1
|
Jia H, Chu W, Zhang D, Li K, Huang W, Li X. Morphology, Molecular Characterization, and Phylogeny of Travassosius rufus Khalil, 1922 (Strongylidea: Trichostrongylidae), a Parasite from Endangered Sino-Mongolian Beaver ( Castor fiber birulai) in Xinjiang, China. Animals (Basel) 2025; 15:1339. [PMID: 40362155 DOI: 10.3390/ani15091339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/24/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
The genus Travassosius Khalil, 1922, the smallest genus in the subfamily Trichostrongylinae (family Trichostrongylidae), primarily infects the only two extant beaver species worldwide and can be lethal in severe infections. However, the mitochondrial genome evolution of Travassosius remains poorly understood, and its phylogenetic placement within Trichostrongylinae is still unresolved. In this study, we applied both morphological techniques (differential interference contrast microscopy) and molecular tools (nuclear ITS2 and mitochondrial genome) to examine T. rufus Khalil, 1922. Specimens were collected from the Sino-Mongolian beaver, a subspecies of the Eurasian beaver native to the Ulungur River Basin in northern Xinjiang, China. This work presents the first complete mitochondrial genome sequence and annotation of T. rufus, and it is also the first mitochondrial genome reported for the genus Travassosius. The mitochondrial genome of T. rufus measures 13,646 bp and contains 36 genes, including 12 protein-coding genes (PCGs) (excluding atp8), 22 transfer RNA genes, and 2 ribosomal RNA genes. Phylogenetic analysis based on amino acid sequences of 12 mitochondrial PCGs strongly supports the distinctiveness of the genus Travassosius. Additionally, T. rufus appears to be closely related to Nematodirus within Trichostrongylinae. This study also addresses the possible consequences of parasitic infection for the Sino-Mongolian beaver and offers a scientific foundation for conserving this endangered subspecies and managing parasitic diseases in its population.
Collapse
Affiliation(s)
- Huiping Jia
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Wenwen Chu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
- Altay Wildlife Conservation Association, Altay 836599, China
| | - Dong Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Kai Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Wenpu Huang
- Altay Wildlife Conservation Association, Altay 836599, China
| | - Xiaoyun Li
- Altay Wildlife Conservation Association, Altay 836599, China
| |
Collapse
|
2
|
Comprehensive Molecular Characterization of the Mitochondrial Genome of the Takin Lungworm Varestrongylus eleguneniensis (Strongylida: Protostrongylidae). Int J Mol Sci 2022; 23:ijms232113597. [PMID: 36362384 PMCID: PMC9658269 DOI: 10.3390/ijms232113597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
The takin lungworm Varestrongylus eleguneniensis (Strongylida: Protostrongylidae) causes lethal bronchopneumonia and represents severe threats to captive and wild populations. However, until now there has been very limited information available concerning the molecular epidemiology and evolutionary biology of V. eleguneniensis. Mitochondrial genomes (mtDNAs) can provide resources for investigations in these areas and, therefore, can assist with the surveillance and control of this lungworm. Herein, the complete mtDNA of V. eleguneniensis was sequenced and characterized with Illumina pipeline analyses. This circular genome (13,625 bp) encoded twelve protein-coding genes (PCGs), two rRNAs, and twenty-two tRNAs, with notable levels of AT and GC skews. Comparative genomics revealed a purifying selection among PCGs, with cox1 and nad6 having the lowest and the highest evolutionary rate, respectively. Genome-wide phylogenies showed a close relationship between V. eleguneniensis and Protostrongylus rufescens in Strongylida. Single gene (PCGs or rRNAs)-based phylogenies indicated that cox1 and nad5 genes shared the same family-level topology with that inferred from genomic datasets, suggesting that both genes could be suitable genetic markers for evolutionary and phylogenetic studies of Strongylida species. This was the first mtDNA of any member of the genus Varestrongylus, and its comprehensive molecular characterization represents a new resource for systematic, population genetic and evolutionary biological studies of Varestrongylus lungworms in wildlife.
Collapse
|
3
|
Carreno RA, Nadler SA. PHYLOGENETIC ANALYSIS OF THE LUNGWORMS (NEMATODA: METASTRONGYLOIDEA) INFERRED USING NUCLEAR RIBOSOMAL AND MITOCHONDRIAL DNA SEQUENCES. J Parasitol 2022; 108:441-452. [PMID: 36197732 DOI: 10.1645/21-124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Phylogenetic relationships among the mammal-parasitic lungworms (Metastrongyloidea) were inferred using small- and large-subunit ribosomal DNA sequences together with 12S ribosomal mtDNA sequences. Maximum parsimony and Bayesian inference methods were used from optimal alignments and those filtered for alignment ambiguity. Analysis of 30 ingroup sequences using ribosomal DNA sequences yielded a single most parsimonious tree. Monophyly of the Metastrongyloidea was supported, but there was no support for monophyly of any of the 7 families as they have been traditionally defined. Parafilaroides decorus, an abursate lungworm of pinnipeds currently classified in the Filaroididae, was nested within a clade containing members of the Pseudaliidae, parasites of cetaceans. The tree also shows clades somewhat resembling the traditional familial divisions of the Metastrongyloidea, but in all groups, paraphyletic relationships were recovered. In a combined analysis of nuclear rDNA and 12S mtDNA, maximum parsimony and Bayesian analyses showed similar patterns to those observed with only nuclear rDNA sequences. Based on the phylogeny, the respiratory tract was inferred to be the ancestral predilection site for Metastrongyloidea, with multiple evolutionary invasions of extrapulmonary sites such as sinuses, circulatory system, and meninges. Similarly, the ancestral host was inferred to be a carnivore with subsequent colonization events into marsupial, rodent, artiodactyl, pinniped, and cetacean hosts.
