1
|
Lo T, Coombe L, Gagalova KK, Marr A, Warren RL, Kirk H, Pandoh P, Zhao Y, Moore RA, Mungall AJ, Ritland C, Pavy N, Jones SJM, Bohlmann J, Bousquet J, Birol I, Thomson A. Assembly and annotation of the black spruce genome provide insights on spruce phylogeny and evolution of stress response. G3 (BETHESDA, MD.) 2023; 14:jkad247. [PMID: 37875130 PMCID: PMC10755193 DOI: 10.1093/g3journal/jkad247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/17/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
Black spruce (Picea mariana [Mill.] B.S.P.) is a dominant conifer species in the North American boreal forest that plays important ecological and economic roles. Here, we present the first genome assembly of P. mariana with a reconstructed genome size of 18.3 Gbp and NG50 scaffold length of 36.0 kbp. A total of 66,332 protein-coding sequences were predicted in silico and annotated based on sequence homology. We analyzed the evolutionary relationships between P. mariana and 5 other spruces for which complete nuclear and organelle genome sequences were available. The phylogenetic tree estimated from mitochondrial genome sequences agrees with biogeography; specifically, P. mariana was strongly supported as a sister lineage to P. glauca and 3 other taxa found in western North America, followed by the European Picea abies. We obtained mixed topologies with weaker statistical support in phylogenetic trees estimated from nuclear and chloroplast genome sequences, indicative of ancient reticulate evolution affecting these 2 genomes. Clustering of protein-coding sequences from the 6 Picea taxa and 2 Pinus species resulted in 34,776 orthogroups, 560 of which appeared to be specific to P. mariana. Analysis of these specific orthogroups and dN/dS analysis of positive selection signatures for 497 single-copy orthogroups identified gene functions mostly related to plant development and stress response. The P. mariana genome assembly and annotation provides a valuable resource for forest genetics research and applications in this broadly distributed species, especially in relation to climate adaptation.
Collapse
Affiliation(s)
- Theodora Lo
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Lauren Coombe
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Kristina K Gagalova
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Alex Marr
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - René L Warren
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Heather Kirk
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Pawan Pandoh
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Yongjun Zhao
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Richard A Moore
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Andrew J Mungall
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Carol Ritland
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Nathalie Pavy
- Canada Research Chair in Forest Genomics, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Steven J M Jones
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Joerg Bohlmann
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jean Bousquet
- Canada Research Chair in Forest Genomics, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Inanç Birol
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Ashley Thomson
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
2
|
Singh P, Arif Y, Bajguz A, Hayat S. The role of quercetin in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:10-19. [PMID: 34087741 DOI: 10.1016/j.plaphy.2021.05.023] [Citation(s) in RCA: 214] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/17/2021] [Indexed: 05/20/2023]
Abstract
Flavonoids are a special category of hydroxylated phenolic compounds having an aromatic ring structure. Quercetin is aspecial subclass of flavonoid. It is a bioactive natural compound built upon the flavon structure nC6(ring A)-C3(ring C)-C6(ring B). Quercetin facilitates several plant physiological processes, such as seed germination, pollen growth, antioxidant machinery, and photosynthesis, as well as induces proper plant growth and development. Quercetin is a powerful antioxidant, so it potently provides plant tolerance against several biotic and abiotic stresses. This review highlights quercetin's role in increasing several physiological and biochemical processes under stress and non-stress environments. Additionally, this review briefly assesses quercetin's role in mitigating biotic and abiotic stresses (e.g., salt, heavy metal, and UV stress). The biosynthesis of flavonoids, their signaling pathways, and quercetin's role in plant signaling are also discussed.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Yamshi Arif
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Andrzej Bajguz
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, 1J Ciolkowskiego St., 15-245, Bialystok, Poland
| | - Shamsul Hayat
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
3
|
Zhang D, Jiang C, Huang C, Wen D, Lu J, Chen S, Zhang T, Shi Y, Xue J, Ma W, Xiang L, Sun W, Chen S. The light-induced transcription factor FtMYB116 promotes accumulation of rutin in Fagopyrum tataricum. PLANT, CELL & ENVIRONMENT 2019; 42:1340-1351. [PMID: 30375656 DOI: 10.1111/pce.13470] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 05/03/2023]
Abstract
Tartary buckwheat (Fagopyrum tataricum) not only provides a supplement to primary grain crops in China but also has high medicinal value, by virtue of its rich content of flavonoids possessing antioxidant, anti-inflammatory, and anticancer properties. Light is an important environmental factor that can regulate the synthesis of plant secondary metabolites. In this study, we treated tartary buckwheat seedlings with different wavelengths of light and found that red and blue light could increase the content of flavonoids and the expression of genes involved in flavonoid synthesis pathways. Through coexpression analysis, we identified a new MYB transcription factor (FtMYB116) that can be induced by red and blue light. Yeast one-hybrid assays and an electrophoretic mobility shift assay showed that FtMYB116 binds directly to the promoter region of flavonoid-3'-hydroxylase (F3'H), and a transient luciferase activity assay indicated that FtMYB116 can induce F3'H expression. After transforming FtMYB116 into the hairy roots of tartary buckwheat, we observed significant increases in the content of rutin and quercetin. Collectively, our results indicate that red and blue light promote an increase in flavonoid content in tartary buckwheat seedlings; we also identified a new MYB transcription factor, FtMYB116, that promotes the accumulation of rutin via direct activation of F3'H expression.
