1
|
Chan SWS, Zeng J, Young J, Barghout SH, Al-Agha F, Raptis S, Brown MC, Liu G, Juergens R, Jao K. A Poor Prognostic ALK Phenotype: A Review of Molecular Markers of Poor Prognosis in ALK Rearranged Nonsmall Cell Lung Cancer. Clin Lung Cancer 2025; 26:e22-e32.e2. [PMID: 39578168 DOI: 10.1016/j.cllc.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/06/2024] [Accepted: 10/17/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Patients with nonsmall cell lung cancer with anaplastic lymphoma kinase (ALK) rearrangements derive a significant and durable clinical benefit from tyrosine kinase inhibitors (TKIs). However, early progression/death on treatment occurs in a subset of patients, which we term the poor prognostic ALK phenotype. This review aims to summarize the known molecular mechanisms that underlie this phenotype with a focus on variant 3 and TP53 mutations. METHODS A scoping review was performed using scientific databases such as Ovid Medline, Ovid Embase, and Cochrane Central Register of Controlled Trials. Studies included molecular markers of poor prognosis, with a focus on TP53 mutations, variant 3 re-arrangements, and poor clinical response to TKIs. RESULTS Of 4371 studies screened, 108 were included. Numerous studies implicated a negative prognostic role of variant 3, likely mediated through the acquisition of on-target resistance mutations and TP53 mutations which are associated with greater chromosomal instability and mutational burden. Co-occurring variant 3 and TP53 mutations were associated with even worse survival. Other mediators of early resistance development include aberrations in cell cycle regulators and mutations in cell signaling pathways. Comprehensive genomic analysis from first-line TKI clinical trial data was unable to identify a singular genomic signature that underlies the poor prognostic phenotype but implicated a combination of pathways. CONCLUSIONS This scoping review highlights that the poor prognostic ALK phenotype is likely composed of a heterogeneous variety of genomic factors. There remains an unmet need for a genomic assay to integrate these various molecular markers to predict this ALK phenotype.
Collapse
Affiliation(s)
- Sze Wah Samuel Chan
- Department of Oncology, McMaster University, Hamilton, Ontario, Canada; Department of Medical Oncology, Juravinski Cancer Center, Hamilton, Ontario, Canada
| | - Joy Zeng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Jack Young
- Department of Medical Oncology, Juravinski Cancer Center, Hamilton, Ontario, Canada
| | - Samir H Barghout
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Faisal Al-Agha
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Stavroula Raptis
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - M Catherine Brown
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Geoffrey Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada; Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Rosalyn Juergens
- Department of Oncology, McMaster University, Hamilton, Ontario, Canada; Department of Medical Oncology, Juravinski Cancer Center, Hamilton, Ontario, Canada
| | - Kevin Jao
- Division of Medical Oncology and Hematology, Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
2
|
Plaugher DR, Childress AR, Gosser CM, Esoe DP, Naughton KJ, Hao Z, Brainson CF. Therapeutic potential of tumor-infiltrating lymphocytes in non-small cell lung cancer. Cancer Lett 2024; 605:217281. [PMID: 39369769 PMCID: PMC11560632 DOI: 10.1016/j.canlet.2024.217281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide, with poor outcomes even for those diagnosed at early stages. Current standard-of-care for most non-small cell lung cancer (NSCLC) patients involves an array of chemotherapy, radiotherapy, immunotherapy, targeted therapy, and surgical resection depending on the stage and location of the cancer. While patient outcomes have certainly improved, advances in highly personalized care remain limited. However, there is growing excitement around harnessing the power of tumor-infiltrating lymphocytes (TILs) through the use of adoptive cell transfer (ACT) therapy. These TILs are naturally occurring, may already recognize tumor-specific antigens, and can have direct anti-cancer effect. In this review, we highlight comparisons of various ACTs, including a brief TIL history, show current advances and successes of TIL therapy in NSCLC, discuss the potential roles for epigenetics in T cell expansion, and highlight challenges and future directions of the field to combat NSCLC in a personalized manner.
