1
|
Cd-induced cytosolic proteome changes in the cyanobacterium Anabaena sp. PCC7120 are mediated by LexA as one of the regulatory proteins. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140902. [PMID: 36716944 DOI: 10.1016/j.bbapap.2023.140902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023]
Abstract
LexA, a well-characterized transcriptional repressor of SOS genes in heterotrophic bacteria, has been shown to regulate diverse genes in cyanobacteria. An earlier study showed that LexA overexpression in a cyanobacterium, Anabaena sp. PCC7120 reduces its tolerance to Cd stress. This was later shown to be due to modulation of photosynthetic redox poising by LexA under Cd stress. However, due to the global regulatory nature of LexA and the prior prediction of AnLexA-box in a few heavy metal-responsive genes, we speculated that LexA has a broad role in Cd tolerance, with regulation over a variety of Cd stress-responsive genes in addition to photosynthetic genes. Thus, to further expand the knowledge on the regulatory role of LexA in Cd stress tolerance, a cytosolic proteome profiling of Anabaena constitutively overexpressing LexA upon Cd stress was performed. The proteomic study revealed 25 differentially accumulated proteins (DAPs) in response to the combined effect of LexA overexpression and Cd stress, and the other 11 DAPs exclusively in response to either LexA overexpression or Cd stress. The 36 identified proteins were related with a variety of functions, including photosynthesis, C-metabolism, antioxidants, protein turnover, post-transcriptional modifications, and a few unknown and hypothetical proteins. The regulation of LexA on corresponding genes, and six previously reported Cd efflux transporters, was further validated by the presence of AnLexA-boxes, transcript, and/or promoter analyses. In a nutshell, this study identifies the regulation of Anabaena LexA on several Cd stress-responsive genes of various functions, hence expanding the regulatory role of LexA under Cd stress.
Collapse
|
2
|
Pradhan M, Kumar A, Kirti A, Pandey S, Rajaram H. NtcA, LexA and heptamer repeats involved in the multifaceted regulation of DNA repair genes recF, recO and recR in the cyanobacterium Nostoc PCC7120. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194907. [PMID: 36638863 DOI: 10.1016/j.bbagrm.2023.194907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/11/2023]
Abstract
Regulation of DNA repair genes in cyanobacteria is an unexplored field despite some of them exhibiting high radio-resistance. With RecF pathway speculated to be the major double strand break repair pathway in Nostoc sp. strain PCC7120, regulation of recF, recO and recR genes was investigated. Bioinformatic approach-based identification of promoter and regulatory elements was validated using qRT-PCR analysis, reporter gene and DNA binding assays. Different deletion constructs of the upstream regulatory regions of these genes were analysed in host Nostoc as well as heterologous system Escherichia coli. Studies revealed: (1) Positive regulation of all three genes by NtcA, (2) Negative regulation by LexA, (3) Involvement of contiguous heptamer repeats with/without its yet to be identified interacting partner in regulating (i) binding of NtcA and LexA to recO promoter and its translation, (ii) transcription or translation of recF, (4) Translational regulation of recF and recO through non-canonical and distant S.D. sequence and of recR through a rare initiation codon. Presence of NtcA either precludes binding of LexA to AnLexA-Box or negates its repressive action resulting in higher expression of these genes under nitrogen-fixing conditions in Nostoc. Thus, in Nostoc, expression of recF, recO and recR genes is intricately regulated through multiple regulatory elements/proteins. Contiguous heptamer repeats present across the Nostoc genome in the vicinity of start codon or promoter is likely to have a global regulatory role. This is the first report detailing regulation of DSB repair genes in any algae.