Collapse
Affiliation(s)
- Dong Zhang
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunli Jiang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Chenhao Huang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Dong Wen
- College of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiangnan Lu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Sha Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianyuan Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuhua Shi
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianping Xue
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Wei Ma
- College of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Li Xiang
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shilin Chen
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Zhang B, Schrader A. TRANSPARENT TESTA GLABRA 1-Dependent Regulation of Flavonoid Biosynthesis. PLANTS (BASEL, SWITZERLAND) 2017; 6:E65. [PMID: 29261137 PMCID: PMC5750641 DOI: 10.3390/plants6040065] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/02/2017] [Accepted: 12/16/2017] [Indexed: 12/25/2022]
Abstract
The flavonoid composition of various tissues throughout plant development is of biological relevance and particular interest for breeding. Arabidopsis thaliana TRANSPARENT TESTA GLABRA 1 (AtTTG1) is an essential regulator of late structural genes in flavonoid biosynthesis. Here, we provide a review of the regulation of the pathway's core enzymes through AtTTG1-containing R2R3-MYELOBLASTOSIS-basic HELIX-LOOP-HELIX-WD40 repeat (MBW(AtTTG1)) complexes embedded in an evolutionary context. We present a comprehensive collection of A. thalianattg1 mutants and AtTTG1 orthologs. A plethora of MBW(AtTTG1) mechanisms in regulating the five major TTG1-dependent traits is highlighted.
Collapse
Affiliation(s)
- Bipei Zhang
- Botanical Institute, University of Cologne, Zuelpicher Str 47B, 50674 Cologne, Germany.
| | - Andrea Schrader
- Botanical Institute, University of Cologne, Zuelpicher Str 47B, 50674 Cologne, Germany.
| |
Collapse
|
5
|
Nemesio-Gorriz M, Blair PB, Dalman K, Hammerbacher A, Arnerup J, Stenlid J, Mukhtar SM, Elfstrand M. Identification of Norway Spruce MYB-bHLH-WDR Transcription Factor Complex Members Linked to Regulation of the Flavonoid Pathway. FRONTIERS IN PLANT SCIENCE 2017; 8:305. [PMID: 28337212 PMCID: PMC5343035 DOI: 10.3389/fpls.2017.00305] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/20/2017] [Indexed: 05/16/2023]
Abstract
Transcription factors (TFs) forming MYB-bHLH-WDR complexes are known to regulate the biosynthesis of specialized metabolites in angiosperms through an intricate network. These specialized metabolites participate in a wide range of biological processes including plant growth, development, reproduction as well as in plant immunity. Studying the regulation of their biosynthesis is thus essential. While MYB (TFs) have been previously shown to control specialized metabolism (SM) in gymnosperms, the identity of their partners, in particular bHLH or WDR members, has not yet been revealed. To gain knowledge about MYB-bHLH-WDR transcription factor complexes in gymnosperms and their regulation of SW, we identified two bHLH homologs of AtTT8, six homologs of the MYB transcription factor AtTT2 and one WDR ortholog of AtTTG1 in Norway spruce. We investigated the expression levels of these genes in diverse tissues and upon treatments with various stimuli including methyl-salicylate, methyl-jasmonate, wounding or fungal inoculation. In addition, we also identified protein-protein interactions among different homologs of MYB, bHLH and WDR. Finally, we generated transgenic spruce cell lines overexpressing four of the Norway spruce AtTT2 homologs and observed differential regulation of genes in the flavonoid pathway and flavonoid contents.
