1
|
Thapa R, Gupta S, Gupta G, Bhat AA, Smriti, Singla M, Ali H, Singh SK, Dua K, Kashyap MK. Epithelial-mesenchymal transition to mitigate age-related progression in lung cancer. Ageing Res Rev 2024; 102:102576. [PMID: 39515620 DOI: 10.1016/j.arr.2024.102576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Epithelial-Mesenchymal Transition (EMT) is a fundamental biological process involved in embryonic development, wound healing, and cancer progression. In lung cancer, EMT is a key regulator of invasion and metastasis, significantly contributing to the fatal progression of the disease. Age-related factors such as cellular senescence, chronic inflammation, and epigenetic alterations exacerbate EMT, accelerating lung cancer development in the elderly. This review describes the complex mechanism among EMT and age-related pathways, highlighting key regulators such as TGF-β, WNT/β-catenin, NOTCH, and Hedgehog signalling. We also discuss the mechanisms by which oxidative stress, mediated through pathways involving NRF2 and ROS, telomere attrition, regulated by telomerase activity and shelterin complex, and immune system dysregulation, driven by alterations in cytokine profiles and immune cell senescence, upregulate or downregulate EMT induction. Additionally, we highlighted pathways of transcription such as SNAIL, TWIST, ZEB, SIRT1, TP53, NF-κB, and miRNAs regulating these processes. Understanding these mechanisms, we highlight potential therapeutic interventions targeting these critical molecules and pathways.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of Pharmacology, Indore, Madhya Pradesh, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Smriti
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Madhav Singla
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Manoj Kumar Kashyap
- Molecular Oncology Laboratory, Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon (Manesar), Gurugram, Haryana, India.
| |
Collapse
|
2
|
Cheng Y, Wen M, Wang X, Zhu H. Oncogene 5'-3' exoribonuclease 2 enhances epidermal growth factor receptor signaling pathway to promote epithelial-mesenchymal transition and metastasis in non-small-cell lung cancer. Cytojournal 2024; 21:46. [PMID: 39737134 PMCID: PMC11683367 DOI: 10.25259/cytojournal_49_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/23/2024] [Indexed: 01/01/2025] Open
Abstract
Objective Epithelial-mesenchymal transition (EMT) and metastasis are the primary causes of mortality in non-small-cell lung cancer (NSCLC). 5'-3' exoribonuclease 2 (XRN2) plays an important role in the process of tumor EMT. Thus, this investigation mainly aimed to clarify the precise molecular pathways through which XRN2 contributes to EMT and metastasis in NSCLC. Material and Methods Western blot and quantitative real-time polymerase chain reaction were first used to assess XRN2 levels in NSCLC cells. Subsequently, short hairpin RNA-XRN2 (Sh-XRN2) and XRN2 overexpression (Ov-XRN2) plasmids were transfected to NSCLC cells. The effects of Sh-XRN2 and Ov-XRN2 on NSCLC cell migration and invasion were evaluated by Transwell assay. Western blot experiments were conducted to assess the effects of Sh-XRN2 and Ov-XRN2 on proteins related to EMT and the epidermal growth factor receptor (EGFR) signaling pathway in H460 cells. Then, Sh-XRN2 and EGFR overexpression (Ov-EGFR) plasmids were transfected to NSCLC cells. Changes in NSCLC cell migration and invasion were measured using a Transwell assay with Sh-XRN2 and Sh-XRN2+Ov-EGFR. Changes in the expression of proteins related to EMT in NSCLC cells were detected by Western blot assays with Sh-XRN2 and Sh-XRN2+Ov-EGFR. Furthermore, a subcutaneous tumor model for NSCLC was established. Immunohistochemical analysis was performed to assess the levels of Cluster of Differentiation 31 (CD31) in lung metastatic lesions. H460 cells transfected with Sh-XRN2, Ov-XRN2 or Sh-XRN2+Ov-EGFR were co-cultured with human umbilical vein endothelial cells (HUVECs) to assess the tube formation ability of the cells. Results Compared with those observed in human bronchial epithelial cells (BEAS-2B cells), XRN2 expression levels were significantly upregulated in NSCLC cell lines (H460 cells) (P < 0.001). XRN2 overexpression considerably promoted the NSCLC cell migration and invasion, EMT process, and tube formation ability of HUVECs (P < 0.001). On the contrary, XRN2 knockdown led to a reduction in these processes. In addition, XRN2 overexpression increased the expression levels of CD31 in lung metastatic lesions and activated the phosphorylation of EGFR signaling pathway (P < 0.001). Furthermore, Sh-XRN2+Ov-EGFR significantly promoted migration, invasion, and EMT processes in H460 cells (P < 0.001). In the meantime, compared with the co-H460+Sh-XRN2+Ov-NC group, co-H460+Sh-XRN2+Ov-EGFR significantly enhanced the tube formation ability of HUVECs (P < 0.001). Conclusion XRN2 promoted EMT and metastasis in NSCLC through improving the phosphorylation of the EGFR signaling pathway in NSCLC cells.
