1
|
Hua J, Chu M, Wang C, Zhang H, Luan J, Zhang Y, Li Q, Xiao T, Zhu C, Li X, Fu B. Digital PCR-based GRHL2 methylation testing in acute myeloid leukemia: diagnosis, prognosis and monitoring. Epigenomics 2024; 16:233-247. [PMID: 38343387 DOI: 10.2217/epi-2023-0406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
Background: Acute myeloid leukemia (AML) is a challenging disease with high rates of recurrence. The role of the cancer-related gene GRHL2 in AML has not been widely studied. Methods: Peripheral blood samples were collected from 73 AML patients and 68 healthy controls. Droplet digital PCR was used to detect GRHL2 methylation levels to explore the value of GRHL2 methylation in the diagnosis, treatment response and prognosis of AML. Result: GRHL2 methylation was significantly increased in AML patients (p < 0.01), with high diagnostic accuracy (area under the curve: 0.848; p < 0.001). GRHL2 methylation was correlated with chemotherapy response (p < 0.05) and is an independent prognostic factor for AML (p < 0.05). Conclusion: GRHL2 methylation is expected to serve as a biomarker for diagnosing AML patients and predicting prognosis.
Collapse
Affiliation(s)
- Jing Hua
- Department of Hematology, Shandong Provincial Qianfoshan Hospital, Shandong University
- Department of Hematology, Liaocheng People's Hospital
| | - Miaomiao Chu
- Department of Precision Biomedical Laboratory, Liaocheng People's Hospital
| | - Chaohui Wang
- Department of Hematology, Hematology, Qingdao Haici Medical Group
| | - Hangfan Zhang
- Department of Hematology, Liaocheng People's Hospital
| | - Jing Luan
- Department of Hematology, Liaocheng People's Hospital
| | - Yifei Zhang
- Department of Hematology, Liaocheng People's Hospital
| | - Qiang Li
- Department of Hematology, Liaocheng People's Hospital
| | - Taiwu Xiao
- Department of Hematology, Liaocheng People's Hospital
| | - Chuansheng Zhu
- Department of Hematology, Shandong Provincial Qianfoshan Hospital, Shandong University
| | - Xuan Li
- The Key Laboratory of Molecular Pharmacology, Liaocheng People's Hospital, Liaocheng
| | - Bo Fu
- Department of Precision Biomedical Laboratory, Liaocheng People's Hospital
| |
Collapse
|
2
|
Galat Y, Du Y, Perepitchka M, Li XN, Balyasnikova IV, Tse WT, Dambaeva S, Schneiderman S, Iannaccone PM, Becher O, Graham DK, Galat V. In vitro vascular differentiation system efficiently produces natural killer cells for cancer immunotherapies. Oncoimmunology 2023; 12:2240670. [PMID: 37720687 PMCID: PMC10501168 DOI: 10.1080/2162402x.2023.2240670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/29/2023] [Accepted: 07/21/2023] [Indexed: 09/19/2023] Open
Abstract
Background Immunotherapeutic innovation is crucial for limited operability tumors. CAR T-cell therapy displayed reduced efficiency against glioblastoma (GBM), likely due to mutations underlying disease progression. Natural Killer cells (NKs) detect cancer cells despite said mutations - demonstrating increased tumor elimination potential. We developed an NK differentiation system using human pluripotent stem cells (hPSCs). Via this system, genetic modifications targeting cancer treatment challenges can be introduced during pluripotency - enabling unlimited production of modified "off-the-shelf" hPSC-NKs. Methods hPSCs were differentiated into hematopoietic progenitor cells (HPCs) and NKs using our novel organoid system. These cells were characterized using flow cytometric and bioinformatic analyses. HPC engraftment potential was assessed using NSG mice. NK cytotoxicity was validated using in vitro and in vitro K562 assays and further corroborated on lymphoma, diffuse intrinsic pontine glioma (DIPG), and GBM cell lines in vitro. Results HPCs demonstrated engraftment in peripheral blood samples, and hPSC-NKs showcased morphology and functionality akin to same donor peripheral blood NKs (PB-NKs). The hPSC-NKs also displayed potential advantages regarding checkpoint inhibitor and metabolic gene expression, and demonstrated in vitro and in vivo cytotoxicity against various cancers. Conclusions Our organoid system, designed to replicate in vivo cellular organization (including signaling gradients and shear stress conditions), offers a suitable environment for HPC and NK generation. The engraftable nature of HPCs and potent NK cytotoxicity against leukemia, lymphoma, DIPG, and GBM highlight the potential of this innovative system to serve as a valuable tool that will benefit cancer treatment and research - improving patient survival and quality of life.