Collapse
Affiliation(s)
- Miguel Nemesio-Gorriz
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural SciencesUppsala, Sweden
- *Correspondence: Miguel Nemesio-Gorriz
| | - Peter B. Blair
- Department of Biology, University of Alabama at BirminghamBirmingham, AL, USA
| | - Kerstin Dalman
- Department of Chemistry and Biotechnology, Swedish University of Agricultural SciencesUppsala, Sweden
| | - Almuth Hammerbacher
- Department of Microbiology, Forestry and Agricultural Biotechnology Institute, University of PretoriaPretoria, South Africa
| | - Jenny Arnerup
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural SciencesUppsala, Sweden
| | - Jan Stenlid
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural SciencesUppsala, Sweden
| | - Shahid M. Mukhtar
- Department of Biology, University of Alabama at BirminghamBirmingham, AL, USA
| | - Malin Elfstrand
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural SciencesUppsala, Sweden
| |
Collapse
|
6
|
Lei YX, Zhang Y, Li YY, Lai JJ, Gao G, Zhang HQ, Zhou YH, Yang RW. Cloning and molecular characterization of Myb transcription factors from Leymus (Poaceae: Trticeae). Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Soriano-Carot M, Quilis I, Bañó MC, Igual JC. Protein kinase C controls activation of the DNA integrity checkpoint. Nucleic Acids Res 2014; 42:7084-95. [PMID: 24792164 PMCID: PMC4066786 DOI: 10.1093/nar/gku373] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The protein kinase C (PKC) superfamily plays key regulatory roles in numerous cellular processes. Saccharomyces cerevisiae contains a single PKC, Pkc1, whose main function is cell wall integrity maintenance. In this work, we connect the Pkc1 protein to the maintenance of genome integrity in response to genotoxic stresses. Pkc1 and its kinase activity are necessary for the phosphorylation of checkpoint kinase Rad53, histone H2A and Xrs2 protein after deoxyribonucleic acid (DNA) damage, indicating that Pkc1 is required for activation of checkpoint kinases Mec1 and Tel1. Furthermore, Pkc1 electrophoretic mobility is delayed after inducing DNA damage, which reflects that Pkc1 is post-translationally modified. This modification is a phosphorylation event mediated by Tel1. The expression of different mammalian PKC isoforms at the endogenous level in yeast pkc1 mutant cells revealed that PKCδ is able to activate the DNA integrity checkpoint. Finally, downregulation of PKCδ activity in HeLa cells caused a defective activation of checkpoint kinase Chk2 when DNA damage was induced. Our results indicate that the control of the DNA integrity checkpoint by PKC is a mechanism conserved from yeast to humans.
Collapse
Affiliation(s)
- María Soriano-Carot
- Departament de Bioquímica i Biologia Molecular. Universitat de València, 46100 Burjassot (Valencia), Spain
| | - Inma Quilis
- Departament de Bioquímica i Biologia Molecular. Universitat de València, 46100 Burjassot (Valencia), Spain
| | - M Carmen Bañó
- Departament de Bioquímica i Biologia Molecular. Universitat de València, 46100 Burjassot (Valencia), Spain
| | - J Carlos Igual
- Departament de Bioquímica i Biologia Molecular. Universitat de València, 46100 Burjassot (Valencia), Spain
| |
Collapse
|
8
|
Falcone Ferreyra ML, Rius SP, Casati P. Flavonoids: biosynthesis, biological functions, and biotechnological applications. FRONTIERS IN PLANT SCIENCE 2012; 3:222. [PMID: 23060891 DOI: 10.3389/fpls.2012.0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 09/11/2012] [Indexed: 05/23/2023]
Abstract
Flavonoids are widely distributed secondary metabolites with different metabolic functions in plants. The elucidation of the biosynthetic pathways, as well as their regulation by MYB, basic helix-loop-helix (bHLH), and WD40-type transcription factors, has allowed metabolic engineering of plants through the manipulation of the different final products with valuable applications. The present review describes the regulation of flavonoid biosynthesis, as well as the biological functions of flavonoids in plants, such as in defense against UV-B radiation and pathogen infection, nodulation, and pollen fertility. In addition, we discuss different strategies and achievements through the genetic engineering of flavonoid biosynthesis with implication in the industry and the combinatorial biosynthesis in microorganisms by the reconstruction of the pathway to obtain high amounts of specific compounds.