Collapse
Affiliation(s)
- Daniel R Plaugher
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA.
| | - Avery R Childress
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Christian M Gosser
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Dave-Preston Esoe
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Kassandra J Naughton
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Zhonglin Hao
- Department of Internal Medicine - Medical Oncology, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Christine F Brainson
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
3
|
Sun Y, Zhang X, Yang X, Ma J. Clinical Utility of Circulating Tumor DNA for Detecting Lung Cancer Mutations by Targeted Next-Generation Sequencing With Insufficient Tumor Samples. J Clin Lab Anal 2024; 38:e25099. [PMID: 39315762 PMCID: PMC11520943 DOI: 10.1002/jcla.25099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/07/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Circulating tumor deoxyribonucleic acid (ctDNA) is increasingly applied in clinical practice. This study aimed to explore clinical utility of a minimal invasive and sensitive way of ctDNA for next-generation sequencing in non-small cell lung cancer (NSCLC) with inadequate tumor samples. METHODS Targeted DNA sequencing was performed on tissue biopsies and matched plasma samples from 60 patients with NSCLC. RESULTS A total of 13 driving genes were detected in 60 matched tissue DNA (tDNA) and ctDNA samples. Overall concordance rate was 75.47%, with 77.55% sensitivity and 50% specificity. Epidermal growth factor receptor (EGFR) mutations were the most common in both tDNA and ctDNA samples. Among other mutated genes were tumor protein p53 (TP53), erb-b2 receptor tyrosine kinase 2 (ERBB2), anaplastic lymphoma kinase (ALK), cyclin-dependent kinase inhibitor 2A (CDKN2A), ros proto-oncogene 1, and receptor tyrosine kinase (ROS1). Mutations in b-raf proto-oncogene, serine/threonine kinase (BRAF), cluster of differentiation 274 (CD274), neurotrophin receptor tyrosine kinase 1 (NTRK1), and rearranged during transfection (RET) occurred only in plasma. The majority of mutations in both samples were single-nucleotide variants. Deletions were found in EGFR, BRAF, and TP53 in ctDNA, whereas in tDNA, deletions were only found in EGFR. In ALK, single nucleic acid-site amplification occurred simultaneously in tissue and plasma, but insertions and copy number variations were detected only in plasma. CONCLUSIONS Identifying ctDNA mutations by targeted sequencing in plasma is feasible, showing the clinical value of ctDNA-targeted sequencing in NSCLC patients when tumor tissue sampling is insufficient or even impossible.
Collapse
Affiliation(s)
- Yi Sun
- Pediatric, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouGuangdong ProvinceChina
| | - Xu Zhang
- Department of Molecular Diagnostics, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐Sen University Cancer CenterGuangzhouGuangdong ProvinceChina
| | - Xinhua Yang
- Department of Molecular Diagnostics, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐Sen University Cancer CenterGuangzhouGuangdong ProvinceChina
| | - Jiangjun Ma
- Department of Molecular Diagnostics, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐Sen University Cancer CenterGuangzhouGuangdong ProvinceChina
| |
Collapse
|
4
|
Sposito M, Eccher S, Pasqualin L, Scaglione IM, Avancini A, Tregnago D, Trestini I, Insolda J, Bonato A, Ugel S, Derosa L, Milella M, Pilotto S, Belluomini L. Characterizing the immune tumor microenvironment in ALK fusion-positive lung cancer: state-of-the-art and therapeutical implications. Expert Rev Clin Immunol 2024; 20:959-970. [PMID: 38913940 DOI: 10.1080/1744666x.2024.2372327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
INTRODUCTION Approximately 5% of non-small cell lung cancer (NSCLC), exhibits anaplastic lymphoma kinase (ALK) rearrangements. EML4-ALK fusions account for over 90% of ALK rearrangements in NSCLC. The advent of treatment targeting ALK has significantly improved survival rates in patients with advanced ALK-positive NSCLC. However, the emergence of resistance mechanisms and the subsequent progression disease inevitably occurs. The tumor immune microenvironment (TIME) plays a pivotal role in lung cancer, influencing disease development, patient's outcomes, and response to treatments. AREAS COVERED The aim of this review is to provide a comprehensive characterization of the TIME in ALK rearranged NSCLC and its intrinsic plasticity under treatment pressure. EXPERT OPINION Recognizing the fundamental role of the TIME in cancer progression has shifted the paradigm from a tumor cell-centric perspective to the understanding of a complex tumor ecosystem. Understanding the intricate dynamics of the TIME, its influence on treatment response, and the potential of immunotherapy in patients with ALK-positive NSCLC are currently among the primary research objectives in this patient population.
