1
|
Abstract
Sir2 protein of Plasmodium falciparum has been implicated to play crucial roles in the silencing of subtelomeric var genes and rRNA. It is also involved in telomere length maintenance. Epigenetic regulation of PfSIR2 transcription occurs through a direct participation of the molecular chaperon PfHsp90, wherein PfHsp90 acts as a transcriptional repressor. However, whether the chaperonic activity of PfHsp90 is essential for the maturation and stability of PfSir2A protein has not yet been explored. Here, we show that PfSir2A protein is a direct client of PfHsp90. We demonstrate that PfHsp90 physically interacts with PfSir2A, and the inhibition of PfHsp90 activity via chemical inhibitors, such as 17-AAG or Radicicol, results in the depletion of PfSir2A protein, and consequently its histone deacetylase activity. Thus, derepression of var genes and ribosomal silencing were observed under PfHsp90 inactivation. This finding that PfHsp90 provides stability to PfSir2A protein, in addition to the previous finding that PfHsp90 downregulates PfSIR2A transcription and subsequently cellular abundance, uncovers the multifaceted roles of PfHsp90 in regulating PfSir2 abundance and activity. Given the importance of PfSir2 protein in Plasmodium biology, it is reasonable to propose that the PfHsp90-PfSir2 axis can be exploited as a novel druggable target. IMPORTANCE Malaria continues to severely impact the global public health not only due to the mortality and morbidity associated with it, but also because of the huge burden on the world economy it imparts. Despite the intensive vaccine-research and drug-development programs, there is not a single effective vaccine suitable for all age groups, and there is no drug on the market against which resistance is not developed. Thus, there is an urgent need to develop novel intervention strategies by identifying the crucial targets from Plasmodium biology. Here, we uncover that the molecular chaperone PfHsp90 regulates the abundance and activity of the histone-deacetylase PfSir2, a prominent regulator of Plasmodium epigenome. Given that PfSir2 controls both virulence and multiplicity of the parasite, and that PfHsp90 is an essential chaperone involved in diverse cellular processes, our findings argue that the PfHsp90-PfSir2 axis could be targeted to curb malaria.
Collapse
|
2
|
Antimony susceptibility of Leishmania isolates collected over a 30-year period in Algeria. PLoS Negl Trop Dis 2018; 12:e0006310. [PMID: 29561842 PMCID: PMC5889277 DOI: 10.1371/journal.pntd.0006310] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 04/06/2018] [Accepted: 02/10/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In Algeria, the treatment of visceral and cutaneous leishmanioses (VL and CL) has been and continues to be based on antimony-containing drugs. It is suspected that high drug selective pressure might favor the emergence of chemoresistant parasites. Although treatment failure is frequently reported during antimonial therapy of both CL and VL, antimonial resistance has never been thoroughly investigated in Algeria. Determining the level of antimonial susceptibility, amongst Leishmania transmitted in Algeria, is of great importance for the development of public health policies. METHODOLOGY/PRINCIPAL FINDINGS Within the framework of the knowledge about the epidemiology of VL and CL amassed during the last 30 years, we sampled Leishmania isolates to determine their susceptibility to antimony. We analyzed a total of 106 isolates including 88 isolates collected between 1976 and 2013 in Algeria from humans, dogs, rodents, and phlebotomines and 18 collected from dogs in France. All the Algerian isolates were collected in 14 localities where leishmaniasis is endemic. The 50% inhibitory concentrations (IC50) of potassium antimony tartrate (the trivalent form of antimony, Sb(III)) and sodium stibogluconate (the pentavalent form of antimony, Sb(V)) were determined in promastigotes and intramacrophage amastigotes, respectively. The epidemiological cutoff (ECOFF) that allowed us to differentiate between Leishmania species causing cutaneous or visceral leishmaniases that were susceptible (S+) or insusceptible (S-) to the trivalent form of antimony was determined. The computed IC50 cutoff values were 23.83 μg/mL and 15.91 μg/mL for VL and CL, respectively. We report a trend of increasing antimony susceptibility in VL isolates during the 30-year period. In contrast, an increase in the frequency of S- phenotypes in isolates causing CL was observed during the same period. In our study, the emergence of S- phenotypes correlates with the inclusion of L. killicki (syn: L. tropica) isolates that cause cutaneous leishmaniasis and that have emerged in Algeria during the last decade. CONCLUSION/SIGNIFICANCE Our results provide insight into the spatiotemporal dynamics of Leishmania antimony susceptibility in Algeria. We highlight the need for the future implementation of an effective methodology to determine the antimony susceptibility status of Leishmania isolates to detect the emergence of and prevent the dissemination of drug-resistant strains.
