1
|
Sutter C, Haas C, Bode PK, Neubauer J, Dyrberg Andersen J. Exploratory DNA methylation analysis in post-mortem heart tissue of sudden unexplained death. Clin Epigenetics 2024; 16:167. [PMID: 39578896 PMCID: PMC11585171 DOI: 10.1186/s13148-024-01777-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/10/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Sudden unexplained death (SUD) is a devastating event in the young. Despite efforts to identify causal genetic variants, many cases remain unexplained after genetic screening. This study aimed to investigate an alternative potential contributor to SUD by studying the human methylome using the MethylationEPIC v2.0 BeadChip kit in heart tissue from SUD cases. The genome-wide methylation results of the SUD cases were compared to the results of a control cohort. The SUD cases were divided into three main groups based on their autopsy reports, heart morphology and histopathology (primaryN: macroscopically and histologically normal heart; primaryCM: macroscopically or histologically abnormal heart, suspected cardiomyopathies; and secondary: myocardial damage due to other underlying conditions). The main focus of this study was to identify differentially methylated regions (DMRs) between the case groups and the control cohort. RESULTS We identified DMRs for both the primaryN and primaryCM groups, whereas the secondary group yielded no such results. In the primaryN cases, the corresponding genes for each DMR led to the identification of genes with common biological pathways. Some were associated with heart morphology (e.g. heart outflow tract morphogenesis or trabecular morphogenesis), but the majority belonged to more general cellular regulatory pathways (e.g. transcription coactivator activity, long non-coding RNAs, etc.). Although no common pathways were found for the primaryCM group, some common regulatory molecular functions were identified, such as p53 binding and transcription coactivator activity. CONCLUSIONS Our study is the first to investigate the whole human methylome in heart tissue of SUD cases. We propose that there are observable differences in the methylation patterns of the case groups that may have contributed to SUD. Still, further studies are required to improve our understanding of the impact of methylation levels on SUD risk and to pinpoint methylation-based screening opportunities for SUD relatives.
Collapse
Affiliation(s)
- Charlotte Sutter
- Zurich Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Cordula Haas
- Zurich Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Peter K Bode
- Institute of Pathology, Cantonal Hospital Winterthur, Brauerstrasse 15, 8401, Winterthur, Switzerland
| | - Jacqueline Neubauer
- Zurich Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jeppe Dyrberg Andersen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Frederik V's Vej 11, 2100, Copenhagen Ø, Denmark
| |
Collapse
|
2
|
Xie W, Xu Z. (Nano)biotechnological approaches in the treatment of cervical cancer: integration of engineering and biology. Front Immunol 2024; 15:1461894. [PMID: 39346915 PMCID: PMC11427397 DOI: 10.3389/fimmu.2024.1461894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/08/2024] [Indexed: 10/01/2024] Open
Abstract
Cervical cancer is one of the most malignant gynaecological tumors characterised with the aggressive behaviour of the tumor cells. In spite of the development of different strategies for the treatment of cervical cancer, the tumor cells have developed resistance to conventional therapeutics. On the other hand, nanoparticles have been recently applied for the treatment of human cancers through delivery of drugs and facilitate tumor suppression. The stimuli-sensitive nanostructures can improve the release of therapeutics at the tumor site. In the present review, the nanostructures for the treatment of cervical cancer are discussed. Nanostructures can deliver both chemotherapy drugs and natural compounds to increase anti-cancer activity and prevent drug resistance in cervical tumor. Moreover, the genetic tools such as siRNA can be delivered by nanoparticles to enhance their accumulation at tumor site. In order to enhance selectivity, the stimuli-responsive nanoparticles such as pH- and redox-responsive nanocarriers have been developed to suppress cervical tumor. Moreover, nanoparticles can induce photo-thermal and photodynamic therapy to accelerate cell death in cervical tumor. In addition, nanobiotechnology demonstrates tremendous potential in the treatment of cervical cancer, especially in the context of tumor immunotherapy. Overall, metal-, carbon-, lipid- and polymer-based nanostructures have been utilized in cervical cancer therapy. Finally, hydrogels have been developed as novel kinds of carriers to encapsulate therapeutics and improve anti-cancer activity.