Collapse
Affiliation(s)
- Ramon A Carreno
- Department of Zoology, Ohio Wesleyan University, Delaware, Ohio 43015
| | - Steven A Nadler
- Department of Entomology and Nematology, University of California, Davis, California 95616
| |
Collapse
|
4
|
Tian J, Du J, Han J, Li D, Song X. Complete Mitochondrial Genome of the South American Fur Seal Arctocephalus australis (Carnivora: Otariidae) and Its Phylogenetic Implications. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421050124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
New host and geographical records for Parafilaroides normani (Nematoda: Filaroididae) Dailey, 2009 in South American fur seal, Arctocephalus australis, from southern Brazil. J Helminthol 2020; 94:e202. [PMID: 33059788 DOI: 10.1017/s0022149x20000826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Lungworms are a common finding in seals and fur seals around the world. However, from existing records, the biogeographical distribution of filaroid helminths appears to be restricted, and these parasites are endemic in only certain areas and species, mainly in the Northern Hemisphere. The occurrence of infection in pinniped species in the Southern Hemisphere is scarce. The objective of this work is to verify the prevalence of lungworms in Arctocephalus australis in waters off the southern coast of Brazil. Twenty subadult specimens of A. australis found recently dead on the southern coast of Brazil were necropsied and their lungs were examined. Parasitic cysts were found in only one specimen (prevalence of 5%). The helminths were morphologically identified as Parafilaroides normani (Metastrongyloidea: Filaroididae). This helminth species has been reported in pinnipeds from Australia, New Zealand and South Africa. This is the first record of P. normani in A. australis and for the western South Atlantic, providing additional data regarding the biogeographic distribution of the parasite.
Collapse
|
6
|
Almeida LRD, Souza JGRD, Santos HA, Torres EJL, Vilela RDV, Cruz OMS, Rodrigues L, Pereira CADJ, Maldonado Junior A, Lima WDS. Angiostrongylus minasensis n. sp.: new species found parasitizing coatis (Nasua nasua) in an urban protected area in Brazil. ACTA ACUST UNITED AC 2020; 29:e018119. [PMID: 32049148 DOI: 10.1590/s1984-29612019103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/19/2019] [Indexed: 11/22/2022]
Abstract
Currently, there are 21 species of Angiostrongylus that parasitize the pulmonary or mesenteric arteries of wild and domestic rodents, felids, canids and human. Species of Angiostrongylus have cosmopolitan distribution covering tropical, subtropical and temperate regions. The procyonid Nasua nasua (coati) is a reservoir host for a wide variety of parasites that may be harmful to its populations or may contain etiological agents with zoonotic potential. In urban areas, coatis are usually found in close association with humans and domestic animals. We morphologically and molecularly characterized a new species of Angiostrongylus found in N. nasua in a protected area within Belo Horizonte, Brazil. The new species of Angiostrongylus differs from other species of the same genus in terms of the length and bifurcation level of the lateral and ventral rays, the length of spicules and female tail morphology. Molecular phylogenetic results based on the mitochondrial cytochrome c oxidase subunit 1 gene suggest that the newly identified species belongs to a genetic lineage that is separate from other species of Angiostrongylus. This new species was collected from the mesenteric arteries of N. nasua. It was named Angiostrongylus minasensis n. sp..
