1
|
De Elías-Escribano A, Artigas P, Salas-Coronas J, Luzon-Garcia MP, Reguera-Gomez M, Cabeza-Barrera MI, Vázquez-Villegas J, Boissier J, Mas-Coma S, Bargues MD. Schistosoma mansoni x S. haematobium hybrids frequently infecting sub-Saharan migrants in southeastern Europe: Egg DNA genotyping assessed by RD-PCR, sequencing and cloning. PLoS Negl Trop Dis 2025; 19:e0012942. [PMID: 40163525 PMCID: PMC11984978 DOI: 10.1371/journal.pntd.0012942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 04/10/2025] [Accepted: 02/26/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Globalization and neglected tropical diseases (NTDs) are increasingly closely linked. In recent years, Spain and Southern Europe are experiencing a considerable increase in the influx of migrants infected by NTDs, mainly from West African countries. This study focuses on imported schistosomiasis and the entry into Europe of hetero-specific hybrids between two human species, Schistosoma mansoni and S. haematobium, causing intestinal and urogenital schistosomiasis respectively. METHODOLOGY/PRINCIPAL FINDINGS Individualized genetic identification by molecular analysis using RD-PCR, sequencing and cloning of nuclear rDNA and mtDNA of 134 Schistosoma eggs was performed, including 41 lateral-spined and 84 terminal-spined eggs from urine, and nine lateral-spined eggs from stools. These eggs were recovered from six migrant males from Senegal, Guinea-Bissau, Côte d'Ivoire and Mali, who shared ectopic shedding of S. mansoni-like eggs in their urine. A high hybridization complexity was detected in the eggs of these patients, involving three Schistosoma species. The six patients were infected by S. mansoni x S. haematobium hybrids shedding S. mansoni-like eggs, and also S. haematobium x S. curassoni hybrids shedding S. haematobium-like eggs. SmxSh hybrids were mostly detected in S. mansoni-like eggs from urine (94.59%), whereas in feces the detection of those hybrids was less frequent (5.41%). CONCLUSIONS/SIGNIFICANCE This study contributes to: (i) a better understanding of the heterospecific hybrids between S. mansoni and S. haematobium from the genetic point of view; (ii) it shows the frequency with which they are entering non-endemic countries, such as Spain and consequently in Europe; (iii) it determines the diversity of hybrid eggs and haplotypes that can occur within a single patient, e.g., up to two types of hybrids involving three Schistosoma species and up to six different haplotypes; (iv) it provides information to be considered in clinical presentations, diagnosis, responses to treatment and epidemiological impact in relation to possible transmission and establishment in non-endemic areas.
Collapse
Affiliation(s)
- Alejandra De Elías-Escribano
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Patricio Artigas
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Joaquín Salas-Coronas
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Tropical Medicine Unit, Hospital Universitario Poniente, El Ejido, Almería, Spain
- International Health Research Group of Almería (GISIA), Faculty of Health Sciences, University of Almería, La Cañada de San Urbano, Almería, Spain
| | - María Pilar Luzon-Garcia
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Tropical Medicine Unit, Hospital Universitario Poniente, El Ejido, Almería, Spain
- International Health Research Group of Almería (GISIA), Faculty of Health Sciences, University of Almería, La Cañada de San Urbano, Almería, Spain
| | - Marta Reguera-Gomez
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | | | - José Vázquez-Villegas
- Tropical Medicine Unit, Distrito Sanitario Poniente de Almería, El Ejido, Almería, Spain
| | - Jerôme Boissier
- IHPE, Univ. Montpellier, CNRS, IFREMER Université de Perpignan Via Domitia, Perpignan, France
| | - Santiago Mas-Coma
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - María Dolores Bargues
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Kincaid-Smith J, Savassi BSAE, Senghor B, Diagne C, Niang Y, Kane M, Tatard C, Brouat C, Granjon L. African schistosomes in small mammal communities: Perspectives from a spatio-temporal survey in the vicinity of Lake Guiers, Senegal. PLoS Negl Trop Dis 2024; 18:e0012721. [PMID: 39715271 PMCID: PMC11706494 DOI: 10.1371/journal.pntd.0012721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 01/07/2025] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Schistosomiasis is a neglected tropical disease of public health significance. In view of its elimination as a public health problem by 2030, adopting a One Health approach is necessary, considering its multidimensional nature. Animal reservoirs, in particular, pose a significant threat to schistosomiasis control in Africa and beyond. In this study, we conducted a spatio-temporal survey of Schistosoma infections in small mammal communities and intermediate snail hosts in the vicinity of Lake Guiers in northern Senegal. Sampling campaigns were undertaken four times between April 2021 and August 2022 around eight villages. A total of 534 small mammals of four species, primarily Hubert's multimammate mice Mastomys huberti, were captured. Out of 498 individuals examined, only 18 rodents (17 M. huberti and 1 Arvicanthis niloticus) were infected with schistosomes. The infection rates in M. huberti varied over time (prevalence range: 2.4% to 9.3%, intensity range: 4 to 132), and space (prevalence range: 3.1% to 40%, intensity range: 2 to 110) and were higher in adult hosts captured during or just after the rainy season, a time when older individuals dominate in rodent populations. Using a multi-locus molecular approach (cox1 and ITS) on Schistosoma larvae (cercariae and miracidia) and adult worms, we identified Schistosoma mansoni as the most widespread species. We also detected Schistosoma bovis and Schistosoma haematobium in M. huberti from one locality (Temeye). Although no Schistosoma hybrids were found, the discovery of a male S. mansoni and a female S. bovis pair raises concerns about potential hybridization patterns that could occur in rodents. Finally, three snail species were found infected (25 Biomphalaria pfeifferi, 3 Bulinus truncatus and 1 Bulinus senegalensis) including with S. mansoni, S. bovis, S. haematobium and S. haematobium x S. bovis hybrids. Our findings highlight the spatial-temporal variations of Schistosoma infections in rodents and emphasize the need for fine-scale monitoring over time and space for effective One Health measures and ensuring the sustainability of schistosomiasis control efforts.
Collapse
Affiliation(s)
- Julien Kincaid-Smith
- CBGP, IRD, CIRAD, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Boris Sègnito A. E. Savassi
- Centre de Recherche pour la lutte contre les Maladies Infectieuses Tropicales (CReMIT/TIDRC), Université d’Abomey-Calavi, Abomey-Calavi, Bénin
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France
| | - Bruno Senghor
- VITROME, Campus International IRD-UCAD de Hann, Dakar, Sénégal
| | - Christophe Diagne
- CBGP, IRD, CIRAD, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | | | - Mamadou Kane
- CBGP-BIOPASS 2, IRD, Campus IRD-ISRA de Bel-Air, Dakar, Sénégal
| | - Caroline Tatard
- CBGP, IRD, CIRAD, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Carine Brouat
- CBGP, IRD, CIRAD, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Laurent Granjon
- CBGP, IRD, CIRAD, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| |
Collapse
|
3
|
Juhász A, Makaula P, Cunningham LJ, Jones S, Archer J, Lally D, Namacha G, Kapira D, Chammudzi P, LaCourse EJ, Seto E, Kayuni SA, Musaya J, Stothard JR. Revealing bovine schistosomiasis in Malawi: Connecting human and hybrid schistosomes within cattle. One Health 2024; 19:100761. [PMID: 39021560 PMCID: PMC11253675 DOI: 10.1016/j.onehlt.2024.100761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/22/2024] [Indexed: 07/20/2024] Open
Abstract
In Malawi, the putative origin of a newly described Schistosoma haematobium-mattheei hybrid human schistosome was assessed upon a seminal molecular parasitological survey of cattle. Using miracidia hatch test (MHT) and carcass inspection at slaughter, mean prevalence of bovine schistosomiasis was 49.1% (95% CI: 43.7-54.6%) and 10.3% (95% CI: 6.0-16.2%) respectively, though significant spatial heterogeneity was noted. Approximately 2.0% of infected cattle, and only those from Mangochi District, shed S. haematobium-mattheei and/or S. haematobium in faeces. To quantify schistosome (re)infection dynamics, where a S. haematobium-mattheei hybrid was present, we undertook a novel pilot GPS-datalogging sub-study within a specific herd of cattle (n = 8) on the Lake Malawi shoreline, alongside a praziquantel (40 mg/kg) treatment efficacy spot check. At sub-study baseline, all GPS-tagged cattle had proven daily water contact with the lake. Each animal was patently infected upon MHT, with older animals shedding less miracidia. At one month review, whilst parasitological cure was 100.0%, from six weeks onwards, (re)infection was first noted in the youngest animal. By three-month review, all animals were patently (re)infected though only miracidia of S. mattheei were recovered, albeit in much lower numbers. To conclude, infection with S. mattheei is particularly common in cattle and demonstrates a previously cryptic burden of bovine schistosomiasis. Within Mangochi District, bovine transmission of both S. haematobium-mattheei hybrids and S. haematobium are now incriminated, with unequivocal evidence of contemporary zoonotic spill-over. Future control of urogenital schistosomiasis here in the southern region needs to develop, then successfully integrate, a One Health approach with appropriate mitigating strategies to reduce and/or contain bovine schistosomiasis transmission.
Collapse
Affiliation(s)
- Alexandra Juhász
- Liverpool School of Tropical Medicine, Liverpool, UK
- Semmelweis University, Budapest, Hungary
| | - Peter Makaula
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
- Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - Sam Jones
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - John Archer
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - David Lally
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
| | - Gladys Namacha
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
| | - Donales Kapira
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
| | | | | | | | - Sekeleghe A. Kayuni
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
- Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Janelisa Musaya
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
- Kamuzu University of Health Sciences, Blantyre, Malawi
| | | |
Collapse
|
4
|
Mathieu-Bégné E, Kincaid-Smith J, Chaparro C, Allienne JF, Rey O, Boissier J, Toulza E. Schistosoma haematobium and Schistosoma bovis first generation hybrids undergo gene expressions changes consistent with species compatibility and heterosis. PLoS Negl Trop Dis 2024; 18:e0012267. [PMID: 38954732 PMCID: PMC11249247 DOI: 10.1371/journal.pntd.0012267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/15/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
When two species hybridize, the two parental genomes are brought together and some alleles might interact for the first time. To date, the extent of the transcriptomic changes in first hybrid generations, along with their functional outcome constitute an important knowledge gap, especially in parasite species. Here we explored the molecular and functional outcomes of hybridization in first-generation hybrids between the blood fluke parasites Schistosoma haematobium and S. bovis. Through a transcriptomic approach, we measured gene expression in both parental species and hybrids. We described and quantified expression profiles encountered in hybrids along with the main biological processes impacted. Up to 7,100 genes fell into a particular hybrid expression profile (intermediate between the parental expression levels, over-expressed, under-expressed, or expressed like one of the parental lines). Most of these genes were different depending on the direction of the parental cross (S. bovis mother and S. haematobium father or the reverse) and depending on the sex. For a given sex and cross direction, the vast majority of genes were hence unassigned to a hybrid expression profile: either they were differentially expressed genes but not typical of any hybrid expression profiles or they were not differentially expressed neither between hybrids and parental lines nor between parental lines. The most prevalent profile of gene expression in hybrids was the intermediate one (24% of investigated genes). These results suggest that transcriptomic compatibility between S. haematobium and S. bovis remains quite high. We also found support for an over-dominance model (over- and under-expressed genes in hybrids compared to parental lines) potentially associated with heterosis. In females in particular, processes such as reproductive processes, metabolism and cell interactions as well as signaling pathways were indeed affected. Our study hence provides new insight on the biology of Schistosoma hybrids with evidences supporting compatibility and heterosis.
Collapse
Affiliation(s)
| | - Julien Kincaid-Smith
- IHPE, Université de Montpellier, CNRS, Ifremer, Université Perpignan Via Domitia, Perpignan, France
- CBGP, IRD, CIRAD, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Cristian Chaparro
- IHPE, Université de Montpellier, CNRS, Ifremer, Université Perpignan Via Domitia, Perpignan, France
| | - Jean-François Allienne
- IHPE, Université de Montpellier, CNRS, Ifremer, Université Perpignan Via Domitia, Perpignan, France
| | - Olivier Rey
- IHPE, Université de Montpellier, CNRS, Ifremer, Université Perpignan Via Domitia, Perpignan, France
| | - Jérôme Boissier
- IHPE, Université de Montpellier, CNRS, Ifremer, Université Perpignan Via Domitia, Perpignan, France
| | - Eve Toulza
- IHPE, Université de Montpellier, CNRS, Ifremer, Université Perpignan Via Domitia, Perpignan, France
| |
Collapse
|
5
|
Geographical Influence on Morphometric Variability of Genetically “Pure” Schistosoma haematobium Eggs from Sub-Saharan Migrants in Spain. Trop Med Infect Dis 2023; 8:tropicalmed8030144. [PMID: 36977146 PMCID: PMC10054267 DOI: 10.3390/tropicalmed8030144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Schistosome eggs play a key role in schistosomiasis diagnosis and research. The aim of this work is to morphogenetically study the eggs of Schistosoma haematobium found in sub-Saharan migrants present in Spain, analyzing their morphometric variation in relation to the geographical origin of the parasite (Mali, Mauritania and Senegal). Only eggs considered “pure” S. haematobium by genetic characterization (rDNA ITS-2 and mtDNA cox1) have been used. A total of 162 eggs obtained from 20 migrants from Mali, Mauritania and Senegal were included in the study. Analyses were made by the Computer Image Analysis System (CIAS). Following a previously standardized methodology, seventeen measurements were carried out on each egg. The morphometric analysis of the three morphotypes detected (round, elongated and spindle) and the biometric variations in relation to the country of origin of the parasite on the egg phenotype were carried out by canonical variate analysis. Mahalanobis distances, when all egg measurements were analyzed, showed differences between: (i) Mali-Mauritania, Mali-Senegal and Mauritania-Senegal in the round morphotype; (ii) Mali-Mauritania and Mauritania-Senegal in the elongated morphotype; and (iii) Mauritania-Senegal in the spindle morphotype. Mahalanobis distances, when spine variables were analyzed, showed differences between Mali-Senegal in the round morphotype. In conclusion, this is the first phenotypic study performed on individually genotyped “pure” S. haematobium eggs, allowing the assessment of the intraspecific morphological variations associated with the geographical origin of the schistosome eggs.
Collapse
|
6
|
Morphometric analysis of schistosome eggs recovered from human urines in communities along the shoreline of Oyan River Dam in Ogun State, Nigeria. J Helminthol 2023; 96:e89. [PMID: 36621866 DOI: 10.1017/s0022149x22000815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
There are growing concerns that communities characterized with surface water, where both humans and livestock interact for agricultural, domestic, cultural and recreational purposes, are likely to support hybridization between schistosome species infecting humans and livestock. This study therefore investigated the morphometrics of schistosome eggs recovered from human urine samples in four schistosomiasis endemic communities (Imala-Odo, Abule-Titun, Apojula and Ibaro-Oyan) along the banks of Oyan River Dam in Ogun State, Nigeria. Recovered eggs were counted, photographed, and measured with IC Measure™ for total length, maximum width and a ratio of egg shape. A total of 1984 Schistosoma eggs were analysed. Two major egg morphotypes were identified: the first represented 67.8% of the eggs, with the typical round to oval shape and mean length and width of 166 μm, 66.8 μm, respectively; the second represented 32.2% of the eggs and are more elongated, with a mean length of 198 μm, and width of 71.3 μm. Our results revealed significant variations in sizes of the schistosome eggs recovered (length: t = -35.374, degrees of freedom (df) = 1982, P = 0.000; weight: t = -10.431, df = 1982, P = 0.000), with the atypical shaped eggs appearing more elongated than expected. These eggs might represent individuals with some degree of contribution from Schistosoma bovis or possibly other Schistosoma species known to be present in Nigeria. Hence, this observation calls for further molecular studies to establish the genetic information about the miracidia from both atypical and typical eggs. It is also important to establish the presence of bona fide S. bovis infection in cattle and vector snails in the presumptive areas of hybridization.