Collapse
Affiliation(s)
| | - Zhengmei Xu
- Department of Gynecology, Affiliated Hengyang Hospital of Hunan Normal University &
Hengyang Central Hospital, Hengyang, China
| |
Collapse
|
3
|
Yang Y, Liu L, Tian Y, Gu M, Wang Y, Ashrafizadeh M, Reza Aref A, Cañadas I, Klionsky DJ, Goel A, Reiter RJ, Wang Y, Tambuwala M, Zou J. Autophagy-driven regulation of cisplatin response in human cancers: Exploring molecular and cell death dynamics. Cancer Lett 2024; 587:216659. [PMID: 38367897 DOI: 10.1016/j.canlet.2024.216659] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/29/2023] [Accepted: 01/17/2024] [Indexed: 02/19/2024]
Abstract
Despite the challenges posed by drug resistance and side effects, chemotherapy remains a pivotal strategy in cancer treatment. A key issue in this context is macroautophagy (commonly known as autophagy), a dysregulated cell death mechanism often observed during chemotherapy. Autophagy plays a cytoprotective role by maintaining cellular homeostasis and recycling organelles, and emerging evidence points to its significant role in promoting cancer progression. Cisplatin, a DNA-intercalating agent known for inducing cell death and cell cycle arrest, often encounters resistance in chemotherapy treatments. Recent studies have shown that autophagy can contribute to cisplatin resistance or insensitivity in tumor cells through various mechanisms. This resistance can be mediated by protective autophagy, which suppresses apoptosis. Additionally, autophagy-related changes in tumor cell metastasis, particularly the induction of Epithelial-Mesenchymal Transition (EMT), can also lead to cisplatin resistance. Nevertheless, pharmacological strategies targeting the regulation of autophagy and apoptosis offer promising avenues to enhance cisplatin sensitivity in cancer therapy. Notably, numerous non-coding RNAs have been identified as regulators of autophagy in the context of cisplatin chemotherapy. Thus, therapeutic targeting of autophagy or its associated pathways holds potential for restoring cisplatin sensitivity, highlighting an important direction for future clinical research.
Collapse
Affiliation(s)
- Yang Yang
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Lixia Liu
- Department of Ultrasound, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, IL, USA
| | - Miaomiao Gu
- Department of Ultrasound, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Yanan Wang
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 440 Ji Yan Road, Jinan, Shandong, China
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc, 6, Tide Street, Boston, MA, 02210, USA
| | - Israel Cañadas
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA, USA; Nuclear Dynamics and Cancer Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Arul Goel
- University of California Santa Barbara, Santa Barbara, CA, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX, 78229, USA
| | - Yuzhuo Wang
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Murtaza Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
| | - Jianyong Zou
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, 510080, Guangzhou, China.
| |
Collapse
|
4
|
Xiang H, Tang H, He Q, Sun J, Yang Y, Kong L, Wang Y. NDUFA8 is transcriptionally regulated by EP300/H3K27ac and promotes mitochondrial respiration to support proliferation and inhibit apoptosis in cervical cancer. Biochem Biophys Res Commun 2024; 693:149374. [PMID: 38096616 DOI: 10.1016/j.bbrc.2023.149374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024]
Abstract
Cervical cancer, a common malignancy in women, poses a significant health burden worldwide. In this study, we aimed to investigate the expression, function, and potential mechanisms of NADH: ubiquinone oxidoreductase subunit A8 (NDUFA8) in cervical cancer. The Gene Expression Profiling Interactive Analysis (GEPIA) database and immunohistochemical scoring were used to analyze NDUFA8 expression in cervical cancer tissues and normal tissues. Quantitative real-time PCR and Western blot analyses were performed to assess the expression level of NDUFA8 in cervical cancer cell lines. NDUFA8 knockdown or overexpression experiments were conducted to evaluate its impact on cell proliferation and apoptosis. The mitochondrial respiratory status was analyzed by measuring cellular oxygen consumption, adenosine triphosphate (ATP) levels, and the expression levels of Mitochondrial Complex I activity, and Mitochondrial Complex IV-associated proteins Cytochrome C Oxidase Subunit 5B (COX5B) and COX6C. NDUFA8 exhibited high expression levels in cervical cancer tissues, and these levels were correlated with reduced survival rates. A significant upregulation of NDUFA8 expression was observed in cervical cancer cell lines compared to normal cells. Silencing NDUFA8 hindered cell proliferation, promoted apoptosis, and concurrently suppressed cellular mitochondrial respiration, resulting in decreased levels of available ATP. Conversely, NDUFA8 overexpression induced the opposite effects. Herein, we also found that E1A Binding Protein P300 (EP300) overexpression facilitated Histone H3 Lysine 27 (H3K27) acetylation enrichment, enhancing the activity of the NDUFA8 promoter region. NDUFA8, which is highly expressed in cervical cancer, is regulated by transcriptional control via EP300/H3K27 acetylation. By promoting mitochondrial respiration, NDUFA8 contributes to cervical cancer cell proliferation and apoptosis. These findings provide novel insights into NDUFA8 as a therapeutic target in cervical cancer.
Collapse
Affiliation(s)
- Huaguo Xiang
- Department of Clinical Laboratory, Fuyong People's Hospital of Baoan District, Shenzhen, 518103, China.
| | - Hongping Tang
- Department of Pathology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, 518028, China
| | - Qingqing He
- Department of Clinical Laboratory, The Second People's Hospital of Shenzhen, Shenzhen, 518025, China
| | - Junfang Sun
- Department of Clinical Laboratory, Fuyong People's Hospital of Baoan District, Shenzhen, 518103, China
| | - Yihui Yang
- Department of Pathology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, 518028, China
| | - Lingyue Kong
- Department of Clinical Laboratory, Fuyong People's Hospital of Baoan District, Shenzhen, 518103, China
| | - Yingzhen Wang
- Department of Clinical Laboratory, Fuyong People's Hospital of Baoan District, Shenzhen, 518103, China
| |
Collapse
|