Collapse
Affiliation(s)
- Yonghui Cheng
- Department of Respiratory and Critical Care Medicine, Wuyi County First People’s Hospital, Jinhua, Zhejiang, China
| | - Mengge Wen
- Department of Respiratory and Critical Care Medicine, Wuyi County First People’s Hospital, Jinhua, Zhejiang, China
| | - Xiaochun Wang
- Department of Respiratory and Critical Care Medicine, Wuyi County First People’s Hospital, Jinhua, Zhejiang, China
| | - Hao Zhu
- Department of Respiratory and Critical Care Medicine, Wuyi County First People’s Hospital, Jinhua, Zhejiang, China
| |
Collapse
|
3
|
Antar SA, ElMahdy MK, Darwish AG. Examining the contribution of Notch signaling to lung disease development. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6337-6349. [PMID: 38652281 DOI: 10.1007/s00210-024-03105-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Notch pathway is a widely observed signaling system that holds pivotal functions in regulating various developmental cellular functions and operations. The Notch signaling mechanism is crucial for lung homeostasis, damage, and restoration. Based on increasing evidence, the Notch pathway has been identified, as critical for fibrosis and subsequently, the development of chronic fibroproliferative conditions in various organs and tissues. Recent research indicates that deregulation of Notch signaling correlates with the pathogenesis of significant pulmonary conditions, particularly chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, asthma, pulmonary arterial hypertension (PAH), lung carcinoma, and pulmonary abnormalities in some hereditary disorders. In various cellular and tissue environments, and across both physiological and pathological conditions, multiple consequences of Notch activation have been observed. Studies have ascertained that the Notch signaling cascade exhibits close associations with various other signaling systems. This study provides an updated overview of Notch signaling's role, especially its link to fibrosis and its potential therapeutic implications. This study sheds light on the latest findings regarding the mechanisms and outcomes of irregular or lacking Notch activity in the onset and development of pulmonary diseases. As our insight into this signaling mechanism suggests that modulating Notch signaling might hold potential as a valuable additional therapeutic approach in upcoming research.
Collapse
Affiliation(s)
- Samar A Antar
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, 24016, USA.
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt.
| | - Mohamed Kh ElMahdy
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Ahmed G Darwish
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, 32308, USA
| |
Collapse
|
4
|
Han PZ, Ye WD, Yu PC, Tan LC, Shi X, Chen XF, He C, Hu JQ, Wei WJ, Lu ZW, Qu N, Wang Y, Ji QH, Ji DM, Wang YL. A distinct tumor microenvironment makes anaplastic thyroid cancer more lethal but immunotherapy sensitive than papillary thyroid cancer. JCI Insight 2024; 9:e173712. [PMID: 38478516 PMCID: PMC11141884 DOI: 10.1172/jci.insight.173712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/06/2024] [Indexed: 04/23/2024] Open
Abstract
Both anaplastic thyroid cancer (ATC) and papillary thyroid cancer (PTC) originate from thyroid follicular epithelial cells, but ATC has a significantly worse prognosis and shows resistance to conventional therapies. However, clinical trials found that immunotherapy works better in ATC than late-stage PTC. Here, we used single-cell RNA sequencing (scRNA-Seq) to generate a single-cell atlas of thyroid cancer. Differences in ATC and PTC tumor microenvironment components (including malignant cells, stromal cells, and immune cells) leading to the polarized prognoses were identified. Intriguingly, we found that CXCL13+ T lymphocytes were enriched in ATC samples and might promote the development of early tertiary lymphoid structure (TLS). Last, murine experiments and scRNA-Seq analysis of a treated patient's tumor demonstrated that famitinib plus anti-PD-1 antibody could advance TLS in thyroid cancer. We displayed the cellular landscape of ATC and PTC, finding that CXCL13+ T cells and early TLS might make ATC more sensitive to immunotherapy.
Collapse
Affiliation(s)
- Pei-Zhen Han
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei-Dong Ye
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng-Cheng Yu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Li-Cheng Tan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Xiao Shi
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xu-Feng Chen
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cong He
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jia-Qian Hu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Jun Wei
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhong-Wu Lu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ning Qu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qing-Hai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dong-Mei Ji
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yu-Long Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Hu X, Jiang C, Hu N, Hong S. ADAMTS1 induces epithelial-mesenchymal transition pathway in non-small cell lung cancer by regulating TGF-β. Aging (Albany NY) 2023; 15:2097-2114. [PMID: 36947712 PMCID: PMC10085599 DOI: 10.18632/aging.204594] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/16/2023] [Indexed: 03/24/2023]
Abstract
Non-small cell lung cancer (NSCLC) accounts for approximately 80% of all lung cancers. Identifying key molecular targets related to the initiation, development, and metastasis of lung cancer is important for its diagnosis and target therapy. The ADAMTS families of multidomain extracellular protease enzymes have been reported to be involved in many physiological processes. In this study, we found that ADAMTS1 was highly expressed in NSCLC tissues, which promoted cell proliferation, migration, invasion, and epithelial to mesenchymal transition (EMT) of NSCLC cells. In the NSCLC tumor metastasis model involving nude mice, overexpression of ADAMTS1 promoted EMT and lung metastasis of tumor cells. Moreover, ADAMTS1 positively regulated TGF-β expression, and TGF-β was highly expressed in NSCLC tumor tissues. si-TGF-β or inhibition of TGF-β expression through the short peptide KTFR on ADAMTS1 protein could reverse the oncogenic effects of ADAMTS1 on lung cancer cells. Taken together, ADAMTS1 functioned as an oncogene in NSCLC cells by promoting TGF-β expression, indicating that ADAMTS1 has important regulatory roles in the progression of NSCLC.
Collapse
Affiliation(s)
- Xueqian Hu
- Department of Oncology, Ningbo Municipal Hospital of TCM, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, China
| | - Chunqi Jiang
- Department of Oncology, Ningbo Municipal Hospital of TCM, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, China
| | - Ning Hu
- Department of Cardiovascular Division, Ningbo Municipal Hospital of TCM, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, China
| | - Shanyi Hong
- Department of Internal Medicine, Ningbo Municipal Hospital of TCM, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, China
| |
Collapse
|