Collapse
|
7
|
Marascio N, Loria MT, Lamberti AG, Pavia G, Adams NJ, Quirino A, Divenuto F, Mazzitelli M, Greco G, Trecarichi EM, Perandin F, Bisoffi Z, Webster BL, Liberto MC, Torti C, Matera G. Molecular characterization of Schistosoma infections in African migrants: identification of a Schistosoma haematobium-bovis hybrid in bladder biopsies. J Travel Med 2022; 29:6485185. [PMID: 34962994 DOI: 10.1093/jtm/taab194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/09/2021] [Indexed: 11/13/2022]
Abstract
Atypical Schistosoma haematobium eggs were found in a bladder biopsy from an African migrant with severe Schistosomiasis.
Amplification of mitochondrial (cox 1) and genomic (ITS2) DNA identified the presence of a S. haematobium-Schistosoma bovis hybrid.
Phylogenetic analysis clustered the hybrid sequence with other sequences from western Africa.
Collapse
Affiliation(s)
- Nadia Marascio
- Department of Health Sciences, Unit of Microbiology, University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro 88100, Italy
| | - Maria Teresa Loria
- Department of Health Sciences, Unit of Microbiology, University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro 88100, Italy
| | - Angelo Giuseppe Lamberti
- Department of Health Sciences, Unit of Microbiology, University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro 88100, Italy
| | - Grazia Pavia
- Department of Health Sciences, Unit of Microbiology, University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro 88100, Italy
| | - Neill James Adams
- Department of Health Sciences, Unit of Microbiology, University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro 88100, Italy
| | - Angela Quirino
- Department of Health Sciences, Unit of Microbiology, University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro 88100, Italy
| | - Francesca Divenuto
- Department of Health Sciences, Unit of Microbiology, University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro 88100, Italy
| | - Maria Mazzitelli
- Department of Medical and Surgical Sciences, Unit of Infectious and Tropical Diseases, "Magna Graecia" University of Catanzaro, Viale Europa, Catanzaro 88100, Italy
| | - Giuseppe Greco
- Department of Medical and Surgical Sciences, Unit of Infectious and Tropical Diseases, "Magna Graecia" University of Catanzaro, Viale Europa, Catanzaro 88100, Italy
| | - Enrico Maria Trecarichi
- Department of Medical and Surgical Sciences, Unit of Infectious and Tropical Diseases, "Magna Graecia" University of Catanzaro, Viale Europa, Catanzaro 88100, Italy
| | - Francesca Perandin
- Department of Infectious Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, via Don A. Sempreboni 5, Negrar di Valpolicella, Verona 37024, Italy
| | - Zeno Bisoffi
- Department of Infectious Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, via Don A. Sempreboni 5, Negrar di Valpolicella, Verona 37024, Italy.,Department of Diagnostics and Public Health, University of Verona, Via S. Francesco 22, Verona 37129, Italy
| | - Bonnie L Webster
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Maria Carla Liberto
- Department of Health Sciences, Unit of Microbiology, University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro 88100, Italy
| | - Carlo Torti
- Department of Medical and Surgical Sciences, Unit of Infectious and Tropical Diseases, "Magna Graecia" University of Catanzaro, Viale Europa, Catanzaro 88100, Italy
| | - Giovanni Matera
- Department of Health Sciences, Unit of Microbiology, University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro 88100, Italy
| |
Collapse
|
8
|
Miranda GS, Rodrigues JGM, Silva JKADO, Camelo GMA, Silva-Souza N, Neves RH, Machado-Silva JR, Negrão-Corrêa DA. New challenges for the control of human schistosomiasis: The possible impact of wild rodents in Schistosoma mansoni transmission. Acta Trop 2022; 236:106677. [PMID: 36063905 DOI: 10.1016/j.actatropica.2022.106677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/27/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
Schistosomiasis is a neglected parasitic disease caused by digenean trematodes from the genus Schistosoma that affects millions of people worldwide. Despite efforts to control its transmission, this disease remains active within several endemic regions of Africa, Asia, and the Americas. In addition to the deficits in sanitation and educational structure, another major obstacle hindering the eradication of schistosomiasis is the ability of Schistosoma spp. to naturally infect multiple vertebrate hosts, particularly wild rodents. Due to climate change and other anthropogenic disturbances, contact between humans and wild animals has increased, and this has contributed to more frequent interactions between Schistosoma species that typically infect different hosts. This new transmission dynamic involving Schistosoma spp., humans, wild rodents, and livestock could potentially increase the frequency of Schistosoma hybridization and the establishment of new genotypes and strains. Although it is not currently possible to precisely measure how this biological phenomenon affects the epidemiology and morbidity of schistosomiasis, we speculate that these Schistosoma variants may negatively impact control strategies, treatment regimens, and disease burden in humans. In the present study, we discuss the natural infections of wild rodents with Schistosoma spp., the role of these animals as Schistosoma spp. reservoirs, and how they may select hybrids and strains of Schistosoma mansoni. We also discuss measures required to shed light on the actual role of the wild rodents Nectomys squamipes and Holochilus sciureus in the transmission and morbidity of schistosomiasis in Brazil.
Collapse
Affiliation(s)
- Guilherme Silva Miranda
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, Belo Horizonte, MG CEP: 31270-010, Brazil; Department of Biology, Federal Institute of Education, Science and Technology of Maranhão, São Raimundo das Mangabeiras, Brazil
| | - João Gustavo Mendes Rodrigues
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, Belo Horizonte, MG CEP: 31270-010, Brazil
| | - Jeferson Kelvin Alves de Oliveira Silva
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, Belo Horizonte, MG CEP: 31270-010, Brazil
| | - Genil Mororó Araújo Camelo
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, Belo Horizonte, MG CEP: 31270-010, Brazil
| | - Nêuton Silva-Souza
- Department of Chemistry and Biology, State University of Maranhão, São Luis, Brazil
| | - Renata Heisler Neves
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Biomedical Center, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Roberto Machado-Silva
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Biomedical Center, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Deborah Aparecida Negrão-Corrêa
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, Belo Horizonte, MG CEP: 31270-010, Brazil.
| |
Collapse
|
9
|
Berger DJ, Léger E, Sankaranarayanan G, Sène M, Diouf ND, Rabone M, Emery A, Allan F, Cotton JA, Berriman M, Webster JP. Genomic evidence of contemporary hybridization between Schistosoma species. PLoS Pathog 2022; 18:e1010706. [PMID: 35939508 PMCID: PMC9387932 DOI: 10.1371/journal.ppat.1010706] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/18/2022] [Accepted: 06/27/2022] [Indexed: 11/19/2022] Open
Abstract
Hybridization between different species of parasites is increasingly being recognised as a major public and veterinary health concern at the interface of infectious diseases biology, evolution, epidemiology and ultimately control. Recent research has revealed that viable hybrids and introgressed lineages between Schistosoma spp. are prevalent across Africa and beyond, including those with zoonotic potential. However, it remains unclear whether these hybrid lineages represent recent hybridization events, suggesting hybridization is ongoing, and/or whether they represent introgressed lineages derived from ancient hybridization events. In human schistosomiasis, investigation is hampered by the inaccessibility of adult-stage worms due to their intravascular location, an issue which can be circumvented by post-mortem of livestock at abattoirs for Schistosoma spp. of known zoonotic potential. To characterise the composition of naturally-occurring schistosome hybrids, we performed whole-genome sequencing of 21 natural livestock infective schistosome isolates. To facilitate this, we also assembled a de novo chromosomal-scale draft assembly of Schistosoma curassoni. Genomic analyses identified isolates of S. bovis, S. curassoni and hybrids between the two species, all of which were early generation hybrids with multiple generations found within the same host. These results show that hybridization is an ongoing process within natural populations with the potential to further challenge elimination efforts against schistosomiasis.
Collapse
Affiliation(s)
- Duncan J. Berger
- Wellcome Sanger Institute, Hinxton, United Kingdom
- Royal Veterinary College, University of London, London, United Kingdom
| | - Elsa Léger
- Royal Veterinary College, University of London, London, United Kingdom
- London Centre for Neglected Tropical Diseases Research, Imperial College Faculty of Medicine, London, United Kingdom
| | | | - Mariama Sène
- Unité de Formation et de Recherche des Sciences Agronomiques, d’Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint-Louis, Senegal
| | - Nicolas D. Diouf
- Unité de Formation et de Recherche des Sciences Agronomiques, d’Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint-Louis, Senegal
| | - Muriel Rabone
- The Natural History Museum, Department of Life Sciences, Cromwell Road, London, United Kingdom
| | - Aidan Emery
- The Natural History Museum, Department of Life Sciences, Cromwell Road, London, United Kingdom
| | - Fiona Allan
- The Natural History Museum, Department of Life Sciences, Cromwell Road, London, United Kingdom
- Pelagic Ecology Research Group, Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - James A. Cotton
- Wellcome Sanger Institute, Hinxton, United Kingdom
- London Centre for Neglected Tropical Diseases Research, Imperial College Faculty of Medicine, London, United Kingdom
| | - Matthew Berriman
- Wellcome Sanger Institute, Hinxton, United Kingdom
- London Centre for Neglected Tropical Diseases Research, Imperial College Faculty of Medicine, London, United Kingdom
| | - Joanne P. Webster
- Royal Veterinary College, University of London, London, United Kingdom
- London Centre for Neglected Tropical Diseases Research, Imperial College Faculty of Medicine, London, United Kingdom
| |
Collapse
|
10
|
Sánchez-Marqués R, Mas-Coma S, Salas-Coronas J, Boissier J, Bargues MD. Research on Schistosomiasis in the Era of the COVID-19 Pandemic: A Bibliometric Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8051. [PMID: 35805707 PMCID: PMC9266104 DOI: 10.3390/ijerph19138051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022]
Abstract
The objectives of this work are to check whether the COVID-19 pandemic affected the research on schistosomiasis, to provide an insight into the most productive countries and journals and the most cited publications, and to analyse any association between the total publications of countries and a set of socio-economic and demographic factors. Based on PRISMA methodology, we used the Scopus database to search for articles published between 1 January 2020 and 26 March 2022. VOSviewer was used to generate the co-authorship and the co-occurrence networks, and Spearman's rank correlation was applied to study associations. A total of 1988 articles were included in the study. Although we found that the year-wise distribution of publications suggests no impact on schistosomiasis research, many resources have been devoted to research on COVID-19, and the Global Schistosomiasis Alliance revealed the main activities for eradication of schistosomiasis had been affected. The most productive country was the United States of America. The articles were mainly published in PLoS Neglected Tropical Diseases. The most prolific funding institution was the National Natural Science Foundation of China. The total publications per country were significantly correlated with population, GERD, and researchers per million inhabitants, but not with GDP per capita and MPM.
Collapse
Affiliation(s)
- Raquel Sánchez-Marqués
- Departmento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andres Estellés s/n, Burjassot, 46100 Valencia, Spain; (S.M.-C.); (M.D.B.)
| | - Santiago Mas-Coma
- Departmento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andres Estellés s/n, Burjassot, 46100 Valencia, Spain; (S.M.-C.); (M.D.B.)
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos IIII, C/Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029 Madrid, Spain
| | - Joaquín Salas-Coronas
- Tropical Medicine Unit, Hospital del Poniente, Ctra. de Almerimar 31, El Ejido, 04700 Almería, Spain;
| | - Jerôme Boissier
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, F-66000 Perpignan, France;
| | - María Dolores Bargues
- Departmento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andres Estellés s/n, Burjassot, 46100 Valencia, Spain; (S.M.-C.); (M.D.B.)
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos IIII, C/Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029 Madrid, Spain
| |
Collapse
|
11
|
Wellinghausen N, Moné H, Mouahid G, Nebel A, Tappe D, Gabriel M. A family cluster of schistosomiasis acquired in Solenzara River, Corsica (France) - Solenzara River is clearly a transmission site for schistosomiasis in Corsica. Parasitol Res 2022; 121:2449-2452. [PMID: 35715618 PMCID: PMC9279187 DOI: 10.1007/s00436-022-07574-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
We report a patient with urogenital schistosomiasis and three cases of subclinical infection within one family acquired from Solenzara River, Corsica, in 2019. Our cases confirm that transmission of schistosomiasis in Corsica is ongoing and has been extended from the Cavu River to the Solenzara River. Solenzara River is clearly a transmission site for schistosomiasis in Corsica. Public health efforts are recommended to uncover and prevent further cases.
Collapse
Affiliation(s)
| | - Hélène Moné
- UMR 5244 IHPE Interactions Hôtes-Pathogènes-Environnements, Université de Montpellier, CNRS, IFREMER, Université de Perpignan, 66860, Perpignan, France
| | - Gabriel Mouahid
- UMR 5244 IHPE Interactions Hôtes-Pathogènes-Environnements, Université de Montpellier, CNRS, IFREMER, Université de Perpignan, 66860, Perpignan, France
| | | | - Dennis Tappe
- National Reference Centre for Tropical Pathogens, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Martin Gabriel
- National Reference Centre for Tropical Pathogens, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
12
|
Onyekwere AM, Rey O, Allienne JF, Nwanchor MC, Alo M, Uwa C, Boissier J. Population Genetic Structure and Hybridization of Schistosoma haematobium in Nigeria. Pathogens 2022; 11:425. [PMID: 35456103 PMCID: PMC9026724 DOI: 10.3390/pathogens11040425] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Schistosomiasis is a major poverty-related disease caused by dioecious parasitic flatworms of the genus Schistosoma with a health impact on both humans and animals. Hybrids of human urogenital schistosome and bovine intestinal schistosome have been reported in humans in several of Nigeria’s neighboring West African countries. No empirical studies have been carried out on the genomic diversity of Schistosoma haematobium in Nigeria. Here, we present novel data on the presence and prevalence of hybrids and the population genetic structure of S. haematobium. Methods: 165 Schistosoma-positive urine samples were obtained from 12 sampling sites in Nigeria. Schistosoma haematobium eggs from each sample were hatched and each individual miracidium was picked and preserved in Whatman® FTA cards for genomic analysis. Approximately 1364 parasites were molecularly characterized by rapid diagnostic multiplex polymerase chain reaction (RD-PCR) for mitochondrial DNA gene (Cox1 mtDNA) and a subset of 1136 miracidia were genotyped using a panel of 18 microsatellite markers. Results: No significant difference was observed in the population genetic diversity (p > 0.05), though a significant difference was observed in the allelic richness of the sites except sites 7, 8, and 9 (p < 0.05). Moreover, we observed two clusters of populations: west (populations 1−4) and east (populations 7−12). Of the 1364 miracidia genotyped, 1212 (89%) showed an S. bovis Cox1 profile and 152 (11%) showed an S. haematobium cox1 profile. All parasites showed an S. bovis Cox1 profile except for some at sites 3 and 4. Schistosoma miracidia full genotyping showed 59.3% of the S. bovis ITS2 allele. Conclusions: This study provides novel insight into hybridization and population genetic structure of S. haematobium in Nigeria. Our findings suggest that S. haematobium x S. bovis hybrids are common in Nigeria. More genomic studies on both human- and animal-infecting parasites are needed to ascertain the role of animals in schistosome transmission.