Collapse
Affiliation(s)
- Marco Sposito
- Section of Oncology, Department of Engineering for Innovation Medicine (DIMI), University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Serena Eccher
- Section of Oncology, Department of Engineering for Innovation Medicine (DIMI), University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Luca Pasqualin
- Section of Oncology, Department of Engineering for Innovation Medicine (DIMI), University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Ilaria Mariangela Scaglione
- Section of Oncology, Department of Engineering for Innovation Medicine (DIMI), University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Alice Avancini
- Section of Oncology, Department of Engineering for Innovation Medicine (DIMI), University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Daniela Tregnago
- Section of Oncology, Department of Engineering for Innovation Medicine (DIMI), University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Ilaria Trestini
- Dietetic Service, Hospital Medical Direction, University and Hospital Trust (AOUI) of Verona, Verona, Italy
| | - Jessica Insolda
- Section of Oncology, Department of Engineering for Innovation Medicine (DIMI), University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Adele Bonato
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Santa Chiara Hospital, Pisa, Italy
| | - Stefano Ugel
- Immunology Section, University Hospital and Department of Medicine, University of Verona, Verona, Italy
| | - Lisa Derosa
- INSERM U1015 Gustave Roussy Cancer Campus, Villejuif Cedex, Villejuif, France
- Faculté de Médicine, Université Paris-Saclay, Le Kremlin-Bicetre, France
| | - Michele Milella
- Section of Oncology, Department of Engineering for Innovation Medicine (DIMI), University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Sara Pilotto
- Section of Oncology, Department of Engineering for Innovation Medicine (DIMI), University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Lorenzo Belluomini
- Section of Oncology, Department of Engineering for Innovation Medicine (DIMI), University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| |
Collapse
|
5
|
Huang Z, Zhang Y, Xu Q, Song L, Li Y, Guo W, Lin S, Jiang W, Wang Z, Deng L, Qin H, Zhang X, Tong F, Zhang R, Liu Z, Zhang L, Yu J, Dong X, Gong Q, Deng J, Chen X, Wang J, Zhang G, Yang N, Zeng L, Zhang Y. Clinical treatment patterns, molecular characteristics and survival outcomes of ROS1-rearranged non-small cell lung cancer: A large multicenter retrospective study. Lung Cancer 2024; 192:107827. [PMID: 38795459 DOI: 10.1016/j.lungcan.2024.107827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/12/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) harboring ROS1 rearrangements is a molecular subset that exhibits favorable responses to tyrosine kinase inhibitor (TKI) treatment than chemotherapy. This study investigated real-world treatment patterns and survival outcomes among patients with ROS1-rearranged advanced NSCLC. METHODS We conducted a retrospective analysis of patients with ROS1-rearranged advanced NSCLC treated in four different hospitals in China from August 2018 to March 2022. The study analyzed gene fusion distribution, resistance patterns, and survival outcomes. RESULTS ROS1 rearrangement occurs in 1.8 % (550/31,225) of our study cohort. CD74 was the most common ROS1 fusion partner, accounting for 45.8 %. Crizotinib was used in 73.9 % of patients in the first-line treatment, and an increased use of chemotherapy, ceritinib, and lorlatinib was seen in the second-line setting. Lung (43.2 %) and brain (27.6 %) were the most common sites of progression in first-line setting, while brain progression (39.2 %) was the most common site of progression in second-line. Median overall survival was 46 months (95 % confidence intervals: 39.6-52.4). First-line crizotinib use yielded significantly superior survival outcomes over chemotherapy in terms of progression-free (18.5 vs. 6.0; p < 0.001) and overall survival (49.8 vs. 37; p = 0.024). The choice of treatment in the latter line also had survival implications, wherein survival outcomes were better when first-line crizotinib was followed by sequential TKI therapy than first-line chemotherapy followed by TKI therapy. CONCLUSIONS Our study provided insights into the real-world treatment, drug resistance patterns, and survival outcomes among patients with ROS1-rearranged NSCLC. This information serves as a valuable reference for guiding the treatment of this molecular subset of NSCLC.