Collapse
|
3
|
Molecular Chaperones of Leishmania: Central Players in Many Stress-Related and -Unrelated Physiological Processes. BIOMED RESEARCH INTERNATIONAL 2015; 2015:301326. [PMID: 26167482 PMCID: PMC4488524 DOI: 10.1155/2015/301326] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 05/24/2015] [Indexed: 12/12/2022]
Abstract
Molecular chaperones are key components in the maintenance of cellular homeostasis and survival, not only during stress but also under optimal growth conditions. Folding of nascent polypeptides is supported by molecular chaperones, which avoid the formation of aggregates by preventing nonspecific interactions and aid, when necessary, the translocation of proteins to their correct intracellular localization. Furthermore, when proteins are damaged, molecular chaperones may also facilitate their refolding or, in the case of irreparable proteins, their removal by the protein degradation machinery of the cell. During their digenetic lifestyle, Leishmania parasites encounter and adapt to harsh environmental conditions, such as nutrient deficiency, hypoxia, oxidative stress, changing pH, and shifts in temperature; all these factors are potential triggers of cellular stress. We summarize here our current knowledge on the main types of molecular chaperones in Leishmania and their functions. Among them, heat shock proteins play important roles in adaptation and survival of this parasite against temperature changes associated with its passage from the poikilothermic insect vector to the warm-blooded vertebrate host. The study of structural features and the function of chaperones in Leishmania biology is providing opportunities (and challenges) for drug discovery and improving of current treatments against leishmaniasis.
Collapse
|
4
|
Sodji Q, Patil V, Jain S, Kornacki JR, Mrksich M, Tekwani BL, Oyelere AK. The antileishmanial activity of isoforms 6- and 8-selective histone deacetylase inhibitors. Bioorg Med Chem Lett 2014; 24:4826-30. [PMID: 25240614 PMCID: PMC4225773 DOI: 10.1016/j.bmcl.2014.08.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 08/27/2014] [Indexed: 11/23/2022]
Abstract
Histone deacetylase inhibitors (HDACi) pleiotropy is largely due to their nonselective inhibition of various cellular HDAC isoforms. Connecting inhibition of a specific isoform to biological responses and/or phenotypes is essential toward deconvoluting HDACi pleiotropy. The contribution of classes I and II HDACs to the antileishmanial activity of HDACi was investigated using the amastigote and promastigote forms of Leishmania donovani. We observed that the antileishmanial activities of HDACi are largely due to the inhibition of HDAC6-like activity. This observation could facilitate the development of HDACi as antileishmanial agents.
Collapse
Affiliation(s)
- Quaovi Sodji
- School of Chemistry and Biochemistry, Parker H. Petit for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Vishal Patil
- School of Chemistry and Biochemistry, Parker H. Petit for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Surendra Jain
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677-1848, USA
| | - James R Kornacki
- Department of Chemistry and Biomedical Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208-3113, USA
| | - Milan Mrksich
- Department of Chemistry and Biomedical Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208-3113, USA
| | - Babu L Tekwani
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677-1848, USA.
| | - Adegboyega K Oyelere
- School of Chemistry and Biochemistry, Parker H. Petit for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA.
| |
Collapse
|
5
|
Meyer KJ, Shapiro TA. Potent antitrypanosomal activities of heat shock protein 90 inhibitors in vitro and in vivo. J Infect Dis 2013; 208:489-99. [PMID: 23630365 DOI: 10.1093/infdis/jit179] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
African sleeping sickness, caused by the protozoan parasite Trypanosoma brucei, is universally fatal if untreated, and current drugs are limited by severe toxicities and difficult administration. New antitrypanosomals are greatly needed. Heat shock protein 90 (Hsp90) is a conserved and ubiquitously expressed molecular chaperone essential for stress responses and cellular signaling. We investigated Hsp90 inhibitors for their antitrypanosomal activity. Geldanamycin and radicicol had nanomolar potency in vitro against bloodstream-form T. brucei; novobiocin had micromolar activity. In structure-activity studies of geldanamycin analogs, 17-AAG and 17-DMAG were most selective against T. brucei as compared to mammalian cells. 17-AAG treatment sensitized trypanosomes to heat shock and caused severe morphological abnormalities and cell cycle disruption. Both oral and parenteral 17-DMAG cured mice of a normally lethal infection of T. brucei. These promising results support the use of inhibitors to study Hsp90 function in trypanosomes and to expand current clinical development of Hsp90 inhibitors to include T. brucei.