Collapse
Affiliation(s)
- Amos Mathias Onyekwere
- Department of Biology, Alex Ekwueme Federal University, Ndufu-Alike, Abakaliki PMB 1010, Nigeria; (A.M.O.); (C.U.)
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, F-66000 Perpignan, France; (O.R.); (J.-F.A.)
| | - Olivier Rey
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, F-66000 Perpignan, France; (O.R.); (J.-F.A.)
| | - Jean-François Allienne
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, F-66000 Perpignan, France; (O.R.); (J.-F.A.)
| | | | - Moses Alo
- Department of Microbiology, Alex Ekwueme Federal University, Ndufu-Alike, Abakaliki PMB 1010, Nigeria;
| | - Clementina Uwa
- Department of Biology, Alex Ekwueme Federal University, Ndufu-Alike, Abakaliki PMB 1010, Nigeria; (A.M.O.); (C.U.)
| | - Jerome Boissier
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, F-66000 Perpignan, France; (O.R.); (J.-F.A.)
| |
Collapse
|
13
|
Hybridization increases genetic diversity in Schistosoma haematobium populations infecting humans in Cameroon. Infect Dis Poverty 2022; 11:37. [PMID: 35346375 PMCID: PMC8962594 DOI: 10.1186/s40249-022-00958-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/09/2022] [Indexed: 11/10/2022] Open
Abstract
Background Hybrids between Schistosoma haematobium (Sh) and S. bovis (Sb) have been found in several African countries as well as in Europe. Since the consequences of this hybridization are still unknown, this study aims to verify the presence of such hybrids in Cameroonian humans, to describe the structure of S. haematobium populations on a large geographic scale, and to examine the impact of these hybrids on genetic diversity and structure of these populations.
Methods From January to April 2019, urine from infected children was collected in ten geographically distinct populations. Miracidia were collected from eggs in this urine. To detect the presence of hybrids among these miracidia we genotyped both Cox1 (RD-PCR) and ITS2 gene (PCR-RFLP). Population genetic diversity and structure was assessed by genotyping each miracidium with a panel of 14 microsatellite markers. Gene diversity was measured using both heterozygosity and allelic richness indexes, and genetic structure was analyzed using paired Fst, PCA and Bayesian approaches. Results Of the 1327 miracidia studied, 88.7% were identified as pure genotypes of S. haematobium (Sh_Sh/Sh) while the remaining 11.3% were hybrids (7.0% with Sh_Sh/Sb, 3.7% with Sb_Sb/Sh and 0.4% with Sb_Sh/Sb). No miracidium has been identified as a pure genotype of S. bovis. Allelic richness ranged from 5.55 (Loum population) to 7.73 (Matta-Barrage) and differed significantly between populations. Mean heterozygosity ranged from 53.7% (Loum) to 59% (Matta Barrage) with no significant difference. The overall genetic differentiation inferred either by a principal component analysis or by the Bayesian approach shows a partial structure. Southern populations (Loum and Matta Barrage) were clearly separated from other localities but genetic differentiation between northern localities was limited, certainly due to the geographic proximity between these sites. Conclusions Hybrids between S. haematobium and S. bovis were identified in 11.3% of miracidia that hatched from eggs present in the urine of Cameroonian schoolchildren. The percentages of these hybrids are correlated with the genetic diversity of the parasite, indicating that hybridization increases genetic diversity in our sampling sites. Hybridization is therefore a major biological process that shapes the genetic diversity of S. haematobium. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s40249-022-00958-0.
Collapse
|
14
|
Landeryou T, Rabone M, Allan F, Maddren R, Rollinson D, Webster BL, Tchuem-Tchuenté LA, Anderson RM, Emery AM. Genome-wide insights into adaptive hybridisation across the Schistosoma haematobium group in West and Central Africa. PLoS Negl Trop Dis 2022; 16:e0010088. [PMID: 35100291 PMCID: PMC8803156 DOI: 10.1371/journal.pntd.0010088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/11/2021] [Indexed: 11/30/2022] Open
Abstract
Schistosomiasis remains a public health concern across sub-Saharan Africa; current control programmes rely on accurate mapping and high mass drug administration (MDA) coverage to attempt disease elimination. Inter-species hybridisation can occur between certain species, changing epidemiological dynamics within endemic regions, which has the potential to confound control interventions. The impact of hybridisation on disease dynamics is well illustrated in areas of Cameroon where urogenital schistosomiasis, primarily due to Schistosoma haematobium and hybrid infections, now predominate over intestinal schistosomiasis caused by Schistosoma guineensis. Genetic markers have shown the ability to identify hybrids, however the underlying genomic architecture of divergence and introgression between these species has yet to be established. In this study, restriction site associated DNA sequencing (RADseq) was used on archived adult worms initially identified as; Schistosoma bovis (n = 4), S. haematobium (n = 9), S. guineensis (n = 3) and S. guineensis x S. haematobium hybrids (n = 4) from Mali, Senegal, Niger, São Tomé and Cameroon. Genome-wide evidence supports the existence of S. guineensis and S. haematobium hybrid populations across Cameroon. The hybridisation of S. guineensis x S. haematobium has not been demonstrated on the island of São Tomé, where all samples showed no introgression with S. haematobium. Additionally, all S. haematobium isolates from Nigeria, Mali and Cameroon indicated signatures of genomic introgression from S. bovis. Adaptive loci across the S. haematobium group showed that voltage-gated calcium ion channels (Cav) could play a key role in the ability to increase the survivability of species, particularly in host systems. Where admixture has occurred between S. guineensis and S. haematobium, the excess introgressive influx of tegumental (outer helminth body) and antigenic genes from S. haematobium has increased the adaptive response in hybrids, leading to increased hybrid population fitness and viability.
Collapse
Affiliation(s)
- Toby Landeryou
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
- The Natural History Museum, Department of Life Sciences, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Muriel Rabone
- The Natural History Museum, Department of Life Sciences, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Fiona Allan
- The Natural History Museum, Department of Life Sciences, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Rosie Maddren
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - David Rollinson
- The Natural History Museum, Department of Life Sciences, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Bonnie L. Webster
- The Natural History Museum, Department of Life Sciences, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| | | | - Roy M. Anderson
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Aidan M. Emery
- The Natural History Museum, Department of Life Sciences, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
15
|
Morphological and genomic characterisation of the Schistosoma hybrid infecting humans in Europe reveals admixture between Schistosoma haematobium and Schistosoma bovis. PLoS Negl Trop Dis 2021; 15:e0010062. [PMID: 34941866 PMCID: PMC8741037 DOI: 10.1371/journal.pntd.0010062] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/07/2022] [Accepted: 12/06/2021] [Indexed: 11/19/2022] Open
Abstract
Schistosomes cause schistosomiasis, the world's second most important parasitic disease after malaria in terms of public health and social-economic impacts. A peculiar feature of these dioecious parasites is their ability to produce viable and fertile hybrid offspring. Originally only present in the tropics, schistosomiasis is now also endemic in southern Europe. Based on the analysis of two genetic markers the European schistosomes had previously been identified as hybrids between the livestock- and the human-infective species Schistosoma bovis and Schistosoma haematobium, respectively. Here, using PacBio long-read sequencing technology we performed genome assembly improvement and annotation of S. bovis, one of the parental species for which no satisfactory genome assembly was available. We then describe the whole genome introgression levels of the hybrid schistosomes, their morphometric parameters (eggs and adult worms) and their compatibility with two European snail strains used as vectors (Bulinus truncatus and Planorbarius metidjensis). Schistosome-snail compatibility is a key parameter for the parasites life cycle progression, and thus the capability of the parasite to establish in a given area. Our results show that this Schistosoma hybrid is strongly introgressed genetically, composed of 77% S. haematobium and 23% S. bovis origin. This genomic admixture suggests an ancient hybridization event and subsequent backcrosses with the human-specific species, S. haematobium, before its introduction in Corsica. We also show that egg morphology (commonly used as a species diagnostic) does not allow for accurate hybrid identification while genetic tests do.
Collapse
|
16
|
Evidence of autochthonous transmission of urinary schistosomiasis in Almeria (southeast Spain): An outbreak analysis. Travel Med Infect Dis 2021; 44:102165. [PMID: 34555514 DOI: 10.1016/j.tmaid.2021.102165] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Schistosomiasis is endemic in 78 countries belonging to tropical and subtropical areas. However, autochthonous transmission of urogenital schistosomiasis was reported in Corsica (France) in 2013. We present evidence of autochthonous transmission of urogenital schistosomiasis in Almería (Spain) in 2003. METHODS Description of the outbreak in farmers and subsequent epidemiological studies aimed at searching for Bulinus snails and their genotypic characteristics. RESULTS The outbreak affected 4 farmers out of a group of 5 people who repeatedly bathed that summer in an irrigation pool in the area. Two of them presented macroscopic hematuria with bilharziomas, showing the presence of Schistosoma eggs in bladder biopsies. Two others were asymptomatic but the serology for schistosomiasis was positive. In 2015, the presence of the vector Bulinus truncatus was demonstrated in Almería in water collections of appropriate characteristics. DNA sequencing proving that local B. truncatus species were base-to-base identical to B. truncatus from Senegal. CONCLUSIONS We present a new outbreak of autochthonous transmission of urogenital schistosomiasis in Europe. Although no new cases of autochthonous transmission have been reported, some other cases may have occurred at that time or later on and be unnoticed as many cases of schistosomiasis are asymptomatic or present mild and unspecific symptoms.
Collapse
|
17
|
Panzner U, Boissier J. Natural Intra- and Interclade Human Hybrid Schistosomes in Africa with Considerations on Prevention through Vaccination. Microorganisms 2021; 9:microorganisms9071465. [PMID: 34361901 PMCID: PMC8305539 DOI: 10.3390/microorganisms9071465] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/04/2022] Open
Abstract
Causal agents of schistosomiasis are dioecious, digenean schistosomes affecting mankind in 76 countries. Preventive measures are manifold but need to be complemented by vaccination for long-term protection; vaccine candidates in advanced pre-clinical/clinical stages include Sm14, Sm-TSP-2/Sm-TSP-2Al®, Smp80/SchistoShield®, and Sh28GST/Bilhvax®. Natural and anthropogenic changes impact on breaking species isolation barriers favoring introgressive hybridization, i.e., allelic exchange among gene pools of sympatric, interbreeding species leading to instant large genetic diversity. Phylogenetic distance matters, thus the less species differ phylogenetically the more likely they hybridize. PubMed and Embase databases were searched for publications limited to hybridale confirmation by mitochondrial cytochrome c oxidase (COX) and/or nuclear ribosomal internal transcribed spacer (ITS). Human schistosomal hybrids are predominantly reported from West Africa with clustering in the Senegal River Basin, and scattering to Europe, Central and Eastern Africa. Noteworthy is the dominance of Schistosoma haematobium interbreeding with human and veterinary species leading due to hybrid vigor to extinction and homogenization as seen for S. guineensis in Cameroon and S. haematobium in Niger, respectively. Heterosis seems to advantage S. haematobium/S. bovis interbreeds with dominant S. haematobium-ITS/S. bovis-COX1 profile to spread from West to East Africa and reoccur in France. S. haematobium/S. mansoni interactions seen among Senegalese and Côte d’Ivoirian children are unexpected due to their high phylogenetic distance. Detecting pure S. bovis and S. bovis/S. curassoni crosses capable of infecting humans observed in Corsica and Côte d’Ivoire, and Niger, respectively, is worrisome. Taken together, species hybridization urges control and preventive measures targeting human and veterinary sectors in line with the One-Health concept to be complemented by vaccination protecting against transmission, infection, and disease recurrence. Functional and structural diversity of naturally occurring human schistosomal hybrids may impact current vaccine candidates requiring further research including natural history studies in endemic areas targeted for clinical trials.
Collapse
Affiliation(s)
- Ursula Panzner
- Division of Infectious Diseases and Tropical Medicine, Ludwig Maximilian University of Munich, 80539 Munich, Germany
- Swiss Tropical and Public Health Institute, University of Basel, 4002 Basel, Switzerland
- Correspondence: ; Tel.: +49-176-6657-2910
| | - Jerome Boissier
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan, 66860 Perpignan, France;
| |
Collapse
|
18
|
Aula OP, McManus DP, Jones MK, Gordon CA. Schistosomiasis with a Focus on Africa. Trop Med Infect Dis 2021; 6:109. [PMID: 34206495 PMCID: PMC8293433 DOI: 10.3390/tropicalmed6030109] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/19/2022] Open
Abstract
Schistosomiasis is a common neglected tropical disease of impoverished people and livestock in many developing countries in tropical Africa, the Middle East, Asia, and Latin America. Substantial progress has been made in controlling schistosomiasis in some African countries, but the disease still prevails in most parts of sub-Saharan Africa with an estimated 800 million people at risk of infection. Current control strategies rely primarily on treatment with praziquantel, as no vaccine is available; however, treatment alone does not prevent reinfection. There has been emphasis on the use of integrated approaches in the control and elimination of the disease in recent years with the development of health infrastructure and health education. However, there is a need to evaluate the present status of African schistosomiasis, primarily caused by Schistosoma mansoni and S. haematobium, and the factors affecting the disease as the basis for developing more effective control and elimination strategies in the future. This review provides an historical perspective of schistosomiasis in Africa and discusses the current status of control efforts in those countries where the disease is endemic.
Collapse
Affiliation(s)
- Oyime Poise Aula
- School of Public Health, Faculty of Medicine, University of Queensland, Brisbane 4006, Australia;
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
| | - Donald P. McManus
- School of Public Health, Faculty of Medicine, University of Queensland, Brisbane 4006, Australia;
| | - Malcolm K. Jones
- School of Veterinary Sciences, University of Queensland, Gatton 4343, Australia;
| | - Catherine A. Gordon
- School of Public Health, Faculty of Medicine, University of Queensland, Brisbane 4006, Australia;
| |
Collapse
|
19
|
Kincaid-Smith J, Mathieu-Bégné E, Chaparro C, Reguera-Gomez M, Mulero S, Allienne JF, Toulza E, Boissier J. No pre-zygotic isolation mechanisms between Schistosoma haematobium and Schistosoma bovis parasites: From mating interactions to differential gene expression. PLoS Negl Trop Dis 2021; 15:e0009363. [PMID: 33945524 PMCID: PMC8127863 DOI: 10.1371/journal.pntd.0009363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 05/14/2021] [Accepted: 04/06/2021] [Indexed: 01/21/2023] Open
Abstract
Species usually develop reproductive isolation mechanisms allowing them to avoid interbreeding. These preventive barriers can act before reproduction, "pre-zygotic barriers", or after reproduction, "post-zygotic barriers". Pre-zygotic barriers prevent unfavourable mating, while post-zygotic barriers determine the viability and selective success of the hybrid offspring. Hybridization in parasites and the underlying reproductive isolation mechanisms maintaining their genetic integrity have been overlooked. Using an integrated approach this work aims to quantify the relative importance of pre-zygotic barriers in Schistosoma haematobium x S. bovis crosses. These two co-endemic species cause schistosomiasis, one of the major debilitating parasitic diseases worldwide, and can hybridize naturally. Using mate choice experiments we first tested if a specific mate recognition system exists between both species. Second, using RNA-sequencing we analysed differential gene expression between homo- and hetero-specific pairing in male and female adult parasites. We show that homo- and hetero-specific pairing occurs randomly between these two species, and few genes in both sexes are affected by hetero-specific pairing. This suggests that i) mate choice is not a reproductive isolating factor, and that ii) no pre-zygotic barrier except spatial isolation "by the final vertebrate host" seems to limit interbreeding between these two species. Interestingly, among the few genes affected by the pairing status of the worms, some can be related to pathways affected during male and female interactions and may also present interesting candidates for species isolation mechanisms and hybridization in schistosome parasites.
