1
|
Pessanha de Carvalho L, Held J, de Melo EJT. Essential and nonessential metal effects on extracellular Leishmania amazonensis in vitro. Exp Parasitol 2019; 209:107826. [PMID: 31881207 DOI: 10.1016/j.exppara.2019.107826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/26/2019] [Accepted: 12/20/2019] [Indexed: 10/25/2022]
Abstract
Protozoan parasites like Leishmania amazonensis are excellent models to test the effects of new drugs against a functional molecular arsenal used to establish successfully an infection in the vertebrate host, where they invade the cells of the monocytic system. However, little is known about the influence of metal ions on the cellular functionality of the infective forms of L. amazonensis. In the present work, we show that ZnCl2 (an essential metal to cellular metabolism) did not induce drastic effects on the survival of the promastigote under the conditions tested. However, incubation of ZnCl2 prior to subsequent treatment with CdCl2 and HgCl2 led to a drastic toxic effect on parasite survival in vitro. Nonessential metals such as CdCl2 and HgCl2 promoted a drastic effect on parasite survival progressively with increasing dose and time of exposure. Notably, HgCl2 produced an effective elimination of the parasite in doses/time smaller than the CdCl2. This toxic action induced in the parasite a high condensation of the nuclear heterochromatin, besides the absence or de-structuring of functional organelles such as glycosomes, acidocalcisomes, and mitochondria in the cytoplasm. Our results suggest that promastigotes of L. amazonensis are sensitive to the toxic activity of nonessential metals, and that this activity increases when parasites are previously exposed to Zn. To summarize, toxic effects of the tested metals are dose and time dependent and can be used as a study model to better understand the functionality of the molecular arsenal responsible for the parasitism.
Collapse
Affiliation(s)
- Laís Pessanha de Carvalho
- Laboratory of Tissue and Cell Biology, Center for Bioscience and Biotechnology, State University of Northern Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000 - Parque California, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil; Institute of Tropical Medicine, University of Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.
| | - Jana Held
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.
| | - Edésio José Tenório de Melo
- Laboratory of Tissue and Cell Biology, Center for Bioscience and Biotechnology, State University of Northern Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000 - Parque California, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil.
| |
Collapse
|
2
|
Chao Y, Wang C, Jia H, Zhai N, Wang H, Xu B, Li H, Guo X. Identification of an Apis cerana cerana MAP kinase phosphatase 3 gene (AccMKP3) in response to environmental stress. Cell Stress Chaperones 2019; 24:1137-1149. [PMID: 31664697 PMCID: PMC6882995 DOI: 10.1007/s12192-019-01036-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/23/2019] [Accepted: 09/23/2019] [Indexed: 12/26/2022] Open
Abstract
MAP kinase phosphatase 3 (MKP3), a member of the dual-specificity protein phosphatase (DUSP) superfamily, has been widely studied for its role in development, cancer, and environmental stress in many organisms. However, the functions of MKP3 in various insects have not been well studied, including honeybees. In this study, we isolated an MKP3 gene from Apis cerana cerana and explored the role of this gene in the resistance to oxidation. We found that AccMKP3 is highly conserved in different species and shares the closest evolutionary relationship with AmMKP3. We determined the expression patterns of AccMKP3 under various stresses. qRT-PCR results showed that AccMKP3 was highly expressed during the pupal stages and in adult muscles. We further found that AccMKP3 was induced in all the stress treatments. Moreover, we discovered that the enzymatic activities of peroxidase, superoxide dismutase, and catalase increased and that the expression levels of several antioxidant genes were affected after AccMKP3 was knocked down. Collectively, these results suggest that AccMKP3 may be associated with antioxidant processes involved in response to various environmental stresses.
Collapse
Affiliation(s)
- Yuzhen Chao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Haihong Jia
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Na Zhai
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Han Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| |
Collapse
|