Collapse
Affiliation(s)
- María L Falcone Ferreyra
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario Rosario, Santa Fe, Argentina
| | | | | |
Collapse
|
9
|
Falcone Ferreyra ML, Rius SP, Casati P. Flavonoids: biosynthesis, biological functions, and biotechnological applications. FRONTIERS IN PLANT SCIENCE 2012; 3:222. [PMID: 23060891 PMCID: PMC3460232 DOI: 10.3389/fpls.2012.00222] [Citation(s) in RCA: 817] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 09/11/2012] [Indexed: 05/18/2023]
Abstract
Flavonoids are widely distributed secondary metabolites with different metabolic functions in plants. The elucidation of the biosynthetic pathways, as well as their regulation by MYB, basic helix-loop-helix (bHLH), and WD40-type transcription factors, has allowed metabolic engineering of plants through the manipulation of the different final products with valuable applications. The present review describes the regulation of flavonoid biosynthesis, as well as the biological functions of flavonoids in plants, such as in defense against UV-B radiation and pathogen infection, nodulation, and pollen fertility. In addition, we discuss different strategies and achievements through the genetic engineering of flavonoid biosynthesis with implication in the industry and the combinatorial biosynthesis in microorganisms by the reconstruction of the pathway to obtain high amounts of specific compounds.
Collapse
Affiliation(s)
| | | | - Paula Casati
- *Correspondence: Paula Casati, Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina. e-mail:
| |
Collapse
|
10
|
Bedon F, Bomal C, Caron S, Levasseur C, Boyle B, Mansfield SD, Schmidt A, Gershenzon J, Grima-Pettenati J, Séguin A, MacKay J. Subgroup 4 R2R3-MYBs in conifer trees: gene family expansion and contribution to the isoprenoid- and flavonoid-oriented responses. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3847-64. [PMID: 20732878 PMCID: PMC2935864 DOI: 10.1093/jxb/erq196] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 06/09/2010] [Accepted: 06/10/2010] [Indexed: 05/18/2023]
Abstract
Transcription factors play a fundamental role in plants by orchestrating temporal and spatial gene expression in response to environmental stimuli. Several R2R3-MYB genes of the Arabidopsis subgroup 4 (Sg4) share a C-terminal EAR motif signature recently linked to stress response in angiosperm plants. It is reported here that nearly all Sg4 MYB genes in the conifer trees Picea glauca (white spruce) and Pinus taeda (loblolly pine) form a monophyletic clade (Sg4C) that expanded following the split of gymnosperm and angiosperm lineages. Deeper sequencing in P. glauca identified 10 distinct Sg4C sequences, indicating over-representation of Sg4 sequences compared with angiosperms such as Arabidopsis, Oryza, Vitis, and Populus. The Sg4C MYBs share the EAR motif core. Many of them had stress-responsive transcript profiles after wounding, jasmonic acid (JA) treatment, or exposure to cold in P. glauca and P. taeda, with MYB14 transcripts accumulating most strongly and rapidly. Functional characterization was initiated by expressing the P. taeda MYB14 (PtMYB14) gene in transgenic P. glauca plantlets with a tissue-preferential promoter (cinnamyl alcohol dehydrogenase) and a ubiquitous gene promoter (ubiquitin). Histological, metabolite, and transcript (microarray and targeted quantitative real-time PCR) analyses of PtMYB14 transgenics, coupled with mechanical wounding and JA application experiments on wild-type plantlets, allowed identification of PtMYB14 as a putative regulator of an isoprenoid-oriented response that leads to the accumulation of sesquiterpene in conifers. Data further suggested that PtMYB14 may contribute to a broad defence response implicating flavonoids. This study also addresses the potential involvement of closely related Sg4C sequences in stress responses and plant evolution.