Collapse
Affiliation(s)
- Julien Kincaid-Smith
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, Perpignan,
France
- Centre for Emerging, Endemic and Exotic Diseases (CEEED), Department of
Pathobiology and Population Sciences (PPS), Royal Veterinary College, University
of London, Hawkshead Campus, Herts, United Kingdom
| | | | | | - Marta Reguera-Gomez
- Departamento de Parasitología, Facultad de Farmacia, Universidad de
Valencia, Burjassot, Valencia, Spain
| | - Stephen Mulero
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, Perpignan,
France
| | | | - Eve Toulza
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, Perpignan,
France
| | - Jérôme Boissier
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, Perpignan,
France
| |
Collapse
|
20
|
Mawa PA, Kincaid-Smith J, Tukahebwa EM, Webster JP, Wilson S. Schistosomiasis Morbidity Hotspots: Roles of the Human Host, the Parasite and Their Interface in the Development of Severe Morbidity. Front Immunol 2021; 12:635869. [PMID: 33790908 PMCID: PMC8005546 DOI: 10.3389/fimmu.2021.635869] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Schistosomiasis is the second most important human parasitic disease in terms of socioeconomic impact, causing great morbidity and mortality, predominantly across the African continent. For intestinal schistosomiasis, severe morbidity manifests as periportal fibrosis (PPF) in which large tracts of macro-fibrosis of the liver, visible by ultrasound, can occlude the main portal vein leading to portal hypertension (PHT), sequelae such as ascites and collateral vasculature, and ultimately fatalities. For urogenital schistosomiasis, severe morbidity manifests as pathology throughout the urinary system and genitals, and is a definitive cause of squamous cell bladder carcinoma. Preventative chemotherapy (PC) programmes, delivered through mass drug administration (MDA) of praziquantel (PZQ), have been at the forefront of schistosomiasis control programmes in sub-Saharan Africa since their commencement in Uganda in 2003. However, despite many successes, 'biological hotspots' (as distinct from 'operational hotspots') of both persistent high transmission and morbidity remain. In some areas, this failure to gain control of schistosomiasis has devastating consequences, with not only persistently high infection intensities, but both "subtle" and severe morbidity remaining prevalent. These hotspots highlight the requirement to revisit research into severe morbidity and its mechanisms, a topic that has been out of favor during times of PC implementation. Indeed, the focality and spatially-structured epidemiology of schistosomiasis, its transmission persistence and the morbidity induced, has long suggested that gene-environmental-interactions playing out at the host-parasite interface are crucial. Here we review evidence of potential unique parasite factors, host factors, and their gene-environmental interactions in terms of explaining differential morbidity profiles in the human host. We then take the situation of schistosomiasis mansoni within the Albertine region of Uganda as a case study in terms of elucidating the factors behind the severe morbidity observed and the avenues and directions for future research currently underway within a new research and clinical trial programme (FibroScHot).
Collapse
Affiliation(s)
- Patrice A. Mawa
- Immunomodulation and Vaccines Programme, Medical Research Council-Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Julien Kincaid-Smith
- Centre for Emerging, Endemic and Exotic Diseases (CEEED), Department of Pathobiology and Population Sciences (PPS), Royal Veterinary College, University of London, Herts, United Kingdom
| | | | - Joanne P. Webster
- Centre for Emerging, Endemic and Exotic Diseases (CEEED), Department of Pathobiology and Population Sciences (PPS), Royal Veterinary College, University of London, Herts, United Kingdom
| | - Shona Wilson
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
21
|
Mastomys natalensis (Smith, 1834) as a natural host for Schistosoma haematobium (Bilharz, 1852) Weinland, 1858 x Schistosoma bovis Sonsino, 1876 introgressive hybrids. Parasitol Res 2021; 120:1755-1770. [PMID: 33687566 PMCID: PMC8084788 DOI: 10.1007/s00436-021-07099-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/21/2021] [Indexed: 11/04/2022]
Abstract
Cercarial emission of schistosomes is a determinant in the transmission to the definitive host and constitutes a good marker to identify which definitive host is responsible for transmission, mainly in introgressive hybridization situations. Our goal was to test the hypothesis that micro-mammals play a role in Schistosoma haematobium, S. bovis, and/or S. haematobium x S. bovis transmission. Small mammal sampling was conducted in seven semi-lacustrine villages of southern Benin. Among the 62 animals trapped, 50 individuals were investigated for Schistosoma adults and eggs: 37 Rattus rattus, 3 Rattus norvegicus, 9 Mastomys natalensis, and 1 Crocidura olivieri. Schistosoma adults were found in four R. rattus and two M. natalensis, with a local prevalence reaching 80% and 50%, respectively. Two cercarial chronotypes were found from Bulinus globosus experimentally infected with miracidia extracted from naturally infected M. natalensis: a late diurnal and nocturnal chronotype, and an early diurnal, late diurnal, and nocturnal chronotype. The cytochrome C oxidase subunit I mtDNA gene of the collected schistosomes (adults, miracidia, and cercariae) belonged to the S. bovis clade. Eleven internal transcribed spacer rDNA profiles were found; four belonged to S. bovis and seven to S. haematobium x S. bovis. These molecular results together with the observed multi-peak chronotypes add M. natalensis as a new host implicated in S. haematobium x S. bovis transmission. We discuss the origin of the new chronotypes which have become more complex with the appearance of several peaks in a 24-h day. We also discuss how the new populations of offspring may optimize intra-host ecological niche, host spectrum, and transmission time period.
Collapse
|
22
|
Rey O, Webster BL, Huyse T, Rollinson D, Van den Broeck F, Kincaid-Smith J, Onyekwere A, Boissier J. Population genetics of African Schistosoma species. INFECTION GENETICS AND EVOLUTION 2021; 89:104727. [PMID: 33486128 DOI: 10.1016/j.meegid.2021.104727] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023]
Abstract
Blood flukes within the genus Schistosoma (schistosomes) are responsible for the major disease, schistosomiasis, in tropical and sub-tropical areas. This disease is predominantly present on the African continent with more than 85% of the human cases. Schistosomes are also parasites of veterinary importance infecting livestock and wildlife. Schistosoma population genetic structure and diversity are important characteristics that may reflect variations in selection pressures such as those induced by host (mammalian and snail) environments, habitat change, migration and also treatment/control interventions, all of which also shape speciation and evolution of the whole Schistosoma genus. Investigations into schistosome population genetic structure, diversity and evolution has been an area of important debate and research. Supported by advances in molecular techniques with capabilities for multi-locus genetic analyses for single larvae schistosome genetic investigations have greatly progressed in the last decade. This paper aims to review the genetic studies of both animal and human infecting schistosome. Population genetic structures are reviewed at different spatial scales: local, regional or continental (i.e. phylogeography). Within species genetic diversities are discussed compared and the compounding factors discussed, including the effect of mass drug administration. Finally, the ability for intra-species hybridisation questions species integrities and poses many questions in relation to the natural epidemiology of co-endemic species. Here we review molecularly confirmed hybridisation events (in relation to human disease) and discuss the possible impact for ongoing and future control and elimination.
Collapse
Affiliation(s)
- O Rey
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, F-66000 Perpignan, France
| | - B L Webster
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, London SW7 5BD, United Kingdom; London Centre for Neglected Tropical Disease Research, Imperial College London School of Public Health, London W2 1PG, United Kingdom
| | - T Huyse
- Department of Biology, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium; Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, KU Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium
| | - D Rollinson
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, London SW7 5BD, United Kingdom; London Centre for Neglected Tropical Disease Research, Imperial College London School of Public Health, London W2 1PG, United Kingdom
| | - F Van den Broeck
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium; Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - J Kincaid-Smith
- Centre for Emerging, Endemic and Exotic Diseases (CEEED), Department of Pathobiology and Population Sciences (PPS), Royal Veterinary College, University of London, Hawkshead Campus, Herts AL9 7TA, United Kingdom
| | - A Onyekwere
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, F-66000 Perpignan, France
| | - J Boissier
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, F-66000 Perpignan, France.
| |
Collapse
|
23
|
Rothe C, Zimmer T, Schunk M, Wallrauch C, Helfrich K, Gültekin F, Bretzel G, Allienne JF, Boissier J. Developing Endemicity of Schistosomiasis, Corsica, France. Emerg Infect Dis 2020; 27. [PMID: 33264582 PMCID: PMC7774576 DOI: 10.3201/eid2701.204391] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Urogenital schistosomiasis was diagnosed in a man from Germany who had never traveled outside Europe. He likely acquired the infection in Corsica, France, but did not swim in the Cavu River, which was linked to a previous outbreak. This case highlights that transmission of schistosomiasis in Corsica is ongoing.
Collapse
|
24
|
Savassi BAES, Mouahid G, Lasica C, Mahaman SDK, Garcia A, Courtin D, Allienne JF, Ibikounlé M, Moné H. Cattle as natural host for Schistosoma haematobium (Bilharz, 1852) Weinland, 1858 x Schistosoma bovis Sonsino, 1876 interactions, with new cercarial emergence and genetic patterns. Parasitol Res 2020; 119:2189-2205. [PMID: 32468189 DOI: 10.1007/s00436-020-06709-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/05/2020] [Indexed: 12/13/2022]
Abstract
Schistosomiasis remains a parasitic infection which poses serious public health consequences around the world, particularly on the African continent where cases of introgression/hybridization between human and cattle schistosomiasis are being discovered on a more frequent basis in humans, specifically between Schistosoma haematobium and S. bovis. The aim of this paper is to analyze the occurrence of S. bovis in cattle and its relationship with S. haematobium in an area where cattle and humans share the same site in Benin (West Africa). We used the chronobiology of cercarial emergence as an ecological parameter and both molecular biology (COI mtDNA and ITS rDNA) of the larvae and morphology of the eggs as taxonomic parameters. The results showed a chronobiological polymorphism in the cercarial emergence rhythm. They showed for the first time the presence of S. bovis in Benin, the presence of introgressive hybridization between S. bovis and S. haematobium in domestic cattle, and the presence of atypical chronobiological patterns in schistosomes from cattle, with typical S. haematobium shedding pattern, double-peak patterns, and nocturnal patterns. Our results showed that the chronobiological life-history trait is useful for the detection of new hosts and also may reveal the possible presence of introgressive hybridization in schistosomes. Our results, for the first time, place cattle as reservoir host for S. haematobium and S. bovis x S. haematobium. The consequences of these results on the epidemiology of the disease, the transmission to humans, and the control of the disease are very important.
Collapse
Affiliation(s)
- Boris A E S Savassi
- University of Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, 58 avenue Paul Alduy, Bât. R, F-66860, Perpignan, France.,Faculté des Sciences et Techniques, Université d'Abomey-Calavi, 01BP526, Cotonou, Benin
| | - Gabriel Mouahid
- University of Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, 58 avenue Paul Alduy, Bât. R, F-66860, Perpignan, France
| | - Chrystelle Lasica
- University of Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, 58 avenue Paul Alduy, Bât. R, F-66860, Perpignan, France
| | | | - André Garcia
- UMR 261 MERIT, Institut de Recherche pour le Développement (IRD), Cotonou, Bénin
| | - David Courtin
- UMR 261 MERIT, Institut de Recherche pour le Développement (IRD), Université de Paris, Paris, France
| | - Jean-François Allienne
- University of Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, 58 avenue Paul Alduy, Bât. R, F-66860, Perpignan, France
| | - Moudachirou Ibikounlé
- Faculté des Sciences et Techniques, Université d'Abomey-Calavi, 01BP526, Cotonou, Benin
| | - Hélène Moné
- University of Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, 58 avenue Paul Alduy, Bât. R, F-66860, Perpignan, France.
| |
Collapse
|
25
|
Pennance T, Allan F, Emery A, Rabone M, Cable J, Garba AD, Hamidou AA, Webster JP, Rollinson D, Webster BL. Interactions between Schistosoma haematobium group species and their Bulinus spp. intermediate hosts along the Niger River Valley. Parasit Vectors 2020; 13:268. [PMID: 32448268 PMCID: PMC7247258 DOI: 10.1186/s13071-020-04136-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/14/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Urogenital schistosomiasis, caused by infection with Schistosoma haematobium, is endemic in Niger but complicated by the presence of Schistosoma bovis, Schistosoma curassoni and S. haematobium group hybrids along with various Bulinus snail intermediate host species. Establishing the schistosomes and snails involved in transmission aids disease surveillance whilst providing insights into snail-schistosome interactions/compatibilities and biology. METHODS Infected Bulinus spp. were collected from 16 villages north and south of the Niamey region, Niger, between 2011 and 2015. From each Bulinus spp., 20-52 cercariae shed were analysed using microsatellite markers and a subset identified using the mitochondrial (mt) cox1 and nuclear ITS1 + 2 and 18S DNA regions. Infected Bulinus spp. were identified using both morphological and molecular analysis (partial mt cox1 region). RESULTS A total of 87 infected Bulinus from 24 sites were found, 29 were molecularly confirmed as B. truncatus, three as B. forskalii and four as B. globosus. The remaining samples were morphologically identified as B. truncatus (n = 49) and B. forskalii (n = 2). The microsatellite analysis of 1124 cercariae revealed 186 cercarial multilocus genotypes (MLGs). Identical cercarial genotypes were frequently (60%) identified from the same snail (clonal populations from a single miracidia); however, several (40%) of the snails had cercariae of different genotypes (2-10 MLG's) indicating multiple miracidial infections. Fifty-seven of the B. truncatus and all of the B. forskalii and B. globosus were shedding the Bovid schistosome S. bovis. The other B. truncatus were shedding the human schistosomes, S. haematobium (n = 6) and the S. haematobium group hybrids (n = 13). Two B. truncatus had co-infections with S. haematobium and S. haematobium group hybrids whilst no co-infections with S. bovis were observed. CONCLUSIONS This study has advanced our understanding of human and bovid schistosomiasis transmission in the Niger River Valley region. Human Schistosoma species/forms (S. haematobium and S. haematobium hybrids) were found transmitted only in five villages whereas those causing veterinary schistosomiasis (S. bovis), were found in most villages. Bulinus truncatus was most abundant, transmitting all Schistosoma species, while the less abundant B. forskalii and B. globosus, only transmitted S. bovis. Our data suggest that species-specific biological traits may exist in relation to co-infections, snail-schistosome compatibility and intramolluscan schistosome development.