Collapse
Affiliation(s)
- Mitali Pradhan
- Cyanobacterial Stress Biology and Biotechnology Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Arvind Kumar
- Cyanobacterial Stress Biology and Biotechnology Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Anurag Kirti
- Cyanobacterial Stress Biology and Biotechnology Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Sarita Pandey
- Cyanobacterial Stress Biology and Biotechnology Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Hema Rajaram
- Cyanobacterial Stress Biology and Biotechnology Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
3
|
Srivastava A, Kumar A, Biswas S, Kumar R, Srivastava V, Rajaram H, Mishra Y. Gamma (γ)-radiation stress response of the cyanobacterium Anabaena sp. PCC7120: Regulatory role of LexA and photophysiological changes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111529. [PMID: 36332765 DOI: 10.1016/j.plantsci.2022.111529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
High radioresistance of the cyanobacterium, Anabaena sp. PCC7120 has been attributed to efficient DNA repair, protein recycling, and oxidative stress management. However, the regulatory network involved in these batteries of responses remains unexplored. In the present study, the role of a global regulator, LexA in modulating gamma (γ)-radiation stress response of Anabaena was investigated. Comparison of the cytosolic proteome profiles upon γ-radiation in recombinant Anabaena strains, AnpAM (vector-control) and AnlexA+ (LexA-overexpressing), revealed 41 differentially accumulated proteins, corresponding to 29 distinct proteins. LexA was found to be involved in the regulation of 27 of the corresponding genes based on the presence of AnLexA-Box, EMSA, and/or qRT-PCR studies. The majority of the regulated genes were found to be involved in C-assimilation either through photosynthesis or C-catabolism and oxidative stress alleviation. Photosynthesis, measured in terms of PSII photophysiological parameters and thylakoid membrane proteome was found to be affected by γ-radiation in both AnpAM and AnlexA+ cells, with LexA affecting them even under control growth conditions. Thus, LexA functioned as one of the transcriptional regulators involved in modulating γ-radiation stress response in Anabaena. This study could pave the way for a deeper understanding of the regulation of γ-radiation-responsive genes in cyanobacteria at large.
Collapse
Affiliation(s)
- Akanksha Srivastava
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Arvind Kumar
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Subhankar Biswas
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Rajender Kumar
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm 10691, Sweden
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm 10691, Sweden
| | - Hema Rajaram
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.
| | - Yogesh Mishra
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
4
|
Xing WY, Xie LR, Zeng X, Yang Y, Zhang CC. Functional Dissection of Genes Encoding DNA Polymerases Based on Conditional Mutants in the Heterocyst-Forming Cyanobacterium Anabaena PCC 7120. Front Microbiol 2020; 11:1108. [PMID: 32582078 PMCID: PMC7283527 DOI: 10.3389/fmicb.2020.01108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/04/2020] [Indexed: 01/08/2023] Open
Abstract
The filamentous cyanobacterium Anabaena sp. PCC 7120 develops N2-fixing heterocyst cells under condition of combined-nitrogen deprivation and constitutes an excellent model for studying cell differentiation. The mechanism of heterocyst development has been extensively investigated and a network of regulating factors has been identified. A few studies have showed that the process of heterocyst differentiation relates with cell cycle events, but further investigation is still required to understand this relationship. In a previous study, we created a conditional mutant of PolI encoding gene, polA, by using a CRISPR/Cpf1 gene-editing technique. Here, we were able to create another conditional mutant of a PolIII encoding gene dnaENI using a similar strategy and subsequently confirmed the essential roles of both polA and dnaENI in DNA replication. Further investigation on the phenotype of the mutants showed that lack of PolI caused defects in chromosome segregation and cell division, while lack of DnaENI (PolIII) prevented bulk DNA synthesis, causing significant loss of DNA content. Our findings also suggested the possible existence of a SOS-response like mechanism operating in Anabaena PCC 7120. Moreover, we found that heterocyst development was differently affected in the two conditional mutants, with double heterocysts/proheterocysts found in PolI conditional mutant. We further showed that formation of such double heterocysts/proheterocysts are likely caused by the difficulty in nucleoids segregation, resulting delayed, or non-complete closure of the septum between the two daughter cells. This study uncovers a link between DNA replication process and heterocyst differentiation, paving the way for further studies on the relationship between cell cycle and cell development.
Collapse
Affiliation(s)
- Wei-Yue Xing
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li-Rui Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaoli Zeng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yiling Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Cheng-Cai Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Institut WUT-AMU, Aix-Marseille Université and Wuhan University of Technology, Wuhan, China
| |
Collapse
|
5
|
Honda T, Morimoto D, Sako Y, Yoshida T. LexA Binds to Transcription Regulatory Site of Cell Division Gene ftsZ in Toxic Cyanobacterium Microcystis aeruginosa. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:549-556. [PMID: 29774437 DOI: 10.1007/s10126-018-9826-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
Previously, we showed that DNA replication and cell division in toxic cyanobacterium Microcystis aeruginosa are coordinated by transcriptional regulation of cell division gene ftsZ and that an unknown protein specifically bound upstream of ftsZ (BpFz; DNA-binding protein to an upstream site of ftsZ) during successful DNA replication and cell division. Here, we purified BpFz from M. aeruginosa strain NIES-298 using DNA-affinity chromatography and gel-slicing combined with gel electrophoresis mobility shift assay (EMSA). The N-terminal amino acid sequence of BpFz was identified as TNLESLTQ, which was identical to that of transcription repressor LexA from NIES-843. EMSA analysis using mutant probes showed that the sequence GTACTAN3GTGTTC was important in LexA binding. Comparison of the upstream regions of lexA in the genomes of closely related cyanobacteria suggested that the sequence TASTRNNNNTGTWC could be a putative LexA recognition sequence (LexA box). Searches for TASTRNNNNTGTWC as a transcriptional regulatory site (TRS) in the genome of M. aeruginosa NIES-843 showed that it was present in genes involved in cell division, photosynthesis, and extracellular polysaccharide biosynthesis. Considering that BpFz binds to the TRS of ftsZ during normal cell division, LexA may function as a transcriptional activator of genes related to cell reproduction in M. aeruginosa, including ftsZ. This may be an example of informality in the control of bacterial cell division.