Collapse
Affiliation(s)
- Zhe Huang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yuda Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qinqin Xu
- Department of Medical Oncology, Qinghai Provincial People's Hospital, Xining 810000, China
| | - Lianxi Song
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Department of Medical Oncology, Yiyang Central Hospital, Yiyang 413000, China
| | - Yizhi Li
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 China
| | - Wenhuan Guo
- Department of Pathology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, China
| | - Shaoding Lin
- Department of Medical Oncology, The First Affiliated Hospital of Hunan University of Medicine, Huaihua 418000, China
| | - Wenjuan Jiang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 China
| | - Zhan Wang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 China
| | - Li Deng
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 China
| | - Haoyue Qin
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xing Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Fan Tong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ruiguang Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhaoyi Liu
- Department of Medical Oncology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan 410008, China
| | - Lin Zhang
- Department of Radiotherapy, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha Hunan 410008, China
| | - Juan Yu
- Department of Medical Oncology, Zhangjiajie People's Hospital, Zhangjiajie, Hunan 410008, China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qian Gong
- Department of Good Clinical Trials, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan 410008, China
| | - Jun Deng
- Early Clinical Trails Center, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan 410008, China
| | - Xue Chen
- Early Clinical Trails Center, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan 410008, China
| | - Jing Wang
- Early Clinical Trails Center, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan 410008, China
| | - Gao Zhang
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun 999077, Hong Kong, China
| | - Nong Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Liang Zeng
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 China.
| | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Early Clinical Trails Center, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410000, China.
| |
Collapse
|
6
|
de Jager VD, Timens W, Bayle A, Botling J, Brcic L, Büttner R, Fernandes MGO, Havel L, Hochmair M, Hofman P, Janssens A, van Kempen L, Kern I, Machado JC, Mohorčič K, Popat S, Ryška A, Wolf J, Schuuring E, van der Wekken AJ. Future perspective for the application of predictive biomarker testing in advanced stage non-small cell lung cancer. THE LANCET REGIONAL HEALTH. EUROPE 2024; 38:100839. [PMID: 38476751 PMCID: PMC10928270 DOI: 10.1016/j.lanepe.2024.100839] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/16/2023] [Accepted: 01/08/2024] [Indexed: 03/14/2024]
Abstract
For patients with advanced stage non-small cell lung cancer (NSCLC), treatment strategies have changed significantly due to the introduction of targeted therapies and immunotherapy. In the last few years, we have seen an explosive growth of newly introduced targeted therapies in oncology and this development is expected to continue in the future. Besides primary targetable aberrations, emerging diagnostic biomarkers also include relevant co-occurring mutations and resistance mechanisms involved in disease progression, that have impact on optimal treatment management. To accommodate testing of pending biomarkers, it is necessary to establish routine large-panel next-generation sequencing (NGS) for all patients with advanced stage NSCLC. For cost-effectiveness and accessibility, it is recommended to implement predictive molecular testing using large-panel NGS in a dedicated, centralized expert laboratory within a regional oncology network. The central molecular testing center should host a regional Molecular Tumor Board and function as a hub for interpretation of rare and complex testing results and clinical decision-making.
Collapse
Affiliation(s)
- Vincent D. de Jager
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Wim Timens
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Arnaud Bayle
- Oncostat U1018, Inserm, Paris-Saclay University, Gustave Roussy, Villejuif, France
| | - Johan Botling
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy of University of Gothenburg, Gothenburg, Sweden
| | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Reinhard Büttner
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | | | - Libor Havel
- Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Maximilian Hochmair
- Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna, Austria
- Department of Respiratory and Critical Care Medicine, Klinik Floridsdorf, Vienna Healthcare Group, Vienna, Austria
| | - Paul Hofman
- IHU RespirERA, FHU OncoAge, Nice University Hospital, Côte d’Azur University, Nice, France
| | - Annelies Janssens