Collapse
Affiliation(s)
- Frank Bedon
- Centre d’Étude de la Forêt, Université Laval, Québec (QC), G1V A06, Canada
- UMR UPS/CNRS 5546, Pôle de Biotechnologies Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville Tolosane, 31326 Castanet Tolosan, France
| | - Claude Bomal
- Centre d’Étude de la Forêt, Université Laval, Québec (QC), G1V A06, Canada
| | - Sébastien Caron
- Centre d’Étude de la Forêt, Université Laval, Québec (QC), G1V A06, Canada
| | - Caroline Levasseur
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec (QC), G1V A06, Canada
| | - Brian Boyle
- Centre d’Étude de la Forêt, Université Laval, Québec (QC), G1V A06, Canada
| | - Shawn D. Mansfield
- Canada Research Chair in Wood and Fibre Quality, Department of Wood Science, University of British Columbia, 4030-2424 Main Mall, Vancouver (BC), V6T 1Z4, Canada
| | - Axel Schmidt
- Max Planck Institute for Chemical Ecology, Hans-Knoell-Str.8, Beutenberg-Campus, D-07745 Jena, Germany
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Hans-Knoell-Str.8, Beutenberg-Campus, D-07745 Jena, Germany
| | - Jacqueline Grima-Pettenati
- UMR UPS/CNRS 5546, Pôle de Biotechnologies Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville Tolosane, 31326 Castanet Tolosan, France
| | - Armand Séguin
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec (QC), G1V A06, Canada
| | - John MacKay
- Centre d’Étude de la Forêt, Université Laval, Québec (QC), G1V A06, Canada
| |
Collapse
|
11
|
Lin-Wang K, Bolitho K, Grafton K, Kortstee A, Karunairetnam S, McGhie TK, Espley RV, Hellens RP, Allan AC. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC PLANT BIOLOGY 2010; 10:50. [PMID: 20302676 PMCID: PMC2923524 DOI: 10.1186/1471-2229-10-50] [Citation(s) in RCA: 413] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Accepted: 03/21/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND The control of plant anthocyanin accumulation is via transcriptional regulation of the genes encoding the biosynthetic enzymes. A key activator appears to be an R2R3 MYB transcription factor. In apple fruit, skin anthocyanin levels are controlled by a gene called MYBA or MYB1, while the gene determining fruit flesh and foliage anthocyanin has been termed MYB10. In order to further understand tissue-specific anthocyanin regulation we have isolated orthologous MYB genes from all the commercially important rosaceous species. RESULTS We use gene specific primers to show that the three MYB activators of apple anthocyanin (MYB10/MYB1/MYBA) are likely alleles of each other. MYB transcription factors, with high sequence identity to the apple gene were isolated from across the rosaceous family (e.g. apples, pears, plums, cherries, peaches, raspberries, rose, strawberry). Key identifying amino acid residues were found in both the DNA-binding and C-terminal domains of these MYBs. The expression of these MYB10 genes correlates with fruit and flower anthocyanin levels. Their function was tested in tobacco and strawberry. In tobacco, these MYBs were shown to induce the anthocyanin pathway when co-expressed with bHLHs, while over-expression of strawberry and apple genes in the crop of origin elevates anthocyanins. CONCLUSIONS This family-wide study of rosaceous R2R3 MYBs provides insight into the evolution of this plant trait. It has implications for the development of new coloured fruit and flowers, as well as aiding the understanding of temporal-spatial colour change.
Collapse
Affiliation(s)
- Kui Lin-Wang
- The New Zealand Institute for Plant & Food Research Ltd, (Plant and Food Research), Mt Albert Research Centre, Private Bag 92169, Auckland, New Zealand
| | - Karen Bolitho
- The New Zealand Institute for Plant & Food Research Ltd, (Plant and Food Research), Mt Albert Research Centre, Private Bag 92169, Auckland, New Zealand
| | - Karryn Grafton
- The New Zealand Institute for Plant & Food Research Ltd, (Plant and Food Research), Mt Albert Research Centre, Private Bag 92169, Auckland, New Zealand
| | - Anne Kortstee
- Wageningen UR Plant Breeding, Postbus 386, 6700 AJ, Wageningen, The Netherlands
| | - Sakuntala Karunairetnam
- The New Zealand Institute for Plant & Food Research Ltd, (Plant and Food Research), Mt Albert Research Centre, Private Bag 92169, Auckland, New Zealand
| | - Tony K McGhie
- Plant and Food Research, Palmerston North 4442, New Zealand
| | - Richard V Espley
