1
|
Schwarz D, Heiss E, Pierson TW, Konow N, Schoch RR. Using salamanders as model taxa to understand vertebrate feeding constraints during the late Devonian water-to-land transition. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220541. [PMID: 37839447 PMCID: PMC10577038 DOI: 10.1098/rstb.2022.0541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/23/2023] [Indexed: 10/17/2023] Open
Abstract
The vertebrate water-to-land transition and the rise of tetrapods brought about fundamental changes for the groups undergoing these evolutionary changes (i.e. stem and early tetrapods). These groups were forced to adapt to new conditions, including the distinct physical properties of water and air, requiring fundamental changes in anatomy. Nutrition (or feeding) was one of the prime physiological processes these vertebrates had to successfully adjust to change from aquatic to terrestrial life. The basal gnathostome feeding mode involves either jaw prehension or using water flows to aid in ingestion, transportation and food orientation. Meanwhile, processing was limited primarily to simple chewing bites. However, given their comparatively massive and relatively inflexible hyobranchial system (compared to the more muscular tongue of many tetrapods), it remains fraught with speculation how stem and early tetrapods managed to feed in both media. Here, we explore ontogenetic water-to-land transitions of salamanders as functional analogues to model potential changes in the feeding behaviour of stem and early tetrapods. Our data suggest two scenarios for terrestrial feeding in stem and early tetrapods as well as the presence of complex chewing behaviours, including excursions of the jaw in more than one dimension during early developmental stages. Our results demonstrate that terrestrial feeding may have been possible before flexible tongues evolved. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.
Collapse
Affiliation(s)
- Daniel Schwarz
- Department of Palaeontology, State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, Erbertstrasse 1, 07743 Jena, Germany
| | - Egon Heiss
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, Erbertstrasse 1, 07743 Jena, Germany
| | - Todd W. Pierson
- Department of Ecology, Evolution, and Organismal Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Nicolai Konow
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Street, Lowell, MA 01854, USA
| | - Rainer R. Schoch
- Department of Palaeontology, State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany
- Institute for Biology, Department of Palaeontology, University of Hohenheim, Wollgrasweg 23, 70599 Stuttgart, Germany
| |
Collapse
|
2
|
Salamanca-Carreño A, Parés-Casanova PM, Monroy-Ochoa NI, Vélez-Terranova M. Would the Cephalic Development in the Purebred Arabian Horse and Its Crosses Indicate a Paedomorphic Process? Animals (Basel) 2022; 12:ani12223168. [PMID: 36428393 PMCID: PMC9686750 DOI: 10.3390/ani12223168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
This study examined paedomorphosis in PAH and F1 crossbreds. A sample of 99 horses was selected from 40 different breeders and consisted of three groups: stallions (n = 16), mares (n = 53), and geldings (n = 30), ranging from 10 months to 27 years in age. All horses presented a concave celloid lateral left head profile in the acquired photographic images. The hypothesis proposed in this study suggested the lateral profile of the head in juveniles was representational in the adult form due to the neonate's facial bones (part of the splanchnocranium) developing at a different rate to those of the skull. The methodology utilized geometric morphometrics to identify 23 landmarks so as to identify profile curvature indicative between the three groups (stallions, mares, and geldings). Principal component analysis reduced the number of variables to 14 examinable landmarks. Using a two-NPMANOVA and multivariate regression test, it was demonstrated that an isometric relationship between the concave celloid profile in the juvenile and its adult counterpart existed. This result supported the hypothesis that PAH and F1 crossbreds expressed a paedomorphic trait due to the adult form retaining the concave celloid profile identified in the juvenile.