- Department of Oncology, University Hospital Antwerp, University of Antwerp, Edegem, Belgium
| | - Léon van Kempen
- Department of Pathology, University Hospital Antwerp, University of Antwerp, Edegem, Belgium
| | - Izidor Kern
- Laboratory for Cytology and Pathology, University Clinic Golnik, Golnik, Slovenia
| | - José Carlos Machado
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Faculty of Medicine of the University of Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Porto, Portugal
| | - Katja Mohorčič
- University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia
| | - Sanjay Popat
- Lung Unit, Royal Marsden NHS Trust, London, England, UK
| | - Aleš Ryška
- The Fingerland Department of Pathology, Charles University Medical Faculty and University Hospital, Czech Republic
| | - Jürgen Wolf
- Lung Cancer Group Cologne, Department I for Internal Medicine and Center for Integrated Oncology Cologne/Bonn, University Hospital Cologne, Cologne, Germany
| | - Ed Schuuring
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anthonie J. van der Wekken
- Department of Pulmonary Diseases and Tuberculosis, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
7
|
Lu L, Ma D, Xi Z. Coexpression of TP53, BIM, and PTEN Enhances the Therapeutic Efficacy of Non-Small-Cell Lung Cancer. Biomacromolecules 2024; 25:792-808. [PMID: 38237562 DOI: 10.1021/acs.biomac.3c00988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
For non-small-cell lung cancer (NSCLC), the ubiquitous occurrence of concurrent multiple genomic alterations poses challenges to single-gene therapy. To increase therapeutic efficacy, we used the branch-PCR method to develop a multigene nanovector, NP-TP53-BIM-PTEN, that carried three therapeutic gene expression cassettes for coexpression. NP-TP53-BIM-PTEN exhibited a uniform size of 104.8 ± 24.2 nm and high serum stability. In cell transfection tests, NP-TP53-BIM-PTEN could coexpress TP53, BIM, and PTEN in NCI-H1299 cells and induce cell apoptosis with a ratio of up to 94.9%. Furthermore, NP-TP53-BIM-PTEN also inhibited cell proliferation with a ratio of up to 42%. In a mouse model bearing an NCI-H1299 xenograft tumor, NP-TP53-BIM-PTEN exhibited a stronger inhibitory effect on the NCI-H1299 xenograft tumor than the other test vectors without any detectable side effects. These results exhibited the potential of NP-TP53-BIM-PTEN as an effective and safe multigene nanovector to enhance NSCLC therapy efficacy, which will provide a framework for genome therapy with multigene combinations.
Collapse
Affiliation(s)
- Liqing Lu
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Engineering Research Center of Pesticide (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Dejun Ma
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Engineering Research Center of Pesticide (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Engineering Research Center of Pesticide (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Yan N, Zhang H, Shen S, Guo S, Li X. Response to immune checkpoint inhibitor combination therapy in metastatic RET-mutated lung cancer from real-world retrospective data. BMC Cancer 2024; 24:178. [PMID: 38317126 PMCID: PMC10845679 DOI: 10.1186/s12885-024-11852-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/06/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND The impact of immune checkpoint inhibitors (ICIs) based treatments on non-small cell lung cancers (NSCLCs) with RET fusions remains poorly understood. METHODS We screened patients with RET fusions at the First Affiliated Hospital of Zhengzhou University and included those who were treated with ICIs based regimens for further analysis. We evaluated clinical indicators including objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS), and overall survival (OS). RESULTS A total of 232 patients with RET fusions were included in the study. Of these, 129 patients had their programmed death-ligand 1 (PDL1) expression levels tested, with 22 patients (17.8%) having a PDL1 level greater than or equal to 50%. Additionally, tumor mutational burden (TMB) status was evaluated in 35 patients, with the majority (30/35, 85.8%) having a TMB of less than 10 mutations per megabase. Out of the 38 patients treated with ICI based regimens, the median PFS was 5 months (95% confidence interval [CI]: 2.4-7.6 months) and the median OS was 19 months (95% CI: 9.7-28.3 months) at the time of data analysis. Stratification based on treatment lines did not show any significant differences in OS (18 vs. 19 months, p = 0.63) and PFS (6 vs. 5 months, p = 0.86). The ORR for patients treated with ICIs was 26.3%. Furthermore, no significant differences were found for PFS (p = 0.27) and OS (p = 0.75) between patients with positive and negative PDL1 expression. Additionally, there was no significant difference in PD-L1 levels (p = 0.10) between patients who achieved objective response and those who did not. CONCLUSIONS Patients with RET fusion positive NSCLCs may not benefit from ICI based regimens and therefore should not be treated with ICIs in clinical practice.