- The New Zealand Institute for Plant & Food Research Ltd, (Plant and Food Research), Mt Albert Research Centre, Private Bag 92169, Auckland, New Zealand
| | - Roger P Hellens
- The New Zealand Institute for Plant & Food Research Ltd, (Plant and Food Research), Mt Albert Research Centre, Private Bag 92169, Auckland, New Zealand
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research Ltd, (Plant and Food Research), Mt Albert Research Centre, Private Bag 92169, Auckland, New Zealand
| |
Collapse
|
12
|
Akagi T, Ikegami A, Tsujimoto T, Kobayashi S, Sato A, Kono A, Yonemori K. DkMyb4 is a Myb transcription factor involved in proanthocyanidin biosynthesis in persimmon fruit. PLANT PHYSIOLOGY 2009; 151:2028-45. [PMID: 19783643 PMCID: PMC2785967 DOI: 10.1104/pp.109.146985] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 09/18/2009] [Indexed: 05/18/2023]
Abstract
Proanthocyanidins (PAs) are secondary metabolites that contribute to the protection of the plant and also to the taste of the fruit, mainly through astringency. Persimmon (Diospyros kaki) is unique in being able to accumulate abundant PAs in the fruit flesh. Fruits of the nonastringent (NA)-type mutants lose their ability to produce PA at an early stage of fruit development, while those of the normal astringent (A) type remain rich in PA until fully ripened. The expression of many PA pathway genes was coincidentally terminated in the NA type at an early stage of fruit development. The five genes encoding the Myb transcription factor were isolated from an A-type cultivar (Kuramitsu). One of them, DkMyb4, showed an expression pattern synchronous to that of the PA pathway genes in A- and NA-type fruit flesh. The ectopic expression of DkMyb4 in kiwifruit (Actinidia deliciosa) induced PA biosynthesis but not anthocyanin biosynthesis. The suppression of DkMyb4 in persimmon calluses caused a substantial down-regulation of the PA pathway genes and PA biosynthesis. Furthermore, analysis of the DNA-binding ability of DkMyb4 showed that it directly binds to the MYBCORE cis-motif in the promoters of the some PA pathway genes. All our results indicate that DkMyb4 acts as a regulator of PA biosynthesis in persimmon and, therefore, suggest that the reduction in the DkMyb4 expression causes the NA-type-specific down-regulation of PA biosynthesis and resultant NA trait.
Collapse
|
13
|
Pavy N, Boyle B, Nelson C, Paule C, Giguère I, Caron S, Parsons LS, Dallaire N, Bedon F, Bérubé H, Cooke J, Mackay J. Identification of conserved core xylem gene sets: conifer cDNA microarray development, transcript profiling and computational analyses. THE NEW PHYTOLOGIST 2008; 180:766-86. [PMID: 18811621 DOI: 10.1111/j.1469-8137.2008.02615.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
One approach for investigating the molecular basis of wood formation is to integrate microarray profiling data sets and sequence analyses, comparing tree species with model plants such as Arabidopsis. Conifers may be included in comparative studies thanks to large-scale expressed sequence tag (EST) analyses, which enable the development of cDNA microarrays with very significant genome coverage. A microarray of 10,400 low-redundancy sequences was designed starting from white spruce (Picea glauca (Moench.) Voss) cDNAs. Computational procedures that were developed to ensure broad transcriptome coverage and efficient PCR amplification were used to select cDNA clones, which were re-sequenced in the microarray manufacture process. White spruce transcript profiling experiments that compared secondary xylem to phloem and needles identified 360 xylem-preferential gene sequences. The functional annotations of all differentially expressed sequences were highly consistent with the results of similar analyses carried out in angiosperm trees and herbaceous plants. Computational analyses comparing the spruce microarray sequences and core xylem gene sets from Arabidopsis identified 31 transcripts that were highly conserved in angiosperms and gymnosperms, in terms of both sequence and xylem expression. Several other spruce sequences have not previously been linked to xylem differentiation (including genes encoding TUBBY-like domain proteins (TLPs) and a gibberellin insensitive (gai) gene sequence) or were shown to encode proteins of unknown function encompassing diverse conserved domains of unknown function.
