HCC.
Collapse
|
6
|
Kumar VE, Nambiar R, De Souza C, Nguyen A, Chien J, Lam KS. Targeting Epigenetic Modifiers of Tumor Plasticity and Cancer Stem Cell Behavior. Cells 2022; 11:cells11091403. [PMID: 35563709 PMCID: PMC9102449 DOI: 10.3390/cells11091403] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 02/01/2023] Open
Abstract
Tumor heterogeneity poses one of the greatest challenges to a successful treatment of cancer. Tumor cell populations consist of different subpopulations that have distinct phenotypic and genotypic profiles. Such variability poses a challenge in successfully targeting all tumor subpopulations at the same time. Relapse after treatment has been previously explained using the cancer stem cell model and the clonal evolution model. Cancer stem cells are an important subpopulation of tumor cells that regulate tumor plasticity and determine therapeutic resistance. Tumor plasticity is controlled by genetic and epigenetic changes of crucial genes involved in cancer cell survival, growth and metastasis. Targeting epigenetic modulators associated with cancer stem cell survival can unlock a promising therapeutic approach in completely eradicating cancer. Here, we review various factors governing epigenetic dysregulation of cancer stem cells ranging from the role of epigenetic mediators such as histone and DNA methyltransferases, histone deacetylases, histone methyltransferases to various signaling pathways associated with cancer stem cell regulation. We also discuss current treatment regimens targeting these factors and other promising inhibitors in clinical trials.
Collapse
Affiliation(s)
- Vigneshwari Easwar Kumar
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA; (V.E.K.); (R.N.); (C.D.S.); (A.N.); (K.S.L.)
| | - Roshni Nambiar
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA; (V.E.K.); (R.N.); (C.D.S.); (A.N.); (K.S.L.)
| | - Cristabelle De Souza
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA; (V.E.K.); (R.N.); (C.D.S.); (A.N.); (K.S.L.)
- Department of Stem Cell Research and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Audrey Nguyen
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA; (V.E.K.); (R.N.); (C.D.S.); (A.N.); (K.S.L.)
| | - Jeremy Chien
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA; (V.E.K.); (R.N.); (C.D.S.); (A.N.); (K.S.L.)
- Department of Obstetrics and Gynecology, UC Davis Medical Center, Sacramento, CA 95817, USA
- Correspondence:
| | - Kit S. Lam
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA; (V.E.K.); (R.N.); (C.D.S.); (A.N.); (K.S.L.)
| |
Collapse
|
7
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021; 22:13135. [PMID: 34884942 PMCID: PMC8658661 DOI: 10.3390/ijms222313135;select dbms_pipe.receive_message(chr(115)||chr(108)||chr(113)||chr(84),5) from dual--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
8
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021; 22:13135. [PMID: 34884942 PMCID: PMC8658661 DOI: 10.3390/ijms222313135;select dbms_pipe.receive_message(chr(80)||chr(106)||chr(79)||chr(120),5) from dual--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
9
|
Arzumanian VA, Kiseleva OI, Poverennaya EV. The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021; 22:13135. [PMID: 34884942 PMCID: PMC8658661 DOI: 10.3390/ijms222313135] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
10
|
miR-126 in Extracellular Vesicles Derived from Hepatoblastoma Cells Promotes the Tumorigenesis of Hepatoblastoma through Inducing the Differentiation of BMSCs into Cancer Stem Cells. J Immunol Res 2021; 2021:6744715. [PMID: 34746322 PMCID: PMC8570887 DOI: 10.1155/2021/6744715] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/24/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
Background Extracellular vesicles (EVs) can deliver miRNAs between cells and play a crucial role in hepatoblastoma progression. In this study, we explored the differentially expressed miRNAs related to tumor cell-derived EVs and the mechanism by which EVs regulate hepatoblastoma progression. Methods Bioinformatics analysis was performed to explore the differentially expressed miRNAs between the hepatoblastoma and adjacent normal tissues. TEM, NTA, and western blotting were conducted to identify EVs. The expression of miR-126-3p, miR-126-5p, miR-30b-3p, miR-30b-3p, SRY, IL-1α, IL-6, and TGF-β was detected by RT-qPCR. Immunofluorescence (IF) was used to analyze the expression of PKH67, and flow cytometry was applied to assess the ratio of CD44+ CD90+ CD133+ cells. ELISA was used to evaluate the levels of IL-6 and TGF-β. A xenograft mouse model was constructed to detect the function of EVs with downregulated miR-126. IHC was performed to calculate β-catenin levels in tumor tissues. Results miR-126 was upregulated in hepatoblastoma. EVs derived from hepatoblastoma cells significantly increased the ratio of CD44+ CD90+ CD133+ cells and increased the expression of IL-6, Oct4, SRY, and TGF-β in bone marrow mesenchymal stem cells (BMSCs), while EVs with downregulated miR-126 reversed these phenomena. miR-126 downregulation notably attenuated hepatoblastoma tumor growth and decreased the ratio of CD44+ CD90+ CD133+ cells and increased the expression of IL-6, Oct4, SRY, TGF-β, and β-catenin in tumor tissues of mice. Furthermore, EVs with downregulated miR-126 inhibited the differentiation of BMSCs into cancer stem cells. Conclusions Exosomal miR-126 derived from hepatoblastoma cells promoted the tumorigenesis of liver cancer through inducing the differentiation of BMSCs into cancer stem cells.