Collapse
Affiliation(s)
- Yekaterina Galat
- Developmental Biology Program, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA
- ARTEC Biotech Inc, Chicago, IL, USA
- Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yuchen Du
- Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mariana Perepitchka
- Developmental Biology Program, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA
- ARTEC Biotech Inc, Chicago, IL, USA
- Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xiao-Nan Li
- Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Irina V Balyasnikova
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - William T Tse
- Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Svetlana Dambaeva
- Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Sylvia Schneiderman
- Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Philip M Iannaccone
- Developmental Biology Program, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA
- Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Oren Becher
- Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Douglas K Graham
- Pediatric Hematology/Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Pediatric Hematology/Oncology, Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Vasiliy Galat
- Developmental Biology Program, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA
- ARTEC Biotech Inc, Chicago, IL, USA
- Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
3
|
Suárez DF, Pinzón-García AD, Sinisterra RD, Dussan A, Mesa F, Ramírez-Clavijo S. Uniaxial and Coaxial Nanofibers PCL/Alginate or PCL/Gelatine Transport and Release Tamoxifen and Curcumin Affecting the Viability of MCF7 Cell Line. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193348. [PMID: 36234476 PMCID: PMC9565524 DOI: 10.3390/nano12193348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/31/2022] [Accepted: 09/09/2022] [Indexed: 05/11/2023]
Abstract
Breast cancer is the second cause of cancer death in women worldwide. The search for therapeutic and preventive alternatives has increased in recent years. One synthetic drug for patients with hormone receptor-positive tumours is tamoxifen citrate (TMX). Curcumin (Cur) is a natural compound that is being tested. Both were coupled with nanoscale-controlled and sustained release systems to increase the effectiveness of the treatment and reduce adverse effects. We produced a controlled release system based on uniaxial and coaxial polymeric nanofibers of polycaprolactone (PCL), alginate (Alg) and gelatine (Gel) for the transport and release of TMX and Cur, as a new alternative to breast cancer treatment. Nanofibers combining PCL-Alg and PCL-Gel were fabricated by the electrospinning technique and physicochemically characterised by thermal analysis, absorption spectroscopy in the infrared region and X-ray diffraction. Morphology and size were studied by scanning electron microscopy. Additionally, the release profile of TMX and Cur was obtained by UV-Vis spectroscopy. Additionally, the cytotoxic effect on breast cancer cell line MCF7 and peripheral-blood mononuclear cells (PBMCs) from a healthy donor were evaluated by a Resazurin reduction assay. These assays showed that PCL-TMX nanofiber was highly toxic to both cell types, while PCL-Cur was less toxic.
Collapse
Affiliation(s)
- Diego Fernando Suárez
- Chemistry Department, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Ana Delia Pinzón-García
- Chemistry Department, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Rubén Darío Sinisterra
- Chemistry Department, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Anderson Dussan
- Departamento de Física, Grupo de Materiales Nanoestructurados y sus Aplicaciones, Universidad Nacional de Colombia, Bogotá 110011, Colombia
| | - Fredy Mesa
- Departamento de Física, Grupo de Materiales Nanoestructurados y sus Aplicaciones, Universidad Nacional de Colombia, Bogotá 110011, Colombia
| | - Sandra Ramírez-Clavijo
- Department of Biology, Grupo Ciencias Básicas Médicas, Faculty of Natural Science, Universidad del Rosario, Bogotá 110311, Colombia
- Correspondence:
| |
Collapse
|