Collapse
Affiliation(s)
- Arcesio Salamanca-Carreño
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Villavicencio 500001, Colombia
| | | | - Néstor Ismael Monroy-Ochoa
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Villavicencio 500001, Colombia
| | | |
Collapse
|
3
|
Vassilieva AB, Smirnov SV. Increasing Hormonal Control of Skeletal Development: An Evolutionary Trend in Amphibians. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.733947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The biphasic life history of amphibians includes metamorphosis, a complex developmental event that involves drastic changes in the morphology, physiology and biochemistry accompanying the transition from the larval to adult stage of development. Thyroid hormones (THs) are widely known to orchestrate this remodeling and, in particular, to mediate the development of the bony skeleton, which is a model system in evolutionary morphological studies of amphibians. Detailed experimental studies of the role of THs in the craniogenesis of diverse urodelan amphibians revealed that (i) these hormones affect both the timing and sequence of bone formation, (ii) TH involvement increases in parallel with the increase in divergence between larval and adult skull morphology, and (iii) among urodelans, TH-involvement in skull development changes from a minimum in basal salamanders (Hynobiidae) to the most pronounced in derived ones (Salamandridae and Plethodontidae). Given the increasing regulatory function of THs in urodelan evolution, we hypothesized a stronger involvement of THs in the control of skeletogenesis in anurans with their most complex and dramatic metamorphosis among all amphibians. Our experimental study of skeletal development in the hypo- and hyperthyroid yellow-bellied toad (Bombina variegata: Bombinatoridae) supports the greater involvement of THs in the mediation of all stages of anuran cranial and postcranial bones formation. Similar to urodelans, B. variegata displays enhancing TH involvement in the development of cranial bones that arise during larval ontogeny: while the hormonal impact on early larval ossifications is minimal, the skull bones forming during metamorphosis are strictly TH-inducible. However, in contrast to urodelans, all cranial bones, including the earliest to form, are TH-dependent in B. variegata; moreover, the development of all elements of the axial and limb skeleton is affected by THs. The more accentuated hormonal control of skeletogenesis in B. variegata demonstrates the advanced regulatory and inductive function of THs in the orchestration of anuran metamorphosis. Based on these findings, we discuss (i) changes in THs function in amphibian evolution and (ii) the role of THs in the evolution of life histories in amphibians.
Collapse
|
4
|
Ajduković M, Vučić T, Cvijanović M. Effects of thiourea on the skull of Triturus newts during ontogeny. PeerJ 2021; 9:e11535. [PMID: 34141485 PMCID: PMC8179219 DOI: 10.7717/peerj.11535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/07/2021] [Indexed: 11/20/2022] Open
Abstract
Background In amphibians, thyroid hormone (TH) has a profound role in cranial development, especially in ossification of the late-appearing bones and remodeling of the skull. In the present study, we explored the influence of TH deficiency on bone ossification and resulting skull shape during the ontogeny of Triturus newt hybrid larvae obtained from interspecific crosses between T. ivanbureschi and T. macedonicus. Methods Larvae were treated with two concentrations of thiourea (an endocrine disruptor that chemically inhibits synthesis of TH) during the midlarval and late larval periods. Morphological differences of the cranium were assessed at the end of the midlarval period (ontogenetic stage 62) and the metamorphic stage after treatment during the late larval period. Results There was no difference in the ossification level and shape of the skull between the experimental groups (control and two treatment concentrations) at stage 62. During the late larval period and metamorphosis, TH deficit had a significant impact on the level of bone ossification and skull shape with no differences between the two treatment concentrations of thiourea. The most pronounced differences in bone development were: the palatopterygoid failed to disintegrate into the palatal and pterygoid portions, retardation was observed in development of the maxilla, nasal and prefrontal bones and larval organization of the vomer was retained in thiourea-treated larvae. Conclusions This implies that deficiency of TH caused retardation in development and arrested metamorphic cranium skeletal reorganization, which resulted in divergent cranial shape compared to the control group. Our results confirmed that skull remodeling and ossification of late-appearing bones is TH–dependent, as in other studied Urodela species. Also, our results indicate that TH plays an important role in the establishment of skull shape during the ontogeny of Triturus newts, especially during the late larval period and metamorphosis, when TH concentrations reach their maximum.
Collapse
Affiliation(s)
- Maja Ajduković
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tijana Vučić
- Institute of Zoology, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Milena Cvijanović
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
5
|
Bonett RM, Ledbetter NM, Hess AJ, Herrboldt MA, Denoël M. Repeated ecological and life cycle transitions make salamanders an ideal model for evolution and development. Dev Dyn 2021; 251:957-972. [PMID: 33991029 DOI: 10.1002/dvdy.373] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/16/2021] [Accepted: 05/10/2021] [Indexed: 11/11/2022] Open
Abstract
Observations on the ontogeny and diversity of salamanders provided some of the earliest evidence that shifts in developmental trajectories have made a substantial contribution to the evolution of animal forms. Since the dawn of evo-devo there have been major advances in understanding developmental mechanisms, phylogenetic relationships, evolutionary models, and an appreciation for the impact of ecology on patterns of development (eco-evo-devo). Molecular phylogenetic analyses have converged on strong support for the majority of branches in the Salamander Tree of Life, which includes 764 described species. Ancestral reconstructions reveal repeated transitions between life cycle modes and ecologies. The salamander fossil record is scant, but key Mesozoic species support the antiquity of life cycle transitions in some families. Colonization of diverse habitats has promoted phenotypic diversification and sometimes convergence when similar environments have been independently invaded. However, unrelated lineages may follow different developmental pathways to arrive at convergent phenotypes. This article summarizes ecological and endocrine-based causes of life cycle transitions in salamanders, as well as consequences to body size, genome size, and skeletal structure. Salamanders offer a rich source of comparisons for understanding how the evolution of developmental patterns has led to phenotypic diversification following shifts to new adaptive zones.