Collapse
|
11
|
Zhang Y, Zhang T, Yin Q, Luo H. Development and validation of genomic and epigenomic signatures associated with tumor immune microenvironment in hepatoblastoma. BMC Cancer 2021; 21:1156. [PMID: 34711185 PMCID: PMC8555350 DOI: 10.1186/s12885-021-08893-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Background This study aimed to probe and verify aberrantly methylated and expressed genes in hepatoblastoma and to analyze their interactions with tumor immune microenvironment. Methods Aberrantly methylated and expressed genes were obtained by comprehensively analyzing gene expression and DNA methylation profiles from GSE81928, GSE75271 and GSE78732 datasets. Their biological functions were predicted by the STRING and Metascape databases. CIBERSORT was utilized for inferring the compositions of tumor-infiltrating immune cells (TIICs) in each sample. Correlation between hub genes and immune cells was then analyzed. Hub genes were validated in hepatoblastoma tissues via western blot or immunohistochemistry. After transfection with sh-NOTUM, migration and invasion of HuH-6 and HepG2 cells were investigated. The nude mouse tumorigenesis model was constructed. Results Totally, 83 aberrantly methylated and expressed genes were determined in hepatoblastoma, which were mainly involved in metabolic and cancer-related pathways. Moreover, their expression was liver-specific. 13 hub genes were screened, which were closely related to immune cells in hepatoblastoma tissues. Among them, it was confirmed that AXIN2, LAMB1 and NOTUM were up-regulated and SERPINC1 was down-regulated in hepatoblastoma than normal tissues. NOTUM knockdown distinctly weakened migration and invasion of HuH-6 and HepG2 cells and tumor growth in vivo. Conclusions This study identified aberrantly methylated and expressed signatures that were in relation to immune microenvironment in hepatoblastoma. Targeting NOTUM hub gene could suppress migration and invasion of hepatoblastoma cells. Thus, these aberrantly methylated and expressed genes might act as therapeutic agents in hepatoblastoma therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08893-3.
Collapse
Affiliation(s)
- Yanbing Zhang
- Department of General Surgery, Hunan Children's Hospital, No.86 Ziyuan Road, Changsha, 410007, Hunan, China
| | - Tian Zhang
- Department of General Surgery, Hunan Children's Hospital, No.86 Ziyuan Road, Changsha, 410007, Hunan, China
| | - Qiang Yin
- Department of General Surgery, Hunan Children's Hospital, No.86 Ziyuan Road, Changsha, 410007, Hunan, China.
| | - Haiyan Luo
- Department of Emergency, Hunan Children's Hospital, No.86 Ziyuan Road, Changsha, 410007, Hunan, China.
| |
Collapse
|
12
|
Nagae G, Yamamoto S, Fujita M, Fujita T, Nonaka A, Umeda T, Fukuda S, Tatsuno K, Maejima K, Hayashi A, Kurihara S, Kojima M, Hishiki T, Watanabe K, Ida K, Yano M, Hiyama Y, Tanaka Y, Inoue T, Ueda H, Nakagawa H, Aburatani H, Hiyama E. Genetic and epigenetic basis of hepatoblastoma diversity. Nat Commun 2021; 12:5423. [PMID: 34538872 PMCID: PMC8450290 DOI: 10.1038/s41467-021-25430-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 08/06/2021] [Indexed: 02/08/2023] Open
Abstract
Hepatoblastoma (HB) is the most common pediatric liver malignancy; however, hereditary predisposition and acquired molecular aberrations related to HB clinicopathological diversity are not well understood. Here, we perform an integrative genomic profiling of 163 pediatric liver tumors (154 HBs and nine hepatocellular carcinomas) based on the data acquired from a cohort study (JPLT-2). The total number of somatic mutations is precious low (0.52/Mb on exonic regions) but correlated with age at diagnosis. Telomerase reverse transcriptase (TERT) promoter mutations are prevalent in the tween HBs, selective in the transitional liver cell tumor (TLCT, > 8 years old). DNA methylation profiling reveals that classical HBs are characterized by the specific hypomethylated enhancers, which are enriched with binding sites for ASCL2, a regulatory transcription factor for definitive endoderm in Wnt-pathway. Prolonged upregulation of ASCL2, as well as fetal-liver-like methylation patterns of IGF2 promoters, suggests their "cell of origin" derived from the premature hepatoblast, similar to intestinal epithelial cells, which are highly proliferative. Systematic molecular profiling of HB is a promising approach for understanding the epigenetic drivers of hepatoblast carcinogenesis and deriving clues for risk stratification.
