1
|
Redón S, Quiroz M, Lukić D, Green AJ, Gajardo G. Phylogenetic Relationships of Avian Cestodes from Brine Shrimp and Congruence with Larval Morphology. Animals (Basel) 2024; 14:397. [PMID: 38338040 PMCID: PMC10854740 DOI: 10.3390/ani14030397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Determining molecular markers for parasites provides a useful tool for their identification, particularly for larval stages with few distinguishable diagnostic characters. Avian cestodes play a key role in the food webs and biodiversity of hypersaline wetlands, yet they remain understudied. Using naturally infected Artemia, we identified cestode larvae (cysticercoids), assessed their genetic diversity, and explored phylogenetic relationships in relation to larval morphology and waterbird final hosts. We obtained partial 18S rDNA sequences for 60 cysticercoids of the family Hymenolepidae infecting Artemia spp. from seven localities and three countries (Spain, the USA, and Chile). We present the first DNA sequences for six taxa: Confluaria podicipina, Fimbriarioides sp., Flamingolepis liguloides, Flamingolepis sp. 1, Flamingolepis sp. 2, and Hymenolepis californicus. Intraspecific sequence variation (0.00-0.19% diversity) was lower than intergroup genetic distance (0.7-14.75%). Phylogenetic analysis revealed three main clades: 1-Flamingolepis, 2-Fimbriarioides, 3-Confluaria and Hymenolepis, all of which separated from hymenolepidids from mammals and terrestrial birds. This clear separation among taxa is congruent with previous morphological identification, validating the 18S gene as a useful marker to discriminate at generic/species level. Working with intermediate hosts allows the expansion of knowledge of taxonomic and genetic diversity of cestodes in wildlife, as well as elucidation of their life cycles.
Collapse
Affiliation(s)
- Stella Redón
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Av. Reina Mercedes, 41012 Seville, Spain
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Av. Fuchslocher 1305, Osorno 5290000, Chile; (M.Q.); (G.G.)
| | - Mauricio Quiroz
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Av. Fuchslocher 1305, Osorno 5290000, Chile; (M.Q.); (G.G.)
| | - Dunja Lukić
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana, EBD-CSIC, C/Américo Vespucio 26, 41092 Seville, Spain; (D.L.); (A.J.G.)
| | - Andy J. Green
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana, EBD-CSIC, C/Américo Vespucio 26, 41092 Seville, Spain; (D.L.); (A.J.G.)
| | - Gonzalo Gajardo
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Av. Fuchslocher 1305, Osorno 5290000, Chile; (M.Q.); (G.G.)
| |
Collapse
|
2
|
Diversity of Parasitic Animals in Hypersaline Waters: A Review. DIVERSITY 2023. [DOI: 10.3390/d15030409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Hypersaline waters are unique polyextreme habitats, where the salinity limits species richness. There are main patterns of a relationship between salinity and the species richness of free-living aquatic animals, but for parasitic organisms, general regularities have not yet been established. There are quite numerous data on parasites in hypersaline waters worldwide; however, they have not been summarized before. This review tries to fill this gap by summarizing the available data. All parasites, 85 species and forms, found in hypersaline waters belong to five phyla: Platyhelminthes, Nematoda, Acanthocephala, Cnidaria, and Arthropoda. Platyhelminthes are the most diverse phylum with the highest species richness in class Cestoda. Most species were noted in hypersaline waters with a salinity of no more than 100 g·L−1. The total number of parasitic species decreases exponentially with an increase in salinity. The number of free-living animal species inhabiting waters with a salinity from 35 to 210 g·L−1 is approximately 12 times higher than that of parasitic ones in all intervals of this salinity range. Salinity influences parasite richness and composition in two ways—directly and through the availability of hosts. Free-living crustaceans were hosts of most parasite species in hypersaline waters. Artemia spp., the most halotolerant animals, are an intermediate host for 22 species and unidentified forms of parasites.