Collapse
Affiliation(s)
- Lara Ribeiro de Almeida
- Laboratório de Helmintologia Veterinária, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, MG, Brasil
| | - Joyce Gonçalves Rosário de Souza
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Fundação Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, RJ, Brasil
| | - Hudson Andrade Santos
- Laboratório de Helmintologia Veterinária, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, MG, Brasil
| | - Eduardo José Lopes Torres
- Laboratório de Helmintologia Romero Lascasas Porto, Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Centro Biomédico, Universidade do Estado do Rio de Janeiro - UERJ, Rio de Janeiro, RJ, Brasil
| | - Roberto do Val Vilela
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Fundação Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, RJ, Brasil
| | - Olívia Monique Soares Cruz
- Laboratório de Helmintologia Veterinária, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, MG, Brasil
| | - Leonardo Rodrigues
- Escola Estadual de Ensino Fundamental e Médio Graça Aranha, Secretaria da Educação - SEDU, Santa Maria de Jetibá, ES, Brasil
| | - Cíntia Aparecida de Jesus Pereira
- Laboratório de Helmintologia Veterinária, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, MG, Brasil
| | - Arnaldo Maldonado Junior
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Fundação Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, RJ, Brasil
| | - Walter Dos Santos Lima
- Laboratório de Helmintologia Veterinária, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, MG, Brasil
| |
Collapse
|
7
|
Abstract
Marine mammals are long-lived top predators with vagile lifestyles, which often inhabit remote environments. This is especially relevant in the oceanic waters around New Zealand and Australia where cetaceans and pinnipeds are considered as vulnerable and often endangered due to anthropogenic impacts on their habitat. Parasitism is ubiquitous in wildlife, and prevalence of parasitic infections as well as emerging diseases can be valuable bioindicators of the ecology and health of marine mammals. Collecting information about parasite diversity in marine mammals will provide a crucial baseline for assessing their impact on host and ecosystem ecology. New studies on marine mammals in New Zealand and Australian waters have recently added to our knowledge of parasite prevalence, life cycles and taxonomic relationships in the Australasian region, and justify a first host-parasite checklist encompassing all available data. The present checklist comprises 36 species of marine mammals, and 114 species of parasites (helminths, arthropods and protozoans). Mammal species occurring in New Zealand and Australian waters but not included in the checklist represent gaps in our knowledge. The checklist thus serves both as a guide for what information is lacking, as well as a practical resource for scientists working on the ecology and conservation of marine mammals.
Collapse
|
8
|
Yong HS, Song SL, Eamsobhana P, Lim PE. Complete mitochondrial genome of Angiostrongylus malaysiensis lungworm and molecular phylogeny of Metastrongyloid nematodes. Acta Trop 2016; 161:33-40. [PMID: 27207134 DOI: 10.1016/j.actatropica.2016.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/29/2016] [Accepted: 05/06/2016] [Indexed: 11/29/2022]
Abstract
Angiostrongylus malaysiensis is a nematode parasite of various rat species. When first documented in Malaysia, it was referred to as A. cantonensis. Unlike A. cantonensis, the complete mitochondrial genome of A. malaysiensis has not been documented. We report here its complete mitogenome, its differentiation from A. cantonensis, and the phylogenetic relationships with its congeners and other Metastrongyloid taxa. The whole mitogenome of A. malaysiensis had a total length of 13,516bp, comprising 36 genes (12 PCGs, 2 rRNA and 22 tRNA genes) and a control region. It is longer than that of A. cantonensis (13,509bp). Its control region had a long poly T-stretch of 12bp which was not present in A. cantonensis. A. malaysiensis and A. cantonensis had identical start codon for the 12 PCGs, but four PCGs (atp6, cob, nad2, nad6) had different stop codon. The cloverleaf structure for the 22 tRNAs was similar in A. malaysiensis and A. cantonensis except the TΨC-arm was absent in trnV for A. malaysiensis but present in A. cantonensis. The Angiostrongylus genus was monophyletic, with A. malaysiensis and A. cantonensis forming a distinct lineage from that of A. costaricensis and A. vasorum. The genetic distance between A. malaysiensis and A. cantonensis was p=11.9% based on 12 PCGs, p=9.5% based on 2 rRNA genes, and p=11.6% based on 14 mt-genes. The mitogenome will prove useful for studies on phylogenetics and systematics of Angiostrongylus lungworms and other Metastrongyloid nematodes.
Collapse
Affiliation(s)
- Hoi-Sen Yong
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia; Chancellery High Impact Research, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Sze-Looi Song
- Chancellery High Impact Research, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Praphathip Eamsobhana
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Phaik-Eem Lim
- Institute of Ocean and Earth Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
The complete mitochondrial genome of Gasterophilus intestinalis, the first representative of the family Gasterophilidae. Parasitol Res 2016; 115:2573-9. [PMID: 26987644 DOI: 10.1007/s00436-016-5002-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/09/2016] [Indexed: 10/22/2022]
Abstract
Gasterophilus spp. (Diptera: Gasterophilidae) has a worldwide distribution; however, no complete mitochondrial (mt) genome data is available for Diptera which has greatly impeded population genetics, phylogenetics, and systematics studies in Gasterophilidae. Mt genome is known to provide genetic markers for investigations in these areas, but complete mt genomic datasets have been lacking for many Gasterophilidae species. Herein, we present the complete mt genome of the third-stage larvae (L3) of Gasterophilus intestinalis from the stomach wall of naturally infected horses in Heilongjiang province (HLJ) and Xinjiang Uygur Autonomous Region (XJ), China. The complete mt genome of G. intestinalis was 15,687 bp (HLJ) and 15,660 bp (XJ) in length and consists of 37 genes, including 13 genes for proteins, 22 genes for tRNA, and 2 genes for rRNA. The gene arrangement is the same as those of Oestroidae species. Phylogenetic analyses using concatenated amino acid sequences of 12 protein-coding genes by Bayesian inference (BI) and maximum likelihood (ML), suggested that the families Gasterophilidae and Oestroidae were more closely related than to Tachinidae. The mt genome of G. intestinalis represents the first mt genome of any member of the family Gasterophilidae. These data provide novel mtDNA markers for studying the molecular epidemiology and population genetics of the G. intestinalis and its congeners.
Collapse
|