Collapse
Affiliation(s)
- Genta Nagae
- grid.26999.3d0000 0001 2151 536XGenome Science Laboratory, Research Center for Advanced Science and Technology (RCAST), the University of Tokyo, Tokyo, Japan
| | - Shogo Yamamoto
- grid.26999.3d0000 0001 2151 536XGenome Science Laboratory, Research Center for Advanced Science and Technology (RCAST), the University of Tokyo, Tokyo, Japan
| | - Masashi Fujita
- grid.509459.40000 0004 0472 0267Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takanori Fujita
- grid.26999.3d0000 0001 2151 536XGenome Science Laboratory, Research Center for Advanced Science and Technology (RCAST), the University of Tokyo, Tokyo, Japan
| | - Aya Nonaka
- grid.26999.3d0000 0001 2151 536XGenome Science Laboratory, Research Center for Advanced Science and Technology (RCAST), the University of Tokyo, Tokyo, Japan
| | - Takayoshi Umeda
- grid.26999.3d0000 0001 2151 536XGenome Science Laboratory, Research Center for Advanced Science and Technology (RCAST), the University of Tokyo, Tokyo, Japan
| | - Shiro Fukuda
- grid.26999.3d0000 0001 2151 536XGenome Science Laboratory, Research Center for Advanced Science and Technology (RCAST), the University of Tokyo, Tokyo, Japan
| | - Kenji Tatsuno
- grid.26999.3d0000 0001 2151 536XGenome Science Laboratory, Research Center for Advanced Science and Technology (RCAST), the University of Tokyo, Tokyo, Japan
| | - Kazuhiro Maejima
- grid.509459.40000 0004 0472 0267Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Akimasa Hayashi
- grid.26999.3d0000 0001 2151 536XGenome Science Laboratory, Research Center for Advanced Science and Technology (RCAST), the University of Tokyo, Tokyo, Japan ,grid.411205.30000 0000 9340 2869Department of Pathology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Sho Kurihara
- grid.470097.d0000 0004 0618 7953Department of Pediatric Surgery, Hiroshima University Hospital, Hiroshima, Japan
| | - Masato Kojima
- grid.470097.d0000 0004 0618 7953Department of Pediatric Surgery, Hiroshima University Hospital, Hiroshima, Japan
| | - Tomoro Hishiki
- grid.136304.30000 0004 0370 1101Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kenichiro Watanabe
- grid.415798.60000 0004 0378 1551Shizuoka Children’s Hospital, Shizuoka, Japan
| | - Kohmei Ida
- grid.412305.10000 0004 1769 1397Department of Pediatrics, Teikyo University Mizonokuchi Hospital, Kawasaki, Japan
| | - Michihiro Yano
- grid.411403.30000 0004 0631 7850Department of Pediatrics, Akita University Hospital, Akita, Japan
| | - Yoko Hiyama
- grid.257022.00000 0000 8711 3200Department of Biomedical Science, Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan 734-8551, 1-2-3, Kasumi, Minami-ku, Hiroshima
| | - Yukichi Tanaka
- grid.414947.b0000 0004 0377 7528Department of Pathology, Kanagawa Children’s Medical Center, Yokohama, Japan
| | - Takeshi Inoue
- grid.416948.60000 0004 1764 9308Department of Pathology, Osaka City General Hospital, Osaka, Japan
| | - Hiroki Ueda
- grid.26999.3d0000 0001 2151 536XGenome Science Laboratory, Research Center for Advanced Science and Technology (RCAST), the University of Tokyo, Tokyo, Japan
| | - Hidewaki Nakagawa
- grid.509459.40000 0004 0472 0267Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hiroyuki Aburatani
- grid.26999.3d0000 0001 2151 536XGenome Science Laboratory, Research Center for Advanced Science and Technology (RCAST), the University of Tokyo, Tokyo, Japan
| | - Eiso Hiyama
- grid.470097.d0000 0004 0618 7953Department of Pediatric Surgery, Hiroshima University Hospital, Hiroshima, Japan ,grid.257022.00000 0000 8711 3200Department of Biomedical Science, Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan 734-8551, 1-2-3, Kasumi, Minami-ku, Hiroshima
| |
Collapse
|
13
|
Ni CJ, Qin XS, Huang ZS. Role of Wnt/β-catenin signaling pathway in occurrence and development of hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2021; 29:190-196. [DOI: 10.11569/wcjd.v29.i4.190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Studies have shown that the occurrence and development of liver cancer are related to a variety of signaling pathways. The Wnt/β-catenin signaling pathway is involved in all stages of liver disease progression, from initial liver damage to inflammation, fibrosis, and cirrhosis, as well as the occurrence and progression of tumors. Abnormal Wnt/β-catenin signaling promotes the development and progression of different liver diseases, including cancer. This review introduces the activation, biological function, and regulatory mechanism of the Wnt/β-catenin signaling pathway, discusses the role of ngthis pathway in the occurrence and progression of liver cancer, and describes factors that can inhibit the Wnt/β-catenin signaling pathway, such as small molecule inhibitors, traditional Chinese medicine extracts, and microRNAs, with an aim to provide reference for the basic and clinical research of liver cancer.