Collapse
Affiliation(s)
- Ronald M Bonett
- Department of Biological Science, The University of Tulsa, Tulsa, Oklahoma, USA
| | | | - Alexander J Hess
- Department of Biological Science, The University of Tulsa, Tulsa, Oklahoma, USA
| | - Madison A Herrboldt
- Department of Biological Science, The University of Tulsa, Tulsa, Oklahoma, USA
| | - Mathieu Denoël
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and Oceanic science Unit of reSearch (FOCUS), University of Liège, Liège, Belgium
| |
Collapse
|
6
|
Schwarz D, Konow N, Porro LB, Heiss E. Ontogenetic plasticity in cranial morphology is associated with a change in the food processing behavior in Alpine newts. Front Zool 2020; 17:34. [PMID: 33292303 PMCID: PMC7667761 DOI: 10.1186/s12983-020-00373-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/28/2020] [Indexed: 12/16/2022] Open
Abstract
Background The feeding apparatus of salamanders consists mainly of the cranium, mandible, teeth, hyobranchial apparatus and the muscles of the cranial region. The morphology of the feeding apparatus in turn determines the boundary conditions for possible food processing (i.e., intraoral mechanical reduction) mechanisms. However, the morphology of the feeding apparatus changes substantially during metamorphosis, prompting the hypothesis that larvae might use a different food processing mechanism than post-metamorphic adults. Salamandrid newts with facultative metamorphosis are suitable for testing this hypothesis as adults with divergent feeding apparatus morphologies often coexist in the same population, share similar body sizes, and feed on overlapping prey spectra. Methods We use high-speed videography to quantify the in vivo movements of key anatomical elements during food processing in paedomorphic and metamorphic Alpine newts (Ichthyosaura alpestris). Additionally, we use micro-computed tomography (μCT) to analyze morphological differences in the feeding apparatus of paedomorphic and metamorphic Alpine newts and sort them into late-larval, mid-metamorphic and post-metamorphic morphotypes. Results Late-larval, mid-metamorphic and post-metamorphic individuals exhibited clear morphological differences in their feeding apparatus. Regardless of the paedomorphic state being externally evident, paedomorphic specimens can conceal different morphotypes (i.e., late-larval and mid-metamorphic morphotypes). Though feeding on the same prey under the same (aquatic) condition, food processing kinematics differed between late-larval, mid-metamorphic and post-metamorphic morphotypes. Conclusions The food processing mechanism in the Alpine newt changes along with morphology of the feeding apparatus during ontogeny, from a mandible-based to a tongue-based processing mechanism as the changing morphology of the mandible prevents chewing and the tongue allows enhanced protraction. These results could indicate that early tetrapods, in analogy to salamanders, may have developed new feeding mechanisms in their aquatic environment and that these functional innovations may have later paved the way for terrestrial feeding mechanisms.
Collapse
Affiliation(s)
- Daniel Schwarz
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, Erbertstraße 1, D-07743, Jena, Germany.