Collapse
Affiliation(s)
- Tom Pennance
- Department of Life Sciences, Natural History Museum, Cromwell Road, South Kensington, London, SW7 5BD UK
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX UK
- London Centre for Neglected Tropical Disease Research, Imperial College London, School of Public Health, Norfolk Pl, Paddington, London, W2 1PG UK
| | - Fiona Allan
- Department of Life Sciences, Natural History Museum, Cromwell Road, South Kensington, London, SW7 5BD UK
- London Centre for Neglected Tropical Disease Research, Imperial College London, School of Public Health, Norfolk Pl, Paddington, London, W2 1PG UK
| | - Aidan Emery
- Department of Life Sciences, Natural History Museum, Cromwell Road, South Kensington, London, SW7 5BD UK
- London Centre for Neglected Tropical Disease Research, Imperial College London, School of Public Health, Norfolk Pl, Paddington, London, W2 1PG UK
| | - Muriel Rabone
- Department of Life Sciences, Natural History Museum, Cromwell Road, South Kensington, London, SW7 5BD UK
- London Centre for Neglected Tropical Disease Research, Imperial College London, School of Public Health, Norfolk Pl, Paddington, London, W2 1PG UK
| | - Jo Cable
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX UK
| | - Amadou Djirmay Garba
- Réseau International Schistosomoses, Environnement, Aménagement et Lutte (RISEAL-Niger), 333, Avenue des Zarmakoye, B.P. 13724 Niamey, Niger
- World Health Organization, Geneva, Switzerland
| | - Amina Amadou Hamidou
- Réseau International Schistosomoses, Environnement, Aménagement et Lutte (RISEAL-Niger), 333, Avenue des Zarmakoye, B.P. 13724 Niamey, Niger
| | - Joanne P. Webster
- London Centre for Neglected Tropical Disease Research, Imperial College London, School of Public Health, Norfolk Pl, Paddington, London, W2 1PG UK
- Department of Pathology and Pathogen Biology, Centre for Emerging, Endemic and Exotic Diseases (CEEED), Royal Veterinary College, University of London, Hertfordshire, AL9 7TA UK
| | - David Rollinson
- Department of Life Sciences, Natural History Museum, Cromwell Road, South Kensington, London, SW7 5BD UK
- London Centre for Neglected Tropical Disease Research, Imperial College London, School of Public Health, Norfolk Pl, Paddington, London, W2 1PG UK
| | - Bonnie L. Webster
- Department of Life Sciences, Natural History Museum, Cromwell Road, South Kensington, London, SW7 5BD UK
- London Centre for Neglected Tropical Disease Research, Imperial College London, School of Public Health, Norfolk Pl, Paddington, London, W2 1PG UK
| |
Collapse
|
26
|
Vale N, Gouveia MJ, Gärtner F. Current and Novel Therapies Against Helminthic Infections: The Potential of Antioxidants Combined with Drugs. Biomolecules 2020; 10:E350. [PMID: 32106428 PMCID: PMC7175190 DOI: 10.3390/biom10030350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/02/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Infections caused by Schistosoma haematobium and Opisthorchisviverrini are classified as Group 1 biological carcinogen and it has been postulated that parasites produce oxysterol and estrogen-like metabolites that might be considered as initiators of infection-associated carcinogenesis. Chemotherapy for these helminthic infections relies on a single drug, praziquantel, (PZQ) that mainly targets the parasite. Additionally, PZQ has some major drawbacks as inefficacy against juvenile form and alone it is not capable to counteract pathologies associated to infections or prevent carcinogenesis. There is an urgent need to develop novel therapeutic approaches that not only target the parasite but also improve the pathologies associated to infection, and ultimately, counteract or/and prevent the carcinogenesis processes. Repurposing the drug in combination of compounds with different modes of action is a promising strategy to find novel therapeutics approaches against these helminthic infections and its pathologies. Here, we emphasized that using antioxidants either alone or combined with anthelmintic drugs could ameliorate tissue damage, infection-associated complications, moreover, could prevent the development of cancer associated to infections. Hence, antioxidants represent a potential adjuvant approach during treatment to reduce morbidity and mortality. Despite the success of some strategies, there is a long way to go to implement novel therapies for schistosomiasis.
Collapse
Affiliation(s)
- Nuno Vale
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal;
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
| | - Maria João Gouveia
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Center for the Study in Animal Science (CECA/ICETA), University of Porto, Rua de D. Manuel II, Apt 55142, 4051-401 Porto, Portugal
| | - Fátima Gärtner
- i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal;
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
| |
Collapse
|
27
|
Maier T, Wheeler NJ, Namigai EKO, Tycko J, Grewelle RE, Woldeamanuel Y, Klohe K, Perez-Saez J, Sokolow SH, De Leo GA, Yoshino TP, Zamanian M, Reinhard-Rupp J. Gene drives for schistosomiasis transmission control. PLoS Negl Trop Dis 2019; 13:e0007833. [PMID: 31856157 PMCID: PMC6922350 DOI: 10.1371/journal.pntd.0007833] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Schistosomiasis is one of the most important and widespread neglected tropical diseases (NTD), with over 200 million people infected in more than 70 countries; the disease has nearly 800 million people at risk in endemic areas. Although mass drug administration is a cost-effective approach to reduce occurrence, extent, and severity of the disease, it does not provide protection to subsequent reinfection. Interventions that target the parasites’ intermediate snail hosts are a crucial part of the integrated strategy required to move toward disease elimination. The recent revolution in gene drive technology naturally leads to questions about whether gene drives could be used to efficiently spread schistosome resistance traits in a population of snails and whether gene drives have the potential to contribute to reduced disease transmission in the long run. Responsible implementation of gene drives will require solutions to complex challenges spanning multiple disciplines, from biology to policy. This Review Article presents collected perspectives from practitioners of global health, genome engineering, epidemiology, and snail/schistosome biology and outlines strategies for responsible gene drive technology development, impact measurements of gene drives for schistosomiasis control, and gene drive governance. Success in this arena is a function of many factors, including gene-editing specificity and efficiency, the level of resistance conferred by the gene drive, how fast gene drives may spread in a metapopulation over a complex landscape, ecological sustainability, social equity, and, ultimately, the reduction of infection prevalence in humans. With combined efforts from across the broad global health community, gene drives for schistosomiasis control could fortify our defenses against this devastating disease in the future.
Collapse
Affiliation(s)
- Theresa Maier
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Nicolas James Wheeler
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Global Health Institute of Merck (KGaA), Eysins, Switzerland
| | | | - Josh Tycko
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Richard Ernest Grewelle
- Hopkins Marine Station, School of Humanities and Sciences, Stanford University, Pacific Grove, California, United States of America
| | - Yimtubezinash Woldeamanuel
- Department of Microbiology, Immunology & Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Javier Perez-Saez
- Laboratory of Ecohydrology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Susanne H. Sokolow
- Woods Institute for the Environment, Stanford University, Stanford, California, United States of America
- Marine Science Institute, University of California, Santa Barbara, California, United States of America
| | - Giulio A. De Leo
- Hopkins Marine Station, School of Humanities and Sciences, Stanford University, Pacific Grove, California, United States of America
| | - Timothy P. Yoshino
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | | |
Collapse
|
28
|
High prevalence of Schistosoma haematobium × Schistosoma bovis hybrids in schoolchildren in Côte d'Ivoire. Parasitology 2019; 147:287-294. [PMID: 31727202 DOI: 10.1017/s0031182019001549] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Schistosomiasis is a neglected tropical disease, though it is highly prevalent in many parts of sub-Saharan Africa. While Schistosoma haematobium-bovis hybrids have been reported in West Africa, no data about Schistosoma hybrids in humans are available from Côte d'Ivoire. This study aimed to identify and quantify S. haematobium-bovis hybrids among schoolchildren in four localities of Côte d'Ivoire. Urine samples were collected and examined by filtration to detect Schistosoma eggs. Eggs were hatched and 503 miracidia were individually collected and stored on Whatman® FTA cards for molecular analysis. Individual miracidia were molecularly characterized by analysis of mitochondrial cox1 and nuclear internal transcribed spacer 2 (ITS 2) DNA regions. A mitochondrial cox1-based diagnostic polymerase chain reaction was performed on 459 miracidia, with 239 (52.1%) exhibiting the typical band for S. haematobium and 220 (47.9%) the S. bovis band. The cox1 and ITS 2 amplicons were Sanger sequenced from 40 randomly selected miracidia to confirm species and hybrids status. Among the 33 cox1 sequences analysed, we identified 15 S. haematobium sequences (45.5%) belonging to seven haplotypes and 18 S. bovis sequences (54.5%) belonging to 12 haplotypes. Of 40 ITS 2 sequences analysed, 31 (77.5%) were assigned to pure S. haematobium, four (10.0%) to pure S. bovis and five (12.5%) to S. haematobium-bovis hybrids. Our findings suggest that S. haematobium-bovis hybrids are common in Côte d'Ivoire. Hence, intense prospection of domestic and wild animals is warranted to determine whether zoonotic transmission occurs.
Collapse
|
29
|
Chevalier FD, Le Clec’h W, McDew-White M, Menon V, Guzman MA, Holloway SP, Cao X, Taylor AB, Kinung'hi S, Gouvras AN, Webster BL, Webster JP, Emery AM, Rollinson D, Garba Djirmay A, Al Mashikhi KM, Al Yafae S, Idris MA, Moné H, Mouahid G, Hart PJ, LoVerde PT, Anderson TJC. Oxamniquine resistance alleles are widespread in Old World Schistosoma mansoni and predate drug deployment. PLoS Pathog 2019; 15:e1007881. [PMID: 31652296 PMCID: PMC6834289 DOI: 10.1371/journal.ppat.1007881] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/06/2019] [Accepted: 09/16/2019] [Indexed: 01/10/2023] Open
Abstract
Do mutations required for adaptation occur de novo, or are they segregating within populations as standing genetic variation? This question is key to understanding adaptive change in nature, and has important practical consequences for the evolution of drug resistance. We provide evidence that alleles conferring resistance to oxamniquine (OXA), an antischistosomal drug, are widespread in natural parasite populations under minimal drug pressure and predate OXA deployment. OXA has been used since the 1970s to treat Schistosoma mansoni infections in the New World where S. mansoni established during the slave trade. Recessive loss-of-function mutations within a parasite sulfotransferase (SmSULT-OR) underlie resistance, and several verified resistance mutations, including a deletion (p.E142del), have been identified in the New World. Here we investigate sequence variation in SmSULT-OR in S. mansoni from the Old World, where OXA has seen minimal usage. We sequenced exomes of 204 S. mansoni parasites from West Africa, East Africa and the Middle East, and scored variants in SmSULT-OR and flanking regions. We identified 39 non-synonymous SNPs, 4 deletions, 1 duplication and 1 premature stop codon in the SmSULT-OR coding sequence, including one confirmed resistance deletion (p.E142del). We expressed recombinant proteins and used an in vitro OXA activation assay to functionally validate the OXA-resistance phenotype for four predicted OXA-resistance mutations. Three aspects of the data are of particular interest: (i) segregating OXA-resistance alleles are widespread in Old World populations (4.29–14.91% frequency), despite minimal OXA usage, (ii) two OXA-resistance mutations (p.W120R, p.N171IfsX28) are particularly common (>5%) in East African and Middle-Eastern populations, (iii) the p.E142del allele has identical flanking SNPs in both West Africa and Puerto Rico, suggesting that parasites bearing this allele colonized the New World during the slave trade and therefore predate OXA deployment. We conclude that standing variation for OXA resistance is widespread in S. mansoni. It has been argued that drug resistance is unlikely to spread rapidly in helminth parasites infecting humans. This is based, at least in part, on the premise that resistance mutations are rare or absent within populations prior to treatment, and take a long time to reach appreciable frequencies because helminth parasite generation time is long. This argument is critically dependent on the starting frequency of resistance alleles–if high levels of “standing variation” for resistance are present prior to deployment of treatment, resistance may spread rapidly. We examined frequencies of oxamniquine resistance alleles present in Schistosoma mansoni from Africa and the Middle East where oxamniquine has seen minimal use. We found that oxamniquine resistance alleles are widespread in the Old World, ranging from 4.29% in the Middle East to 14.91% in East African parasite populations. Furthermore, we show that resistance alleles from West African and the Caribbean schistosomes share a common origin, suggesting that these alleles travelled to the New World with S. mansoni during the transatlantic slave trade. Together, these results demonstrate extensive standing variation for oxamniquine resistance. Our results have important implications for both drug treatment policies and drug development efforts, and demonstrate the power of molecular surveillance approaches for guiding helminth control.
Collapse
Affiliation(s)
- Frédéric D. Chevalier
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
- * E-mail: (FDC); (TJCA)
| | - Winka Le Clec’h
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Marina McDew-White
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Vinay Menon
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Meghan A. Guzman
- Departments of Pathology and University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Stephen P. Holloway
- Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Xiaohang Cao
- Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Alexander B. Taylor
- Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- X-ray Crystallography Core Laboratory, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Safari Kinung'hi
- National Institute for Medical Research, Mwanza, United Republic of Tanzania
| | - Anouk N. Gouvras
- London Centre for Neglected Tropical Disease Research (LCNDTR), Imperial Collge, London, United Kingdom
- Wolfson Wellcome Biomedical Laboratories, Natural History Museum, London, United Kingdom
| | - Bonnie L. Webster
- London Centre for Neglected Tropical Disease Research (LCNDTR), Imperial Collge, London, United Kingdom
- Wolfson Wellcome Biomedical Laboratories, Natural History Museum, London, United Kingdom
| | - Joanne P. Webster
- London Centre for Neglected Tropical Disease Research (LCNDTR), Imperial Collge, London, United Kingdom
- Centre for Emerging, Endemic and Exotic Diseases (CEEED), Royal Veterinary College, University of London, United Kingdom
| | - Aidan M. Emery
- London Centre for Neglected Tropical Disease Research (LCNDTR), Imperial Collge, London, United Kingdom
- Wolfson Wellcome Biomedical Laboratories, Natural History Museum, London, United Kingdom
| | - David Rollinson
- London Centre for Neglected Tropical Disease Research (LCNDTR), Imperial Collge, London, United Kingdom
- Wolfson Wellcome Biomedical Laboratories, Natural History Museum, London, United Kingdom
| | - Amadou Garba Djirmay
- Réseau International Schistosomiases Environnemental Aménagement et Lutte (RISEAL), Niamey, Niger
- World Health Organization, Geneva, Switzerland
| | - Khalid M. Al Mashikhi
- Directorate General of Health Services, Dhofar Governorate, Salalah, Sultanate of Oman
| | - Salem Al Yafae
- Directorate General of Health Services, Dhofar Governorate, Salalah, Sultanate of Oman
| | | | - Hélène Moné
- Host-Pathogen-Environment Interactions laboratory, University of Perpignan, Perpignan, France
| | - Gabriel Mouahid
- Host-Pathogen-Environment Interactions laboratory, University of Perpignan, Perpignan, France
| | - P. John Hart
- Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- X-ray Crystallography Core Laboratory, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Philip T. LoVerde
- Departments of Pathology and University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Timothy J. C. Anderson
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
- * E-mail: (FDC); (TJCA)
| |
Collapse
|
30
|
Platt RN, McDew-White M, Le Clec’h W, Chevalier FD, Allan F, Emery AM, Garba A, Hamidou AA, Ame SM, Webster JP, Rollinson D, Webster BL, Anderson TJC. Ancient Hybridization and Adaptive Introgression of an Invadolysin Gene in Schistosome Parasites. Mol Biol Evol 2019; 36:2127-2142. [PMID: 31251352 PMCID: PMC6759076 DOI: 10.1093/molbev/msz154] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Introgression among parasite species has the potential to transfer traits of biomedical importance across species boundaries. The parasitic blood fluke Schistosoma haematobium causes urogenital schistosomiasis in humans across sub-Saharan Africa. Hybridization with other schistosome species is assumed to occur commonly, because genetic crosses between S. haematobium and livestock schistosomes, including S. bovis, can be staged in the laboratory, and sequencing of mtDNA and rDNA amplified from microscopic miracidia larvae frequently reveals markers from different species. However, the frequency, direction, age, and genomic consequences of hybridization are unknown. We hatched miracidia from eggs and sequenced the exomes from 96 individual S. haematobium miracidia from infected patients from Niger and the Zanzibar archipelago. These data revealed no evidence for contemporary hybridization between S. bovis and S. haematobium in our samples. However, all Nigerien S. haematobium genomes sampled show hybrid ancestry, with 3.3-8.2% of their nuclear genomes derived from S. bovis, providing evidence of an ancient introgression event that occurred at least 108-613 generations ago. Some S. bovis-derived alleles have spread to high frequency or reached fixation and show strong signatures of directional selection; the strongest signal spans a single gene in the invadolysin gene family (Chr. 4). Our results suggest that S. bovis/S. haematobium hybridization occurs rarely but demonstrate profound consequences of ancient introgression from a livestock parasite into the genome of S. haematobium, the most prevalent schistosome species infecting humans.