Collapse
Affiliation(s)
- Cai-Ju Ni
- Graduate School of Youjiang Medical College for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Xiao-Shan Qin
- Graduate School of Youjiang Medical College for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China,Department of Gastroenterology, The Affiliated Hospital of Youjiang Medical College for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Zan-Song Huang
- Department of Gastroenterology, The Affiliated Hospital of Youjiang Medical College for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China,Guangxi Clinical Research Center for Hepatobiliary Diseases, Baise 533000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
14
|
Wang J, Zhao J, Zhu J, Zhang S. Hypoxic Non-Small-Cell Lung Cancer Cell-Secreted Exosomal microRNA-582-3p Drives Cancer Cell Malignant Phenotypes by Targeting Secreted Frizzled-Related Protein 1. Cancer Manag Res 2020; 12:10151-10161. [PMID: 33116870 PMCID: PMC7569064 DOI: 10.2147/cmar.s263768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/26/2020] [Indexed: 01/04/2023] Open
Abstract
Background Hypoxic environment and exosomes (exos)-mediated intercellular communication are crucial for cancer invasion and metastasis, but the mechanisms are not yet fully understood. In this study, we investigated the regulatory effect of hypoxic tumor cell-secreted exosomal miR-582-3p on non-small-cell lung cancer (NSCLC) cell malignant phenotypes. Methods The concentration and diameters of exos were evaluated by nanosight particle tracking analysis. microRNA-582-3p (miR-582-3p) expression was detected by quantitative real-time PCR. The fluorescent dye PKH26 was used to label exos. The direct interaction between miR-582-3p and secreted frizzled-related protein 1 (SFRP1) was determined by dual-luciferase activity assay. NSCLC cell proliferation, migration, and invasion abilities were assessed by cell count kit-8 assay, wound healing assay, and transwell migration and invasion assay. Western blot analysis was performed to detect the protein expression level. Results Hypoxic NSCLC cell-derived exos promoted the proliferation, migration, and invasion of normoxic NSCLC cells. miR-582-3p expression was upregulated in hypoxic NSCLC cells and hypoxic NSCLC cell-secreted exos. Hypoxic NSCLC cell-derived exos transmitted miR-582-3p to normoxic NSCLC cells. Hypoxic NSCLC cell-secreted exosomal miR-582-3p promoted the proliferation, migration, and invasion of normoxic NSCLC cells. miR-582-3p inhibited the expression of SFRP1 protein by binding to its 3ʹ-UTR. In addition, enforced expression of SFRP1 restrained malignant phenotypes of normoxic NSCLC cells, which was abrogated by hypoxic NSCLC cell-secreted exosomal miR-582-3p. Conclusion Hypoxic NSCLC cell-secreted exosomal miR-582-3p drives cancer cell malignant phenotypes by targeting SFRP1, which provides a better understanding of cancer metastasis and may facilitate the development of therapeutics against human NSCLC.
Collapse
Affiliation(s)
- Jian Wang
- Department of Respiration, People's Hospital of Cangzhou, Cangzhou, Hebei, People's Republic of China
| | - Jia Zhao
- Department of Neonatology, People's Hospital of Cangzhou, Cangzhou, Hebei, People's Republic of China
| | - Jinsong Zhu
- Department of Respiration, People's Hospital of Cangzhou, Cangzhou, Hebei, People's Republic of China
| | - Shengli Zhang
- Department of Respiration, People's Hospital of Cangzhou, Cangzhou, Hebei, People's Republic of China
| |
Collapse
|