Collapse
Affiliation(s)
- Nathalie Pavy
- Centre d'Etude de la Forêt, 1030 rue de la Médecine, Université Laval, Québec, Québec, Canada, G1K 7P4
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bedon F, Grima-Pettenati J, Mackay J. Conifer R2R3-MYB transcription factors: sequence analyses and gene expression in wood-forming tissues of white spruce (Picea glauca). BMC PLANT BIOLOGY 2007; 7:17. [PMID: 17397551 PMCID: PMC1851958 DOI: 10.1186/1471-2229-7-17] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Accepted: 03/30/2007] [Indexed: 05/14/2023]
Abstract
BACKGROUND Several members of the R2R3-MYB family of transcription factors act as regulators of lignin and phenylpropanoid metabolism during wood formation in angiosperm and gymnosperm plants. The angiosperm Arabidopsis has over one hundred R2R3-MYBs genes; however, only a few members of this family have been discovered in gymnosperms. RESULTS We isolated and characterised full-length cDNAs encoding R2R3-MYB genes from the gymnosperms white spruce, Picea glauca (13 sequences), and loblolly pine, Pinus taeda L. (five sequences). Sequence similarities and phylogenetic analyses placed the spruce and pine sequences in diverse subgroups of the large R2R3-MYB family, although several of the sequences clustered closely together. We searched the highly variable C-terminal region of diverse plant MYBs for conserved amino acid sequences and identified 20 motifs in the spruce MYBs, nine of which have not previously been reported and three of which are specific to conifers. The number and length of the introns in spruce MYB genes varied significantly, but their positions were well conserved relative to angiosperm MYB genes. Quantitative RTPCR of MYB genes transcript abundance in root and stem tissues revealed diverse expression patterns; three MYB genes were preferentially expressed in secondary xylem, whereas others were preferentially expressed in phloem or were ubiquitous. The MYB genes expressed in xylem, and three others, were up-regulated in the compression wood of leaning trees within 76 hours of induction. CONCLUSION Our survey of 18 conifer R2R3-MYB genes clearly showed a gene family structure similar to that of Arabidopsis. Three of the sequences are likely to play a role in lignin metabolism and/or wood formation in gymnosperm trees, including a close homolog of the loblolly pine PtMYB4, shown to regulate lignin biosynthesis in transgenic tobacco.
Collapse
Affiliation(s)
- Frank Bedon
- Centre d'étude de la Forêt, Université Laval, Pavillon Charles-Eugène Marchand, Sainte Foy G1K7P4, Québec, Canada
- UMR CNRS/UPS 5546 Surfaces Cellulaires et Signalisation chez les Végétaux, Pôle de Biotechnologie Végétale, BP426 17 – Auzeville 31226, Castanet Tolosan, France
| | - Jacqueline Grima-Pettenati
- UMR CNRS/UPS 5546 Surfaces Cellulaires et Signalisation chez les Végétaux, Pôle de Biotechnologie Végétale, BP426 17 – Auzeville 31226, Castanet Tolosan, France
| | - John Mackay
- Centre d'étude de la Forêt, Université Laval, Pavillon Charles-Eugène Marchand, Sainte Foy G1K7P4, Québec, Canada
| |
Collapse
|
15
|
Pelgas B, Beauseigle S, Acheré V, Jeandroz S, Bousquet J, Isabel N. Comparative genome mapping among Picea glauca, P. mariana x P. rubens and P. abies, and correspondence with other Pinaceae. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 113:1371-93. [PMID: 17061103 DOI: 10.1007/s00122-006-0354-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Accepted: 06/21/2006] [Indexed: 05/12/2023]
Abstract
A composite linkage map was constructed from four individual maps for the conifer Picea glauca (Moench) Voss, from anonymous and gene-specific markfers (714 AFLPs, 38 SSRs, and 53 ESTPs). A total of 12 linkage groups were delineated with an average marker density of 2.7 cM. Macro-synteny and macro-colinearity comparisons with two other composite linkage maps developed for the species complex P. mariana (Mill.) B.S.P. x P. rubens Sarg., and for P. abies (L.) Karst. revealed an identical number of linkage groups and a remarkable conservation of the gene content and gene order of linkage groups over the million years since the split between these taxa. Identical gene order among taxa was observed for 10 of the 12 assembled composite linkage groups. The discovery of one breakdown in synteny between P. glauca and the other two taxa indicated the occurrence of an inter-chromosomal rearrangement involving an insertional translocation. Analysis of marker colinearity also revealed a putative segmental duplication. The combined information from these three Picea genomes validated and improved large-scale genome comparisons at the inter-generic level in the family Pinaceae by allowing for the identification of 11 homoeologous linkage groups between Picea and Pinus, and nine such groups between Picea and Pseudotsuga menziesii. Notably, the analysis of synteny among the three genera revealed a putative case of chromosomal fission and an inter-chromosomal rearrangement in the genome of P. menziesii. Both of these changes are inter-connected, indicating much instability in this part of the P. menziesii genome. Overall, the macro-structure of the Pinaceae genome was well conserved, which is notable given the Cretaceous origin of its main lineages.