Collapse
|
3
|
Saccò M, White NE, Harrod C, Salazar G, Aguilar P, Cubillos CF, Meredith K, Baxter BK, Oren A, Anufriieva E, Shadrin N, Marambio-Alfaro Y, Bravo-Naranjo V, Allentoft ME. Salt to conserve: a review on the ecology and preservation of hypersaline ecosystems. Biol Rev Camb Philos Soc 2021; 96:2828-2850. [PMID: 34747117 DOI: 10.1111/brv.12780] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 02/01/2023]
Abstract
When it comes to the investigation of key ecosystems in the world, we often omit salt from the ecological recipe. In fact, despite occupying almost half of the volume of inland waters and providing crucial services to humanity and nature, inland saline ecosystems are often overlooked in discussions regarding the preservation of global aquatic resources of our planet. As a result, our knowledge of the biological and geochemical dynamics shaping these environments remains incomplete and we are hesitant in framing effective protective strategies against the increasing natural and anthropogenic threats faced by such habitats. Hypersaline lakes, water bodies where the concentration of salt exceeds 35 g/l, occur mainly in arid and semiarid areas resulting from hydrological imbalances triggering the accumulation of salts over time. Often considered the 'exotic siblings' within the family of inland waters, these ecosystems host some of the most extremophile communities worldwide and provide essential habitats for waterbirds and many other organisms in already water-stressed regions. These systems are often highlighted as natural laboratories, ideal for addressing central ecological questions due to their relatively low complexity and simple food web structures. However, recent studies on the biogeochemical mechanisms framing hypersaline communities have challenged this archetype, arguing that newly discovered highly diverse communities are characterised by specific trophic interactions shaped by high levels of specialisation. The main goal of this review is to explore our current understanding of the ecological dynamics of hypersaline ecosystems by addressing four main research questions: (i) why are hypersaline lakes unique from a biological and geochemical perspective; (ii) which biota inhabit these ecosystems and how have they adapted to the high salt conditions; (iii) how do we protect biodiversity from increasing natural and anthropogenic threats; and (iv) which scientific tools will help us preserve hypersaline ecosystems in the future? First, we focus on the ecological characterisation of hypersaline ecosystems, illustrate hydrogeochemical dynamics regulating such environments, and outline key ecoregions supporting hypersaline systems across the globe. Second, we depict the diversity and functional aspects of key taxa found in hypersaline lakes, from microorganisms to plants, invertebrates, waterbirds and upper trophic levels. Next, we describe ecosystem services and discuss possible conservation guidelines. Finally, we outline how cutting-edge technologies can provide new insights into the study of hypersaline ecology. Overall, this review sheds further light onto these understudied ecosystems, largely unrecognised as important sources of unique biological and functional diversity. We provide perspectives for key future research avenues, and advocate that the conservation of hypersaline lakes should not be taken with 'a grain of salt'.
Collapse
Affiliation(s)
- Mattia Saccò
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA, 6102, Australia
| | - Nicole E White
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA, 6102, Australia
| | - Chris Harrod
- Instituto de Ciencias Naturales Alexander von Humboldt, Universidad de Antofagasta, Avenida Angamos 601, Antofagasta, Chile.,Núcleo Milenio INVASAL, Concepción, 3349001, Chile
| | - Gonzalo Salazar
- Instituto de Ciencias Naturales Alexander von Humboldt, Universidad de Antofagasta, Avenida Angamos 601, Antofagasta, Chile.,Núcleo Milenio INVASAL, Concepción, 3349001, Chile
| | - Pablo Aguilar
- Núcleo Milenio INVASAL, Concepción, 3349001, Chile.,Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Avenida Angamos 601, Antofagasta, Chile
| | - Carolina F Cubillos
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Avenida Angamos 601, Antofagasta, Chile
| | - Karina Meredith
- Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia
| | - Bonnie K Baxter
- Great Salt Lake Institute, Westminster College, Salt Lake City, UT, 84105, U.S.A
| | - Aharon Oren
- Department of Plant and Environmental Sciences, The Institute of Life Sciences, the Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Elena Anufriieva
- A.O. Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences, 2 Nakhimov Avenue 2, Sevastopol, 299011, Russia
| | - Nickolai Shadrin
- A.O. Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences, 2 Nakhimov Avenue 2, Sevastopol, 299011, Russia
| | - Yeri Marambio-Alfaro
- Instituto de Ciencias Naturales Alexander von Humboldt, Universidad de Antofagasta, Avenida Angamos 601, Antofagasta, Chile
| | - Víctor Bravo-Naranjo
- Facultad de Ciencias, Universidad de La Serena, Benavente 980, La Serena, Coquimbo, Chile
| | - Morten E Allentoft
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, Denmark
| |
Collapse
|