| | - Nicolai Konow
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside St, Lowell, MA, 01854, USA
| | - Laura B Porro
- Centre for Integrative Anatomy, Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Egon Heiss
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, Erbertstraße 1, D-07743, Jena, Germany
| |
Collapse
|
7
|
Schoch RR, Pogoda P, Kupfer A. The impact of metamorphosis on the cranial osteology of giant salamanders of the genus
Dicamptodon. ACTA ZOOL-STOCKHOLM 2019. [DOI: 10.1111/azo.12318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rainer R. Schoch
- Staatliches Museum für Naturkunde Stuttgart Rosenstein, Stuttgart Germany
| | - Peter Pogoda
- Staatliches Museum für Naturkunde Stuttgart Rosenstein, Stuttgart Germany
| | - Alexander Kupfer
- Staatliches Museum für Naturkunde Stuttgart Rosenstein, Stuttgart Germany
| |
Collapse
|
8
|
Galindo D, Sweet E, DeLeon Z, Wagner M, DeLeon A, Carter C, McMenamin SK, Cooper WJ. Thyroid hormone modulation during zebrafish development recapitulates evolved diversity in danionin jaw protrusion mechanics. Evol Dev 2019; 21:231-246. [PMID: 31374588 PMCID: PMC6815664 DOI: 10.1111/ede.12299] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protrusile jaws are a highly useful innovation that has been linked to extensive diversification in fish feeding ecology. Jaw protrusion can enhance the performance of multiple functions, such as suction production and capturing elusive prey. Identifying the developmental factors that alter protrusion ability will improve our understanding of fish diversification. In the zebrafish protrusion arises postmetamorphosis. Fish metamorphosis typically includes significant changes in trophic morphology, accompanies a shift in feeding niche and coincides with increased thyroid hormone production. We tested whether thyroid hormone affects the development of zebrafish feeding mechanics. We found that it affected all developmental stages examined, but that effects were most pronounced after metamorphosis. Thyroid hormone levels affected the development of jaw morphology, feeding mechanics, shape variation, and cranial ossification. Adult zebrafish utilize protrusile jaws, but an absence of thyroid hormone impaired development of the premaxillary bone, which is critical to jaw protrusion. Premaxillae from early juvenile zebrafish and hypothyroid adult zebrafish resemble those from adults in the genera Danionella, Devario, and Microdevario that show little to no jaw protrusion. Our findings suggest that evolutionary changes in how the developing skulls of danionin minnows respond to thyroid hormone may have promoted diversification into different feeding niches.
Collapse
Affiliation(s)
- Demi Galindo
- School of Biological Sciences, Washington State University, Pullman, Washington
| | - Elly Sweet
- School of Biological Sciences, Washington State University, Pullman, Washington
| | - Zoey DeLeon
- School of Biological Sciences, Washington State University, Pullman, Washington
| | - Mitchel Wagner
- School of Biological Sciences, Washington State University, Pullman, Washington
| | - Adrian DeLeon
- School of Biological Sciences, Washington State University, Pullman, Washington
| | - Casey Carter
- School of Biological Sciences, Washington State University, Pullman, Washington
| | | | - W. James Cooper
- School of Biological Sciences, Washington State University, Pullman, Washington
| |
Collapse
|
9
|
Heiss E, Grell J. Same but different: aquatic prey capture in paedomorphic and metamorphic Alpine newts. ZOOLOGICAL LETTERS 2019; 5:24. [PMID: 31372238 PMCID: PMC6660708 DOI: 10.1186/s40851-019-0140-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Paedomorphosis describes the retention of larval characters in adult stages and is widespread amongst salamanders. Salamandrid newts exhibit facultative paedomorphosis, where paedomorphic and metamorphic adult forms coexist in the same population. Previous studies have shown that prey capture kinematics do not differ between paedomorphic and metamorphosed ambystomatid salamanders, despite diverging morphology and prey capture performance. It remained unclear, however, whether the stereotypy of prey capture kinematics across morphotypes is restricted to ambystomatids, or can be found in other salamander groups too. Here, we performed biplanar high-speed-recordings of the prey capture behavior in paedomorphic and metamorphic salamandrid newts and only found minor kinematic differences across morphotypes, suggesting that stereotypy across morphotypes is a more general feature within salamanders. We then compared anatomy of skull and hyobranchial skeleton, along with the physiological cross sectional area (PCSA) of the rectus cervicis muscle, the main muscle empowering suction feeding. Besides the overall morphological differences of the feeding apparatus, the PCSA of the rectus cervicis also differs significantly between morphotypes, being twice as large in paedomorphs. Accordingly, paedomorphs can exert more powerful suction strikes, which in turn may be one of the key factors why paedomorphs are more efficient in capturing elusive prey compared to metamorphs.
Collapse
Affiliation(s)
- Egon Heiss
- Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University of Jena, Erbertstr. 1, 07743 Jena, Germany
| | - Julia Grell
- Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University of Jena, Erbertstr. 1, 07743 Jena, Germany
| |
Collapse
|