Collapse
Affiliation(s)
- Betty Pelgas
- Centre de Recherche en Biologie Forestière, Pavillon Charles-Eugène Marchand, Université Laval, Québec, QC, Canada, G1K 7P4
| | | | | | | | | | | |
Collapse
|
16
|
Ramsay NA, Glover BJ. MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. TRENDS IN PLANT SCIENCE 2005; 10:63-70. [PMID: 15708343 DOI: 10.1016/j.tplants.2004.12.011] [Citation(s) in RCA: 671] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A protein complex composed of MYB and bHLH transcription factors associated with a WD40 repeat protein initiates multiple cellular differentiation pathways in a range of plants. Recent reports have provided the first coherent models of the network of interactions that lead to diverse cell fates through the activity of this protein complex. The resulting flexibility in plant morphology is likely to have played a major role in angiosperm evolution and success. The complex appears to have arisen in the land plant lineage, although its component parts are considerably more ancient. Here, we review the evolutionary history of the MYB-bHLH-WD40 protein complex and its role in generating plant epidermal cellular diversity.
Collapse
Affiliation(s)
- Nicola A Ramsay
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, UK CB2 2QH
| | | |
Collapse
|
17
|
Abstract
Plants accumulate an amazing diversity of phytochemicals that play important roles in the interaction of plants with the environment. Mechanisms have been proposed to describe the evolution of phytochemicals from the perspective of the biosynthetic enzymes. However, it is not known how the transcription factors that regulate these pathways have evolved to ensure the coordinate expression of all the genes in a pathway. A model is provided here to explain how duplication and divergence of regulatory genes result in the control of new pathways. In this model, the purported ability of recently duplicated regulatory genes to activate new metabolic pathways is a consequence of mutations that partially impair function, resulting in the loss of activation of one or several steps in a metabolic pathway. Consequently, pathway intermediates accumulate and are then converted into new compounds by broad-specificity enzymes. In contrast to the resilience of developmental regulatory circuits, this model provides an explanation for the rapid evolution of new metabolic pathways from existing ones.
Collapse
Affiliation(s)
- Erich Grotewold
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
18
|
Guillet-Claude C, Isabel N, Pelgas B, Bousquet J. The evolutionary implications of knox-I gene duplications in conifers: correlated evidence from phylogeny, gene mapping, and analysis of functional divergence. Mol Biol Evol 2004; 21:2232-45. [PMID: 15317878 DOI: 10.1093/molbev/msh235] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Class I knox genes code for transcription factors that play an essential role in plant growth and development as central regulators of meristem cell identity. Based on the analysis of new cDNA sequences from various tissues and genomic DNA sequences, we identified a highly diversified group of class I knox genes in conifers. Phylogenetic analyses of complete amino acid sequences from various seed plants indicated that all conifer sequences formed a monophyletic group. Within conifers, four subgroups here named genes KN1 to KN4 were well delineated, each regrouping pine and spruce sequences. KN4 was sister group to KN3, which was sister group to KN1 and KN2. Genetic mapping on the genomes of two divergent Picea species indicated that KN1 and KN2 are located close to each other on the same linkage group, whereas KN3 and KN4 mapped on different linkage groups, correlating the more ancient divergence of these two genes. The proportion of synonymous and nonsynonymous substitutions suggested intense purifying selection for the four genes. However, rates of substitution per year indicated an evolution in two steps: faster rates were noted after gene duplications, followed subsequently by lower rates. Positive directional selection was detected for most of the internal branches harboring an accelerated rate of evolution. In addition, many sites with highly significant amino acid rate shift were identified between these branches. However, the tightly linked KN1 and KN2 did not diverge as much from each other. The implications of the correlation between phylogenetic, structural, and functional information are discussed in relation to the diversification of the knox-I gene family in conifers.
Collapse
Affiliation(s)
- Carine Guillet-Claude
- Arborea and Chaire de Recherche du Canada en Génomique Forestière et Environnementale, Centre de Recherche en Biologie Forestière, Université Laval, Sainte-Foy, Québec, Canada
| | | | | | | |
Collapse
|