Collapse
Affiliation(s)
- Ningning Yan
- Department of Medical Oncology, Zhengzhou University First Affiliated Hospital, 1st East Jianshe Road, Zhengzhou, Henan, 450002, China
| | - Huixian Zhang
- Department of Medical Oncology, Zhengzhou University First Affiliated Hospital, 1st East Jianshe Road, Zhengzhou, Henan, 450002, China
| | - Shujing Shen
- Department of Radiation Oncology, Zhengzhou University First Affiliated Hospital, Zhengzhou, Henan, 450002, China
| | - Sanxing Guo
- Department of Medical Oncology, Zhengzhou University First Affiliated Hospital, 1st East Jianshe Road, Zhengzhou, Henan, 450002, China.
| | - Xingya Li
- Department of Medical Oncology, Zhengzhou University First Affiliated Hospital, 1st East Jianshe Road, Zhengzhou, Henan, 450002, China.
| |
Collapse
|
9
|
Parvaresh H, Roozitalab G, Golandam F, Behzadi P, Jabbarzadeh Kaboli P. Unraveling the Potential of ALK-Targeted Therapies in Non-Small Cell Lung Cancer: Comprehensive Insights and Future Directions. Biomedicines 2024; 12:297. [PMID: 38397899 PMCID: PMC10887432 DOI: 10.3390/biomedicines12020297] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Background and Objective: This review comprehensively explores the intricate landscape of anaplastic lymphoma kinase (ALK), focusing specifically on its pivotal role in non-small cell lung cancer (NSCLC). Tracing ALK's discovery, from its fusion with nucleolar phosphoprotein (NPM)-1 in anaplastic large cell non-Hodgkin's lymphoma (ALCL) in 1994, the review elucidates the subsequent impact of ALK gene alterations in various malignancies, including inflammatory myofibroblastoma and NSCLC. Approximately 3-5% of NSCLC patients exhibit complex ALK rearrangements, leading to the approval of six ALK-tyrosine kinase inhibitors (TKIs) by 2022, revolutionizing the treatment landscape for advanced metastatic ALK + NSCLC. Notably, second-generation TKIs such as alectinib, ceritinib, and brigatinib have emerged to address resistance issues initially associated with the pioneer ALK-TKI, crizotinib. Methods: To ensure comprehensiveness, we extensively reviewed clinical trials on ALK inhibitors for NSCLC by 2023. Additionally, we systematically searched PubMed, prioritizing studies where the terms "ALK" AND "non-small cell lung cancer" AND/OR "NSCLC" featured prominently in the titles. This approach aimed to encompass a spectrum of relevant research studies, ensuring our review incorporates the latest and most pertinent information on innovative and alternative therapeutics for ALK + NSCLC. Key Content and Findings: Beyond exploring the intricate details of ALK structure and signaling, the review explores the convergence of ALK-targeted therapy and immunotherapy, investigating the potential of immune checkpoint inhibitors in ALK-altered NSCLC tumors. Despite encouraging preclinical data, challenges observed in trials assessing combinations such as nivolumab-crizotinib, mainly due to severe hepatic toxicity, emphasize the necessity for cautious exploration of these novel approaches. Additionally, the review explores innovative directions such as ALK molecular diagnostics, ALK vaccines, and biosensors, shedding light on their promising potential within ALK-driven cancers. Conclusions: This comprehensive analysis covers molecular mechanisms, therapeutic strategies, and immune interactions associated with ALK-rearranged NSCLC. As a pivotal resource, the review guides future research and therapeutic interventions in ALK-targeted therapy for NSCLC.
Collapse
Affiliation(s)
- Hannaneh Parvaresh
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
- Division of Cancer Discovery Network, Dr. Parham Academy, Taichung 40602, Taiwan; (G.R.)
| | - Ghazaal Roozitalab
- Division of Cancer Discovery Network, Dr. Parham Academy, Taichung 40602, Taiwan; (G.R.)
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa 7461686688, Iran
| | - Fatemeh Golandam
- Division of Cancer Discovery Network, Dr. Parham Academy, Taichung 40602, Taiwan; (G.R.)
- Department of Pharmacy, Mashhad University of Medical Science, Mashhad 9177948974, Iran
| | - Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran 37541-374, Iran;
| | - Parham Jabbarzadeh Kaboli
- Division of Cancer Discovery Network, Dr. Parham Academy, Taichung 40602, Taiwan; (G.R.)
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, China Medical University, Taichung 407, Taiwan
| |
Collapse
|