Collapse
Affiliation(s)
- Roy N Platt
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX
| | - Marina McDew-White
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX
| | - Winka Le Clec’h
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX
| | - Frédéric D Chevalier
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX
| | - Fiona Allan
- Department of Life Sciences, The Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Imperial College London, St Mary’s Campus, London, United Kingdom
| | - Aidan M Emery
- Department of Life Sciences, The Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Imperial College London, St Mary’s Campus, London, United Kingdom
| | - Amadou Garba
- Réseau International Schistosomoses, Environnement, Aménagement et Lutte (RISEAL-Niger), Niamey, Niger
| | - Amina A Hamidou
- Réseau International Schistosomoses, Environnement, Aménagement et Lutte (RISEAL-Niger), Niamey, Niger
| | - Shaali M Ame
- Public Health Laboratory - Ivo de Carneri, Pemba, United Republic of Tanzania
| | - Joanne P Webster
- London Centre for Neglected Tropical Disease Research (LCNTDR), Imperial College London, St Mary’s Campus, London, United Kingdom
- Centre for Emerging, Endemic and Exotic Diseases, Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, United Kingdom
| | - David Rollinson
- Department of Life Sciences, The Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Imperial College London, St Mary’s Campus, London, United Kingdom
| | - Bonnie L Webster
- Department of Life Sciences, The Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Imperial College London, St Mary’s Campus, London, United Kingdom
| | - Timothy J C Anderson
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX
| |
Collapse
|
31
|
Mulero S, Rey O, Arancibia N, Mas-Coma S, Boissier J. Persistent establishment of a tropical disease in Europe: the preadaptation of schistosomes to overwinter. Parasit Vectors 2019; 12:379. [PMID: 31358021 PMCID: PMC6664521 DOI: 10.1186/s13071-019-3635-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022] Open
Abstract
Background Global changes promote the spread of infectious diseases worldwide. In this context, tropical urogenital schistosomiasis is now permanently established in Corsica since its first emergence in 2013. The local persistence of the tropical pathogens (schistosomes) responsible for urogenital schistosomiasis at such latitudes might be explained by (i) the presence of its intermediate host, the snail Bulinus truncatus, (ii) the recurrent local reseeding of schistosomes by their vertebrate hosts (either human or animal) every summer, and/or (iii) the maintenance and survival of schistosomes within their snail hosts over winter. Methods In this study we conducted an ecological experiment to assess the ability of temperate and tropical schistosome strains to survive in classical winter temperatures in Corsican rivers when infecting temperate (local) snail strains. We also quantified the ability of the schistosomes to complete their life-cycle post-overwintering when returned to classical summer water temperatures. Results Our results show that Mediterranean molluscs are locally adapted to winter conditions compared to tropical molluscs. Moreover, temperate and tropical schistosome strains equally survived the cold and produced viable offspring when returned to optimal temperatures. These results indicate that schistosomes can overwinter under temperate climates when infecting locally adapted snails and might partly explain the establishment and maintenance of schistosomes in Corsica from year to year. Conclusions The observed broader thermal range of schistosomes compared to that of their snail hosts was unexpected and clearly indicates that the spread and establishment of schistosomiasis in temperate countries relies primarily on the presence of the locally adapted snail host lineages, currently known to be present in France, Italy, Portugal, Spain and Greece.
Collapse
Affiliation(s)
- Stephen Mulero
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, 66860, Perpignan, France
| | - Olivier Rey
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, 66860, Perpignan, France
| | - Nathalie Arancibia
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, 66860, Perpignan, France
| | - Santiago Mas-Coma
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, Valencia, Spain
| | - Jérôme Boissier
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, 66860, Perpignan, France.
| |
Collapse
|
32
|
Oleaga A, Rey O, Polack B, Grech-Angelini S, Quilichini Y, Pérez-Sánchez R, Boireau P, Mulero S, Brunet A, Rognon A, Vallée I, Kincaid-Smith J, Allienne JF, Boissier J. Epidemiological surveillance of schistosomiasis outbreak in Corsica (France): Are animal reservoir hosts implicated in local transmission? PLoS Negl Trop Dis 2019; 13:e0007543. [PMID: 31233502 PMCID: PMC6611637 DOI: 10.1371/journal.pntd.0007543] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/05/2019] [Accepted: 06/11/2019] [Indexed: 12/02/2022] Open
Abstract
Environmental and anthropogenic changes are expected to promote emergence and spread of pathogens worldwide. Since 2013, human urogenital schistosomiasis is established in Corsica island (France). Schistosomiasis is a parasitic disease affecting both humans and animals. The parasite involved in the Corsican outbreak is a hybrid form between Schistosoma haematobium, a human parasite, and Schistosoma bovis, a livestock parasite. S. bovis has been detected in Corsican livestock few decades ago raising the questions whether hybridization occurred in Corsica and if animals could behave as a reservoir for the recently established parasite lineage. The latter hypothesis has huge epidemiological outcomes since the emergence of a zoonotic lineage of schistosomes would be considerably harder to control and eradicate the disease locally and definitively needs to be verified. In this study we combined a sero-epidemiological survey on ruminants and a rodent trapping campaign to check whether schistosomes could shift on vertebrate hosts other than humans. A total of 3,519 domesticated animals (1,147 cattle; 671 goats and 1,701 sheep) from 160 farms established in 14 municipalities were sampled. From these 3,519 screened animals, 17 were found to be serologically positive but were ultimately considered as false positive after complementary analyses. Additionally, our 7-day extensive rodent trapping (i.e. 1,949 traps placed) resulted in the capture of a total of 34 rats (Rattus rattus) and 4 mice (Mus musculus). Despite the low number of rodents captured, molecular diagnostic tests showed that two of them have been found to be infected by schistosomes. Given the low abundance of rodents and the low parasitic prevalence and intensity among rodents, it is unlikely that neither rats nor ruminants play a significant role in the maintenance of schistosomiasis outbreak in Corsica. Finally, the most likely hypothesis is that local people initially infected in 2013 re-contaminated the river during subsequent summers, however we cannot definitively rule out the possibility of an animal species acting as reservoir host. There is an increasing interest on the effect of global changes on the transmission of infectious diseases. Both environmental and anthropogenic changes are expected to promote outbreaks and spread of pathogens. In particular, tropical infectious diseases are expected to move towards more temperate latitudes. Until 2013, urogenital schistosomiasis was restricted to tropical and sub-tropical areas. In summer 2013, a schistosomiasis outbreak has emerged in Corsica (France) with more than 100 cases. Corsica is a French Mediterranean island, which is very popular for tourists from throughout Europe due to the natural beauty of the environment. Surprisingly, in summer 2015 and 2016, the contamination has resumed, and schistosomiasis has been classified in the list of French notifiable infectious disease. In this context it has been hypothesised that reservoir vertebrate hosts, either human and/or animal are at the origin of the maintenance of the local transmission. This paper shows that ruminants (cow, sheep and goats) should not play a role of reservoir host but we found that rodents living in the vicinity of the transmission sites have been infected by the parasite. Considering the low abundance of rodents and the low parasitic prevalence/intensity among rodents, it is unlikely that rats play a significant role in the maintenance of schistosomiasis outbreak in Corsica and that other animals or human could maintain the parasite locally.
Collapse
Affiliation(s)
- Ana Oleaga
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC). Cordel de Merinas, Salamanca, Spain
| | - Olivier Rey
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan France
| | - Bruno Polack
- UMR BIPAR, Ecole Nationale Vétérinaire d’Alfort, ANSES, INRA, Université Paris-Est, Maisons-Alfort, France
| | | | - Yann Quilichini
- UMR SPE 6134, CNRS-Université de Corse Campus Grimaldi Bât 018, Université de Corse, Corte, France
| | - Ricardo Pérez-Sánchez
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC). Cordel de Merinas, Salamanca, Spain
| | - Pascal Boireau
- UMR BIPAR, Anses, Ecole Nationale Vétérinaire d'Alfort, INRA, University Paris-Est, Animal Health Laboratory, Maisons-Alfort, France
| | - Stephen Mulero
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan France
| | - Aimé Brunet
- UMR SPE 6134, CNRS-Université de Corse Campus Grimaldi Bât 018, Université de Corse, Corte, France
| | - Anne Rognon
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan France
| | - Isabelle Vallée
- UMR BIPAR, Anses, Ecole Nationale Vétérinaire d'Alfort, INRA, University Paris-Est, Animal Health Laboratory, Maisons-Alfort, France
| | - Julien Kincaid-Smith
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan France
| | | | - Jérôme Boissier
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan France
- * E-mail:
| |
Collapse
|
33
|
Mouahid G, Mintsa Nguema R, Al Mashikhi KM, Al Yafae SA, Idris MA, Moné H. Host-parasite life-histories of the diurnal vs. nocturnal chronotypes of Schistosoma mansoni: adaptive significance. Trop Med Int Health 2019; 24:692-700. [PMID: 30851235 DOI: 10.1111/tmi.13227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To optimise host-to-host transmission, digenean trematodes (parasites) synchronise their cercarial emission patterns with the aquatic activities of their vertebrate hosts. Schistosoma mansoni has two different circadian chronotypes: a diurnal shedding pattern with a mean peak occurring at 11:00 h, and a nocturnal shedding pattern with a mean peak occurring at 20:00 h. We analysed the life-history variations between these two chronotypes at the levels of the parasite and its hosts. METHODS For each chronotype, we quantified three life-history traits related to the parasite (prepatent period, infection rate and cercarial production) and analysed the morphometry and the morphology of the parasite eggs; we also quantified three life-history traits related to the snail intermediate host (shell diameter, fecundity and survival rate) and one life-history trait related to the experimental definitive host (survival rate). A phylogeny based on the mitochondrial cytochrome-oxidase gene was made on samples of both chronotypes. RESULTS Life-history analysis revealed significant variations between the two chronotypes. Life-history traits were optimal for both the parasite and the snail host for the diurnal chronotype compared to the nocturnal one. The new chronotype behaved like an allopatric population towards its snail host. Phylogenetic analysis supports the hypothesis of a lateral transfer of S. mansoni from humans to Rattus rattus. These results were interpreted in terms of an ongoing sympatric speciation. CONCLUSION The nocturnal chronotype of S. mansoni showed non-adapted life-history traits in its relation with the snail intermediate host Biomphalaria pfeifferi. The emergence of this new phenotype is probably linked to divergent natural selection.
Collapse
Affiliation(s)
- Gabriel Mouahid
- IHPE Laboratory, UMR5244, UM, CNRS, IFREMER, University of Perpignan Via Domitia, Perpignan, France
| | | | | | - Salem A Al Yafae
- Directorate General of Health Services, Salalah, Sultanate of Oman
| | - Mohamed A Idris
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Hélène Moné
- IHPE Laboratory, UMR5244, UM, CNRS, IFREMER, University of Perpignan Via Domitia, Perpignan, France
| |
Collapse
|
34
|
Tian-Bi YNT, Webster B, Konan CK, Allan F, Diakité NR, Ouattara M, Salia D, Koné A, Kakou AK, Rabone M, Coulibaly JT, Knopp S, Meïté A, Utzinger J, N'Goran EK, Rollinson D. Molecular characterization and distribution of Schistosoma cercariae collected from naturally infected bulinid snails in northern and central Côte d'Ivoire. Parasit Vectors 2019; 12:117. [PMID: 30890180 PMCID: PMC6423847 DOI: 10.1186/s13071-019-3381-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/06/2019] [Indexed: 01/27/2023] Open
Abstract
Background Accurate identification of schistosome species infecting intermediate host snails is important for understanding parasite transmission, schistosomiasis control and elimination. Cercariae emerging from infected snails cannot be precisely identified morphologically to the species level. We used molecular tools to clarify the distribution of the Schistosoma haematobium group species infecting bulinid snails in a large part of Côte d’Ivoire and confirmed the presence of interspecific hybrid schistosomes. Methods Between June 2016 and March 2017, Bulinus snails were sampled in 164 human-water contact sites from 22 villages of the northern and central parts of Côte d’Ivoire. Multi-locus genetic analysis (mitochondrial cox1 and nuclear ITS) was performed on individual schistosome cercariae shed from snails, in the morning and in the afternoon, for species and hybrid identification. Results Overall, 1923 Bulinus truncatus, 255 Bulinus globosus and 1424 Bulinus forskalii were obtained. Among 2417 Bulinus screened, 25 specimens (18 B. truncatus and seven B. globosus) shed schistosomes, with up to 14% infection prevalence per site and time point. Globally, infection rates per time point ranged between 0.6 and 4%. Schistosoma bovis, S. haematobium and S. bovis × S. haematobium hybrids infected 0.5%, 0.2% and 0.4% of the snails screened, respectively. Schistosoma bovis and hybrids were more prevalent in B. truncatus, whereas S. haematobium and hybrid infections were more prevalent in B. globosus. Schistosoma bovis-infected Bulinus were predominantly found in northern sites, while S. haematobium and hybrid infected snails were mainly found in central parts of Côte d’Ivoire. Conclusions The data highlight the necessity of using molecular tools to identify and understand which schistosome species are transmitted by specific intermediate host snails. The study deepens our understanding of the epidemiology and transmission dynamics of S. haematobium and S. bovis in Côte d’Ivoire and provides the first conclusive evidence for the transmission of S. haematobium × S. bovis hybrids in this West African country. Trial registration ISRCTN, ISRCTN10926858. Registered 21 December 2016; retrospectively registered (see: http://www.isrctn.com/ISRCTN10926858) Electronic supplementary material The online version of this article (10.1186/s13071-019-3381-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yves-Nathan T Tian-Bi
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, 22 BP 770, Abidjan 22, Côte d'Ivoire.,Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303, Abidjan 01, Côte d'Ivoire
| | - Bonnie Webster
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
| | - Cyrille K Konan
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, 22 BP 770, Abidjan 22, Côte d'Ivoire.,Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303, Abidjan 01, Côte d'Ivoire
| | - Fiona Allan
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Nana R Diakité
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, 22 BP 770, Abidjan 22, Côte d'Ivoire.,Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303, Abidjan 01, Côte d'Ivoire
| | - Mamadou Ouattara
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, 22 BP 770, Abidjan 22, Côte d'Ivoire.,Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303, Abidjan 01, Côte d'Ivoire
| | - Diabaté Salia
- Centre d'Entomologie Médicale et Vétérinaire, Université Alassane Ouattara de Bouaké, 27 BP 529, Abidjan 27, Côte d'Ivoire
| | - Amani Koné
- Institut National d'Hygiène Publique, Ministère de la Santé et de l'Hygiène Publique, Boulevard Du Port (Chu)-Treichville, Bp V 14, Abidjan, Côte d'Ivoire
| | - Adolphe K Kakou
- Institut National d'Hygiène Publique, Ministère de la Santé et de l'Hygiène Publique, Boulevard Du Port (Chu)-Treichville, Bp V 14, Abidjan, Côte d'Ivoire
| | - Muriel Rabone
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Jean T Coulibaly
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, 22 BP 770, Abidjan 22, Côte d'Ivoire.,Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303, Abidjan 01, Côte d'Ivoire.,Swiss Tropical and Public Health Institute, P.O. Box, CH-4002, Basel, Switzerland.,University of Basel, P.O. Box, CH-4003, Basel, Switzerland
| | - Stefanie Knopp
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002, Basel, Switzerland.,University of Basel, P.O. Box, CH-4003, Basel, Switzerland
| | - Aboulaye Meïté
- Programme National de Lutte contre les Maladies Tropicales Négligées à Chimiothérapie Préventive (PNLMTN-CP), Ministère de la Santé et de l'Hygiène Publique, 06 BP 6394, Abidjan 06, Côte d'Ivoire
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002, Basel, Switzerland.,University of Basel, P.O. Box, CH-4003, Basel, Switzerland
| | - Eliézer K N'Goran
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, 22 BP 770, Abidjan 22, Côte d'Ivoire.,Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303, Abidjan 01, Côte d'Ivoire
| | - David Rollinson
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| |
Collapse
|
35
|
De NV, La T, Minh PN, Dao PTB, Duyet LV. Detection of four patients who were infected by Schistosoma haematobium in Vietnam. Infect Drug Resist 2019; 12:439-445. [PMID: 30863127 PMCID: PMC6388730 DOI: 10.2147/idr.s179746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Introduction Schistosoma lives as a parasite in the portal vein causing intestinal lesions. It also lives in the liver, spleen, and the vein of the urinary bladder causing lesions in the urinary system. Angola is an endemic area of Schistosoma haematobium, which causes lesions in the urinary system, including the urinary bladder. In this study, we aimed to identify and classify the parasites that were collected from four patients from Angola, who currently live in Vietnam, by morphological and molecular methods. Patients and methods The main clinical symptoms of the patients were collected, and Schistosoma eggs were taken from urine by a centrifugal method from the four patients in 2016. Identification of the species by morphological method was taken using a microscope. The DNA of the Schistosoma was also isolated and was identified by cytochrome C oxidase subunit 1 (Cox1) sequence. Results The four Vietnamese patients infected with S. haematobium in Angola returned to Vietnam. All the patients felt strange and had cystalgia and hematuria (blood urine), and one of them was diagnosed with urinary bladder cancer, where surgery was necessary for that patient. Schistosoma eggs, which were collected from the urine of the four patients, were identified as S. haematobium by morphological and molecular methods. These patients were the first reports of Schistosoma in Vietnam. Conclusion Four Vietnamese schistosomiasis patients returned from Angola: three were diagnosed with schistosomiasis and one was diagnosed with urinary bladder cancer. They had similar symptoms including a strange feeling, cystalgia, hematuria, and eosinophilia and were detected with Schistosoma eggs in urine.