Collapse
Affiliation(s)
- Kirsten J Meyer
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins UniversitySchool of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
6
|
Religa AA, Waters AP. Sirtuins of parasitic protozoa: in search of function(s). Mol Biochem Parasitol 2012; 185:71-88. [PMID: 22906508 PMCID: PMC3484402 DOI: 10.1016/j.molbiopara.2012.08.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/01/2012] [Accepted: 08/02/2012] [Indexed: 01/09/2023]
Abstract
The SIR2 family of NAD+-dependent protein deacetylases, collectively called sirtuins, has been of central interest due to their proposed roles in life-span regulation and ageing. Sirtuins are one group of environment sensors of a cell interpreting external information and orchestrating internal responses at the sub-cellular level, through participation in gene regulation mechanisms. Remarkably conserved across all kingdoms of life SIR2 proteins in several protozoan parasites appear to have both conserved and intriguing unique functions. This review summarises our current knowledge of the members of the sirtuin families in Apicomplexa, including Plasmodium, and other protozoan parasites such as Trypanosoma and Leishmania. The wide diversity of processes regulated by SIR2 proteins makes them targets worthy of exploitation in anti-parasitic therapies.
Collapse
Affiliation(s)
- Agnieszka A Religa
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK.
| | | |
Collapse
|
7
|
Abstract
Parasitic diseases cause significant global morbidity and mortality, particularly in underdeveloped regions of the world. Malaria alone causes ~800000 deaths each year, with children and pregnant women being at highest risk. There is no licensed vaccine available for any human parasitic disease and drug resistance is compromising the efficacy of many available anti-parasitic drugs. This is driving drug discovery research on new agents with novel modes of action. Histone deacetylase (HDAC) inhibitors are being investigated as drugs for a range of diseases, including cancers and infectious diseases such as HIV/AIDS, and several parasitic diseases. This review focuses on the current state of knowledge of HDAC inhibitors targeted to the major human parasitic diseases malaria, schistosomiasis, trypanosomiasis, toxoplasmosis and leishmaniasis. Insights are provided into the unique challenges that will need to be considered if HDAC inhibitors are to be progressed towards clinical development as potential new anti-parasitic drugs.
Collapse
Affiliation(s)
- Katherine T Andrews
- Eskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan, Queensland, Australia.
| | | | | |
Collapse
|
8
|
Guerrant W, Mwakwari SC, Chen PC, Khan SI, Tekwani BL, Oyelere AK. A structure-activity relationship study of the antimalarial and antileishmanial activities of nonpeptide macrocyclic histone deacetylase inhibitors. ChemMedChem 2010; 5:1232-5. [PMID: 20533500 PMCID: PMC3138184 DOI: 10.1002/cmdc.201000087] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Indexed: 11/11/2022]
Affiliation(s)
- William Guerrant
- School of Chemistry and Biochemistry Parker H. Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology, Atlanta, GA 30332-0400 (USA)
| | - Sandra C. Mwakwari
- School of Chemistry and Biochemistry Parker H. Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology, Atlanta, GA 30332-0400 (USA)
| | - Po C. Chen
- School of Chemistry and Biochemistry Parker H. Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology, Atlanta, GA 30332-0400 (USA)
| | - Shabana I. Khan
- National Center for Natural Products Research School of Pharmacy, University of Mississippi University, MS 38677-1848 (USA)
| | - Babu L. Tekwani
- National Center for Natural Products Research School of Pharmacy, University of Mississippi University, MS 38677-1848 (USA)
- Department of Pharmacology, University of Mississippi University, MS 38677-1848 (USA)
| | - Adegboyega K. Oyelere
- School of Chemistry and Biochemistry Parker H. Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology, Atlanta, GA 30332-0400 (USA)
| |
Collapse
|
9
|