Collapse
Affiliation(s)
- Nguyen Van De
- Department of Parasitology, Hanoi Medical University, Hanoi, Vietnam,
| | - Truong La
- Department of Microbiology and Parasitology, The Western Highlands Agriculture and Forestry Science Institute (WASI), Hanoi, Vietnam
| | - Pham Ngoc Minh
- Department of Parasitology, Hanoi Medical University, Hanoi, Vietnam,
| | - Pham Thi Bich Dao
- Department of Parasitology, Hanoi Medical University, Hanoi, Vietnam,
| | - Le Van Duyet
- Department of Molecular Diagnosis, National Hospital for Tropical Diseases, Hanoi, Vietnam
| |
Collapse
|
36
|
Depaquit J, Akhoundi M, Haouchine D, Mantelet S, Izri A. No limit in interspecific hybridization in schistosomes: observation from a case report. Parasite 2019; 26:10. [PMID: 30821247 PMCID: PMC6396650 DOI: 10.1051/parasite/2019010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 02/18/2019] [Indexed: 11/15/2022] Open
Abstract
Schistosomiasis is one of the most significant parasitic diseases of humans. The hybridization of closely related Schistosoma species has already been documented. However, hybridization between phylogenetically distant species is unusual. In the present study, we characterized the causative agent of schistosomiasis in a 14-year-old patient with hematuria from Côte d'Ivoire, using morphological and molecular approaches. A 24-hour parasitological examination of urine showed the presence of numerous eggs (150 μm long × 62 μm wide) with a lateral spine (25 μm), identified morphologically as Schistosoma mansoni. Examination of stools performed on the same day found no parasites. The urine and stool examinations of the patient's family members performed two weeks later showed neither parasites nor hematuria; but in contrast, many S. mansoni eggs were found again in the patient's urine, but never in his stools. Conventional PCRs were performed, using two primer pairs targeting 28S-rDNA and COI mtDNA. The 28S-rDNA sequence of these eggs, compared with two reference sequences from GenBank demonstrated a hybrid with 25 double peaks, indicating clearly hybrid positions (5.37%) between S. mansoni and S. haematobium. Similarly, we identified a unique S. mansoni COI sequence for the two eggs, with 99.1% homology with the S. mansoni reference sequence. Consequently, this case was the result of hybridization between an S. haematobium male and an S. mansoni female. This should be taken into consideration to explore the elimination of ectopic schistosome eggs in the future.
Collapse
Affiliation(s)
- Jérôme Depaquit
- EA7510 ESCAPE, USC ANSES “VECPAR”, UFR Pharmacie, Université de Reims Champagne-Ardenne France
- Laboratoire de Parasitologie-Mycologie, Hôpital Maison Blanche Reims France
| | - Mohammad Akhoundi
- Département de Parasitologie-Mycologie, Hôpital Avicenne AP-HP Bobigny France
| | - Djamel Haouchine
- Département de Parasitologie-Mycologie, Hôpital Avicenne AP-HP Bobigny France
| | - Stéphane Mantelet
- Département de Parasitologie-Mycologie, Hôpital Avicenne AP-HP Bobigny France
| | - Arezki Izri
- Département de Parasitologie-Mycologie, Hôpital Avicenne AP-HP Bobigny France
- Unité des Virus Emergents (Université Aix-Marseille– IRD 190 – Inserm 1207 – IHU Méditerranée infection) Marseille France
| |
Collapse
|
37
|
Le Govic Y, Kincaid-Smith J, Allienne JF, Rey O, de Gentile L, Boissier J. Schistosoma haematobium-Schistosoma mansoni Hybrid Parasite in Migrant Boy, France, 2017. Emerg Infect Dis 2019; 25:365-367. [PMID: 30526763 PMCID: PMC6346478 DOI: 10.3201/eid2502.172028] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Schistosomiasis is frequently detected in persons entering Europe. In 2017, we detected a Schistosoma mansoni–Schistosoma haematobium hybrid parasite infection in a migrant boy from Côte d’Ivoire entering France. Because such parasites might be established in Europe, as illustrated by an outbreak on Corsica Island, vectors of these parasites should be investigated.
Collapse
|
38
|
Urogenital schistosomiasis and hybridization between Schistosoma haematobium and Schistosoma bovis in adults living in Richard-Toll, Senegal. Parasitology 2018; 145:1723-1726. [PMID: 30185248 DOI: 10.1017/s0031182018001415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Since the construction of the Diama Dam (1985), the epidemiology of schistosomiasis along the Senegal River Basin (SRB) has been extremely dynamic with outbreaks of both intestinal and urogenital schistosomiasis. In the early 2000s, technicians reported cases of suspected urogenital schistosomiasis in adults from the local hospital in Richard-Toll, Lower SRB. The genetic analysis of schistosome miracidia isolated from 11 patients in 2012 from two neighbourhoods (Campement and Gaya) of Richard-Toll confirmed infection with Schistosoma haematobium but also S. haematobium/S. bovis hybrids. Thirty-seven per cent of the miracidia were S. bovis/S. haematobium hybrids and 63% were pure S. haematobium. The data are discussed in relation to the ongoing dynamic epidemiology of the schistosomes in Senegal and the need to treat non-target individuals.
Collapse
|
39
|
Mouahid G, Clerissi C, Allienne JF, Chaparro C, Al Yafae S, Mintsa Nguema R, Ibikounlé M, Moné H. The phylogeny of the genus Indoplanorbis
(Gastropoda, Planorbidae) from Africa and the French West Indies. ZOOL SCR 2018. [DOI: 10.1111/zsc.12297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gabriel Mouahid
- IHPE; CNRS; IFREMER; University of Perpignan Via Domitia; University of Montpellier; Perpignan France
| | - Camille Clerissi
- IHPE; CNRS; IFREMER; University of Perpignan Via Domitia; University of Montpellier; Perpignan France
| | - Jean-François Allienne
- IHPE; CNRS; IFREMER; University of Perpignan Via Domitia; University of Montpellier; Perpignan France
| | - Cristian Chaparro
- IHPE; CNRS; IFREMER; University of Perpignan Via Domitia; University of Montpellier; Perpignan France
| | | | | | | | - Hélène Moné
- IHPE; CNRS; IFREMER; University of Perpignan Via Domitia; University of Montpellier; Perpignan France
| |
Collapse
|
40
|
Marchese V, Beltrame A, Angheben A, Monteiro GB, Giorli G, Perandin F, Buonfrate D, Bisoffi Z. Schistosomiasis in immigrants, refugees and travellers in an Italian referral centre for tropical diseases. Infect Dis Poverty 2018; 7:55. [PMID: 29907162 PMCID: PMC6004084 DOI: 10.1186/s40249-018-0440-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 05/16/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Schistosomiasis is one of the most important neglected tropical diseases. If unrecognised and untreated, the chronic infection can lead to irreversible complications. METHODS Retrospective observational study aimed at describing clinical history, laboratory findings and imaging presentation of imported schistosomiasis diagnosed at the Centre for Tropical Diseases, Sacro Cuore Don Calabria Hospital of Negrar, Verona, Italy from 2010 to 2014. The aim of our study was to assess differences in demographic characteristics, clinical presentation, laboratory data and ultrasound findings between immigrants/visiting friends and relatives (VFR) from endemic countries (endemic group) and expatriates/travellers (non-endemic group). RESULTS A total of 272 patients were retrieved: 234 in the endemic and 38 in the non-endemic group. Most of the patients acquired schistosomiasis in Africa (97.4%). Symptoms were reported by 52.9% of the patients; abdominal pain (36%), macroscopic hematuria (11.3%), and genito-urinary symptoms (7.4%) being the most frequently reported. Increased IgE and blood eosinophilia were observed in 169 (63.8%) and 130 (47.8%) patients, respectively. The proportion of positive serology was 250/272 (91.9%).The Circulating Cathodic Antigen CCA for Schistosoma mansoni was positive in 14/61 individuals (23%). At microscopy, infected subjects were 103/272 (37.9%). The species of Schistosoma found were S. haematobium (47.6%), S. mansoni (46.6%) or both (5.8%). Schistosomiasis was classified as confirmed in 103 (37.9%), probable in 165 (60.6%) and suspected in 4 (1.5%) cases using clinical presentation, laboratory data and ultrasound findings. The infection was further classified based on organ involvement: intestinal (17.9%), hepatosplenic (5.1%), urogenital (48.9%), and indeterminate (43.8%). The comparative analysis of endemic and non-endemic patients highlighted differences in sex and age. Endemic patients had more frequent ova identification (41.9% vs. 13.2%, P < 0.001) and increased IgE (70% vs. 26.3%, P < 0.001) when compared with non-endemic. Multivariate analyses showed that younger age, abnormal ultrasound findings and blood eosinophilia were significantly associated with positive microscopy (OR = 0.94, OR = 2.12, OR = 1.98, respectively). CONCLUSIONS Symptoms, eosinophilia and abnormal ultrasound findings were present in about half of patients, without differences between groups. Many patients had positive serology but negative microscopy, indicating that schistosomiasis might be misdiagnosed. A combination of diagnostic tools may facilitate the diagnosis.
Collapse
Affiliation(s)
- Valentina Marchese
- Centre for Tropical Diseases, Sacro Cuore Don Calabria Hospital, Via Sempreboni 5, 37024 Negrar, Italy
- University Department of Infectious and Tropical Diseases & WHO Collaborating Centre for TB/HIV and TB elimination, University of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - Anna Beltrame
- Centre for Tropical Diseases, Sacro Cuore Don Calabria Hospital, Via Sempreboni 5, 37024 Negrar, Italy
| | - Andrea Angheben
- Centre for Tropical Diseases, Sacro Cuore Don Calabria Hospital, Via Sempreboni 5, 37024 Negrar, Italy
| | - Geraldo Badona Monteiro
- Centre for Tropical Diseases, Sacro Cuore Don Calabria Hospital, Via Sempreboni 5, 37024 Negrar, Italy
| | - Giovanni Giorli
- Centre for Tropical Diseases, Sacro Cuore Don Calabria Hospital, Via Sempreboni 5, 37024 Negrar, Italy
| | - Francesca Perandin
- Centre for Tropical Diseases, Sacro Cuore Don Calabria Hospital, Via Sempreboni 5, 37024 Negrar, Italy
| | - Dora Buonfrate
- Centre for Tropical Diseases, Sacro Cuore Don Calabria Hospital, Via Sempreboni 5, 37024 Negrar, Italy
| | - Zeno Bisoffi
- Centre for Tropical Diseases, Sacro Cuore Don Calabria Hospital, Via Sempreboni 5, 37024 Negrar, Italy
| |
Collapse
|
41
|
Loridant S, Mouahid G, Cornu M, Allienne JF, Leroy J, Maurage CA, Fréalle E, Assaker R, Zairi F, Dutoit E, Moné H, Sendid B. Case Report: Hemianopia: From Suspected Glioblastoma to the Diagnosis of Ectopic Schistosomiasis Haematobium Infection in a Traveler Returning from the Republic of the Congo. Am J Trop Med Hyg 2018; 99:94-96. [PMID: 29714164 DOI: 10.4269/ajtmh.18-0028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Schistosomiasis due to Schistosoma haematobium is a widespread disease usually affecting the urinary tract associated with hematuria and kidney disorders. Neurological damage is rarely reported and symptoms are nonspecific and may suggest brain tumors such as glioma. We describe the first double ectopic haematobium schistosomiasis case involving the brain and intestine.
Collapse
Affiliation(s)
- Séverine Loridant
- Laboratoire de Parasitologie Mycologie, Institut de Microbiologie, Lille University hospital, Lille Inflammation Research International center- Unité Mixte de Recherche 995, Institut National de la Santé et de la Recherche Médicale/Université Lille, Lille, France
| | - Gabriel Mouahid
- Centre National de la Recherche Scientifique, Laboratoire Interactions Hôtes-Pathogènes-Environnement, University Perpignan Via Domitia, Institut Français de Recherche pour l'Exploitation de la Mer, University Montpellier, Perpignan, France
| | - Marjorie Cornu
- Laboratoire de Parasitologie Mycologie, Institut de Microbiologie, Lille University hospital, Lille Inflammation Research International center- Unité Mixte de Recherche 995, Institut National de la Santé et de la Recherche Médicale/Université Lille, Lille, France
| | - Jean-François Allienne
- Centre National de la Recherche Scientifique, Laboratoire Interactions Hôtes-Pathogènes-Environnement, University Perpignan Via Domitia, Institut Français de Recherche pour l'Exploitation de la Mer, University Montpellier, Perpignan, France
| | - Jordan Leroy
- Laboratoire de Parasitologie Mycologie, Institut de Microbiologie, Lille University hospital, Lille Inflammation Research International center- Unité Mixte de Recherche 995, Institut National de la Santé et de la Recherche Médicale/Université Lille, Lille, France
| | - Claude-Alain Maurage
- Laboratoire d'Anatomopathologie, Centre de Biologie Pathologie Génétique, Lille University hospital, Lille, France
| | - Emilie Fréalle
- Laboratoire de Parasitologie Mycologie, Institut de Microbiologie, Lille University hospital, Lille Inflammation Research International center- Unité Mixte de Recherche 995, Institut National de la Santé et de la Recherche Médicale/Université Lille, Lille, France
| | - Richard Assaker
- Service de Neurochirurgie, Lille University hospital, Hôpital Roger Salengro, Lille, France
| | - Fahed Zairi
- Service de Neurochirurgie, Lille University hospital, Hôpital Roger Salengro, Lille, France
| | - Emmanuel Dutoit
- Laboratoire de Parasitologie Mycologie, Institut de Microbiologie, Lille University hospital, Lille Inflammation Research International center- Unité Mixte de Recherche 995, Institut National de la Santé et de la Recherche Médicale/Université Lille, Lille, France
| | - Hélène Moné
- Centre National de la Recherche Scientifique, Laboratoire Interactions Hôtes-Pathogènes-Environnement, University Perpignan Via Domitia, Institut Français de Recherche pour l'Exploitation de la Mer, University Montpellier, Perpignan, France
| | - Boualem Sendid
- Laboratoire de Parasitologie Mycologie, Institut de Microbiologie, Lille University hospital, Lille Inflammation Research International center- Unité Mixte de Recherche 995, Institut National de la Santé et de la Recherche Médicale/Université Lille, Lille, France
| |
Collapse
|
42
|
Barcoding hybrids: heterogeneous distribution of Schistosoma haematobium × Schistosoma bovis hybrids across the Senegal River Basin. Parasitology 2018; 145:634-645. [PMID: 29667570 DOI: 10.1017/s0031182018000525] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hybridization events between Schistosoma species (Digenea, Platyhelminthes) are reported with increasing frequency, largely due to improved access to molecular tools. Nevertheless, little is known about the distribution and frequency of hybrid schistosomes in nature. Screening for hybrids on a large scale is complicated by the need for nuclear and mitochondrial sequence information, precluding a 'simple' barcoding approach. Here we aimed to determine and understand the spatiotemporal distribution of Schistosoma haematobium × Schistosoma bovis hybrids in the Senegal River Basin. From ten villages, distributed over the four main water basins, we genotyped a total of 1236 schistosome larvae collected from human urine samples using a partial mitochondrial cox1 fragment; a subset of 268 parasites was also genotyped using ITS rDNA. Hybrid schistosomes were unevenly distributed, with substantially higher numbers in villages bordering Lac de Guiers than in villages from the Lampsar River and the Middle Valley of the Senegal River. The frequency of hybrids per village was not linked with the prevalence of urinary schistosomiasis in that village. However, we did find a significant positive association between the frequency of hybrids per village and the prevalence of Schistosoma mansoni. We discuss the potential consequences of adopting a barcoding approach when studying hybrids in nature.
Collapse
|
43
|
|
44
|
Léger E, Garba A, Hamidou AA, Webster BL, Pennance T, Rollinson D, Webster JP. Introgressed Animal Schistosomes Schistosoma curassoni and S. bovis Naturally Infecting Humans. Emerg Infect Dis 2018; 22:2212-2214. [PMID: 27869609 PMCID: PMC5189150 DOI: 10.3201/eid2212.160644] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
45
|
Botelho MC, Alves H, Richter J. Halting Schistosoma haematobium - associated bladder cancer. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2017; 10. [PMID: 29354800 DOI: 10.5812/ijcm.9430] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background At present schistosomiasis is endemic in 78 countries affecting more than 260 million people. Schistosomiasis haematobia alone affects more than 112 millions. Material and Methods We performed a computerized search of Pubmed database with keywords: bladder cancer cost and schistosomiasis mass treatment. Results Bladder cancer is an important sequelae of this infection. In low-resource countries, where this disease is endemic, individuals inflicted with bladder cancer have very limited access to treatment and death is most probably certain. Conclusion Mass treatment with praziquantel is an easy, safe and inexpensive treatment that could save the lives of thousands and reduce the morbidity of millions.
Collapse
Affiliation(s)
- Monica C Botelho
- INSA, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
- I3S, Instituto de Investigação e Inovação da Universidade do Porto, Portugal
| | - Helena Alves
- I3S, Instituto de Investigação e Inovação da Universidade do Porto, Portugal
| | - Joachim Richter
- Institute of Tropical Medicine and International Health, Charité - Universitätsmedizin Berlin, Germany
| |
Collapse
|
46
|
Abbasi I, Webster BL, King CH, Rollinson D, Hamburger J. The substructure of three repetitive DNA regions of Schistosoma haematobium group species as a potential marker for species recognition and interbreeding detection. Parasit Vectors 2017; 10:364. [PMID: 28764739 PMCID: PMC5540583 DOI: 10.1186/s13071-017-2281-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/10/2017] [Indexed: 11/19/2022] Open
Abstract
Background Schistosoma haematobium is the causative agent of human urogenital schistosomiasis affecting ~112 million people in Africa and the Middle East. The parasite is transmitted by snails of the genus Bulinus, which also transmit other closely related human and animal schistosomes. The accurate discrimination of S. haematobium from species infecting animals will aid effective control and elimination programs. Previously we have shown the utility of different repetitive nuclear DNA sequences (DraI, sh73bp, and sh77bp) for the identification of S. haematobium-group species and inter-repeat sequences for discriminating S. haematobium from S. bovis. Results In this current study we clarify the structural arrangement and association between the three repetitive sequences (DraI, sh73bp, and sh77bp) in both S. haematobium and S. bovis, with a unique repeat linker being found in S. haematobium (Sh64bp repeat linker) and in S. bovis (Sb30bp repeat linker). Sequence data showed that the 3′-end of the repeat linker was connected to the DraI repetitive sequence array, and at the 5′-end of the repeat linker sh73bp and sh77bp were arranged in an alternating manner. Species-specific oligonucleotides were designed targeting the species-specific repeat linkers and used in a reverse line blot (RLB) hybridization assay enabling differentiation between S. haematobium and S. bovis. The assay was used to discriminate natural infections in wild caught Bulinus globosus. Conclusion This research enabled the characterisation of species-specific DNA regions that enabled the design of species-specific oligonucleotides that can be used to rapidly differentiate between S. haematobium and S. bovis and also have the potential to aid the detection of natural hybridization between these two species.
Collapse
Affiliation(s)
- Ibrahim Abbasi
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Kuvin Centre for the Study of Infectious and Tropical Diseases, The Hebrew University - Hadassah Medical School, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel.,Department of Biological Sciences, Faculty of Science and Technology, Al-Quds University, Abu Deis, Palestine
| | - Bonnie L Webster
- Department of Life Sciences, Parasites and Vectors Division, The Natural History Museum, London, SW7 5BD, UK.,WHO Collaborating Centre for Schistosome and Snail Identification and Characterisation, London, UK.,London Centre for Neglected Tropical Disease Research (LCNTDR), London, UK
| | - Charles H King
- Center for Global Health and Diseases and WHO Collaborating Centre for Research and Training for Schistosomiasis Elimination, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - David Rollinson
- Department of Life Sciences, Parasites and Vectors Division, The Natural History Museum, London, SW7 5BD, UK.,WHO Collaborating Centre for Schistosome and Snail Identification and Characterisation, London, UK.,London Centre for Neglected Tropical Disease Research (LCNTDR), London, UK
| | - Joseph Hamburger
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Kuvin Centre for the Study of Infectious and Tropical Diseases, The Hebrew University - Hadassah Medical School, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel.
| |
Collapse
|
47
|
Large outbreak of urogenital schistosomiasis acquired in Southern Corsica, France: monitoring early signs of endemicization? Clin Microbiol Infect 2017; 24:295-300. [PMID: 28669843 DOI: 10.1016/j.cmi.2017.06.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/19/2017] [Accepted: 06/22/2017] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Clustered cases of urogenital schistosomiasis were reported in April 2014 among French and German tourists linked to exposure in the Cavu River, Southern Corsica, France, between 2011 and 2013. We set up national surveillance for autochthonous urogenital schistosomiasis to document the largest possible number of cases in order to identify potential sites of transmission and to determine the extent of the outbreak in France and Corsica. METHODS The early response consisted mostly of prohibiting swimming in the river, performing a nationwide serologic screening of all persons exposed to the river between 2011 and 2013 and treating confirmed cases. Physicians were asked to report all patients with one or more positive antischistosome serologic test. Cases were defined as occurring in a resident of France with serologic evidence of schistosomiasis or schistosome eggs in urine and no history of contact with freshwater in known endemic areas. We documented symptoms as well as place and time of exposure to freshwater for all subjects. To estimate the outbreak size, we modelled the effect of the 2014 nationwide screening on the 2011-2015 time series of serodiagnosed schistosomiasis cases using log-linear autoregression. RESULTS In 2014, a total of 106 autochthonous cases were reported, including 35 symptomatic infections. All patients had swum in the Cavu during summer 2013. Over 30 000 persons were likely screened for autochthonous schistosomiasis. The model-estimated outbreak size was 338 cases, including 36 serodiagnosed in 2015. CONCLUSIONS Besides the 2013 outbreak, there is evidence of small-scale transmission in 2015 in Corsica. Early detection and control of recurrences requires raising community and medical awareness.
Collapse
|
48
|
Beltrame A, Guerriero M, Angheben A, Gobbi F, Requena-Mendez A, Zammarchi L, Formenti F, Perandin F, Buonfrate D, Bisoffi Z. Accuracy of parasitological and immunological tests for the screening of human schistosomiasis in immigrants and refugees from African countries: An approach with Latent Class Analysis. PLoS Negl Trop Dis 2017; 11:e0005593. [PMID: 28582412 PMCID: PMC5472324 DOI: 10.1371/journal.pntd.0005593] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/15/2017] [Accepted: 04/24/2017] [Indexed: 12/17/2022] Open
Abstract
Background Schistosomiasis is a neglected infection affecting millions of people, mostly living in sub-Saharan Africa. Morbidity and mortality due to chronic infection are relevant, although schistosomiasis is often clinically silent. Different diagnostic tests have been implemented in order to improve screening and diagnosis, that traditionally rely on parasitological tests with low sensitivity. Aim of this study was to evaluate the accuracy of different tests for the screening of schistosomiasis in African migrants, in a non endemic setting. Methodology/Principal findings A retrospective study was conducted on 373 patients screened at the Centre for Tropical Diseases (CTD) in Negrar, Verona, Italy. Biological samples were tested with: stool/urine microscopy, Circulating Cathodic Antigen (CCA) dipstick test, ELISA, Western blot, immune-chromatographic test (ICT). Test accuracy and predictive values of the immunological tests were assessed primarily on the basis of the results of microscopy (primary reference standard): ICT and WB resulted the test with highest sensitivity (94% and 92%, respectively), with a high NPV (98%). CCA showed the highest specificity (93%), but low sensitivity (48%). The analysis was conducted also using a composite reference standard, CRS (patients classified as infected in case of positive microscopy and/or at least 2 concordant positive immunological tests) and Latent Class Analysis (LCA). The latter two models demonstrated excellent agreement (Cohen’s kappa: 0.92) for the classification of the results. In fact, they both confirmed ICT as the test with the highest sensitivity (96%) and NPV (97%), moreover PPV was reasonably good (78% and 72% according to CRS and LCA, respectively). ELISA resulted the most specific immunological test (over 99%). The ICT appears to be a suitable screening test, even when used alone. Conclusions The rapid test ICT was the most sensitive test, with the potential of being used as a single screening test for African migrants. Schistosomiasis is probably the most important of the neglected tropical diseases (NTD) caused by helminthes (worms). It is acquired bathing in freshwater in endemic areas. The life cycle is complex and involves freshwater snails. Schistosomiasis, caused by Schistosoma mansoni, S. haematobium and less frequently by other species, affects more than 200 million people, mostly in Africa, and may chronically cause irreversible damage of the liver (S. mansoni) or of the kidneys and the urinary tract, including cancer of the bladder (S. haematobium). As in chronic infections eggs of both species are often missed by microscopy of faeces and urine, with this retrospective study we evaluate the accuracy of different, alternative diagnostic tests, for the screening of schistosomiasis in African migrants and asylum seekers, of whom many thousands reach the Italian coast every year proceding from the most endemic areas. The most interesting finding of our study is that a rapid diagnostic test for antibody detection in blood, easy to use as a point-of-care tool, resulted the most sensitive of the five tests evaluated, and thus is very promising as a screening tool even when used without any additional test.
Collapse
Affiliation(s)
- Anna Beltrame
- Centre for Tropical Diseases, Ospedale Sacro Cuore Don Calabria, Negrar, Verona, Italy
| | | | - Andrea Angheben
- Centre for Tropical Diseases, Ospedale Sacro Cuore Don Calabria, Negrar, Verona, Italy
| | - Federico Gobbi
- Centre for Tropical Diseases, Ospedale Sacro Cuore Don Calabria, Negrar, Verona, Italy
| | - Ana Requena-Mendez
- Barcelona Institute for Global Health, ISGlobal-CRESIB, Universitat de Barcelona, Barcelona, Spain
| | - Lorenzo Zammarchi
- Infectious and Tropical Diseases Department, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - Fabio Formenti
- Centre for Tropical Diseases, Ospedale Sacro Cuore Don Calabria, Negrar, Verona, Italy
| | - Francesca Perandin
- Centre for Tropical Diseases, Ospedale Sacro Cuore Don Calabria, Negrar, Verona, Italy
| | - Dora Buonfrate
- Centre for Tropical Diseases, Ospedale Sacro Cuore Don Calabria, Negrar, Verona, Italy
- * E-mail:
| | - Zeno Bisoffi
- Centre for Tropical Diseases, Ospedale Sacro Cuore Don Calabria, Negrar, Verona, Italy
| |
Collapse
|
49
|
Kincaid-Smith J, Rey O, Toulza E, Berry A, Boissier J. Emerging Schistosomiasis in Europe: A Need to Quantify the Risks. Trends Parasitol 2017; 33:600-609. [PMID: 28539255 DOI: 10.1016/j.pt.2017.04.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/19/2017] [Accepted: 04/27/2017] [Indexed: 11/29/2022]
Abstract
The recent recurrent outbreaks of urogenital schistosomiasis in the south of Europe were unanticipated and caught scientists and health authorities unprepared. It is now time to learn lessons from these outbreaks and to implement concrete procedures in order to better quantify the risks and prevent future outbreaks of schistosomiasis in Europe. In this context, we propose a reflection on the factors that currently hamper our ability to quantify these risks and argue that we are incapable of predicting future outbreaks. We base our reflexion on an ecological two-step filter concept that drives host-parasite interactions, namely the encounter and the compatibility filters.
Collapse
Affiliation(s)
- Julien Kincaid-Smith
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - Olivier Rey
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - Eve Toulza
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - Antoine Berry
- Service de Parasitologie-Mycologie, CHU Toulouse and Centre de Physiopathologie de Toulouse Purpan, INSERM U1043, CNRS UMR5282, Université de Toulouse, Toulouse, France
| | - Jérôme Boissier
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France.
| |
Collapse
|
50
|
Pulmonary nodules in African migrants caused by chronic schistosomiasis. THE LANCET. INFECTIOUS DISEASES 2017; 17:e159-e165. [DOI: 10.1016/s1473-3099(16)30530-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 10/20/2016] [Accepted: 11/15/2016] [Indexed: 11/24/2022]
|