Chakrabarty SP, Saikumari YK, Bopanna MP, Balaram H. Biochemical characterization of Plasmodium falciparum Sir2, a NAD+-dependent deacetylase. Mol Biochem Parasitol 2007; 158:139-51. [PMID: 18221799 DOI: 10.1016/j.molbiopara.2007.12.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 11/28/2007] [Accepted: 12/06/2007] [Indexed: 10/22/2022]
Abstract
In Plasmodium falciparum, the causative agent of cerebral malaria, silent information regulator 2 (Sir2) has been implicated in pathogenesis through its role in var gene silencing. P. falciparum Sir2 (PfSir2) in addition to the catalytic core, has a 13 residue N-terminal and 4 residue C-terminal extension over the shorter Archaeoglobus fulgidus Sir2. In this paper, we highlight our studies aimed at understanding the kinetic mechanism of PfSir2 and the role of N- and C-terminal extensions in protein function and oligomerization. Bisubstrate kinetic analysis showed that PfSir2 exhibits a rapid equilibrium ordered sequential mechanism, with peptide binding preceding NAD(+). This study also reports on surfactin as a novel Sir2 inhibitor exhibiting competitive inhibition with respect to NAD(+) and uncompetitive inhibition with acetylated peptide. This inhibition pattern with surfactin provides further support for ordered binding of substrates. Surfactin was also found to be a potent inhibitor of intra-erythrocytic growth of P. falciparum with 50% inhibitory concentration in the low micromolar range. PfSir2, like the yeast homologs (yHst2 and Sir2p), is a trimer in solution. However, dissociation of trimer to monomers in the presence of NAD(+) is characteristic of the parasite enzyme. Oligomerization studies on N- and/or C-terminal deletion constructs of PfSir2 highlight the role of C-terminus of the protein in mediating homotrimerization. N-terminal deletion resulted in reduced catalytic efficiency although substrate affinity was not altered in the constructs. Interestingly, deletion of both the ends relaxed NAD(+) specificity.
Collapse
Affiliation(s)
- Subhra Prakash Chakrabarty
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | | | | | | |
Collapse
|
10
|
Silvestre R, Cordeiro-Da-Silva A, Santarém N, Vergnes B, Sereno D, Ouaissi A. SIR2-deficient Leishmania infantum induces a defined IFN-gamma/IL-10 pattern that correlates with protection. THE JOURNAL OF IMMUNOLOGY 2007; 179:3161-70. [PMID: 17709531 DOI: 10.4049/jimmunol.179.5.3161] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ability to manipulate the Leishmania genome to create genetically modified parasites by introducing or eliminating genes is considered a powerful alternative for developing a new generation vaccine against leishmaniasis. Previously, we showed that the deletion of one allele of the Leishmania infantum silent information regulatory 2 (LiSIR2) locus was sufficient to dramatically affect amastigote axenic proliferation. Furthermore, LiSIR2 single knockout (LiSIR2(+/-)) amastigotes were unable to replicate in vitro inside macrophages. Because this L. infantum mutant persisted in BALB/c mice for up to 6 wk but failed to establish an infection, we tested its ability to provide protection toward a virulent L. infantum challenge. Strikingly, vaccination with a single i.p. injection of LiSIR2(+/-) single knockout elicits complete protection. Thus, vaccinated BALB/c mice showed a reversal of T cell anergy with specific anti-Leishmania cytotoxic activity and high levels of NO production. Moreover, vaccinated mice simultaneously generated specific anti-Leishmania IgG Ab subclasses suggestive of both type 1 and type 2 responses. A strong correlation was found between the elimination of the parasites and an increased Leishmania-specific IFN-gamma/IL-10 ratio. Therefore, we propose that the polarization to a high IFN-gamma/low IL-10 ratio after challenge is a clear indicator of vaccine success. Furthermore these mutants, which presented attenuated virulence, represent a good model to understand the correlatives of protection in visceral leishmaniasis.
Collapse
Affiliation(s)
- Ricardo Silvestre
- Departamento de Bioquímica da Faculdade de Farmácia da Universidade do Porto, Portugal
| | | | | | | | | | | |
Collapse
|