Collapse
Affiliation(s)
- Takashi Honda
- Graduate school of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Daichi Morimoto
- Graduate school of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yoshihiko Sako
- Graduate school of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takashi Yoshida
- Graduate school of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
6
|
Kumar A, Kirti A, Rajaram H. Regulation of multiple abiotic stress tolerance by LexA in the cyanobacterium Anabaena sp. strain PCC7120. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:S1874-9399(18)30185-8. [PMID: 30055321 DOI: 10.1016/j.bbagrm.2018.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/15/2018] [Accepted: 07/19/2018] [Indexed: 11/28/2022]
Abstract
The paradigm of involvement of LexA in regulation of only SOS-response in bacteria through the down-regulation of DNA repair genes was challenged in the unicellular cyanobacterium, Synechocystis PCC6803, wherein it was originally shown not to be associated with DNA repair and later also involved in management of carbon-starvation through up-regulation of C-metabolism genes. In the filamentous cyanobacterium, Anabaena sp. strain PCC7120, global stress management role for LexA and a consensus LexA-binding box (AnLexA-box) has been established using a LexA-overexpressing recombinant strain, AnlexA+. High levels of LexA rendered Anabaena cells sensitive to different DNA damage and oxidative stress-inducing agents, through the transcriptional down-regulation of the genes involved in DNA repair and alleviation of oxidative stress. LexA overexpression enhanced the ability of Anabaena to tolerate C-depletion, induced by inhibiting photosynthesis, by up-regulating genes involved in C-fixation and down-regulating those involved in C-breakdown, while maintaining the overall photosynthetic efficiency. A consensus LexA-binding box, AnLexA-box [AGT-N4-11-ACT] was identified upstream of both up- and down-regulated genes using a subset of Anabaena genes identified on the basis of proteomic analysis of AnlexA+ strain along with a few DNA repair genes. A short genome search revealed the presence of AnLexA box in at least 40 more genes, with functional roles in fatty acid biosynthesis, toxin-antitoxin systems in addition to DNA repair, oxidative stress, metal tolerance and C-metabolism. Thus, Anabaena LexA modulates the tolerance to multitude of stresses through transcriptional up/down-regulation of their functional genes directly by binding to the AnLexA Box present in their promoter region.
Collapse
Affiliation(s)
- Arvind Kumar
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Trombay, Mumbai 400094, India
| | - Anurag Kirti
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Hema Rajaram
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Trombay, Mumbai 400094, India.
| |
Collapse
|
7
|
Pandey S, Kirti A, Kumar A, Rajaram H. The SbcC and SbcD homologs of the cyanobacterium Anabaena sp. strain PCC7120 (Alr3988 and All4463) contribute independently to DNA repair. Funct Integr Genomics 2018. [DOI: 10.1007/s10142-018-0599-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Kizawa A, Kawahara A, Takashima K, Takimura Y, Nishiyama Y, Hihara Y. The LexA transcription factor regulates fatty acid biosynthetic genes in the cyanobacterium Synechocystis sp. PCC 6803. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:189-198. [PMID: 28744961 DOI: 10.1111/tpj.13644] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 06/22/2017] [Accepted: 07/18/2017] [Indexed: 05/12/2023]
Abstract
Specific transcription factors have been identified in various heterotrophic bacterial species that regulate the sets of genes required for fatty acid metabolism. Here, we report that expression of the fab genes, encoding fatty acid biosynthetic enzymes, is regulated by the global regulator LexA in the photoautotrophic cyanobacterium Synechocystis sp. PCC 6803. Sll1626, an ortholog of the well-known LexA repressor involved in the SOS response in heterotrophic bacteria, was isolated from crude extracts of Synechocystis by DNA affinity chromatography, reflecting its binding to the upstream region of the acpP-fabF and fabI genes. An electrophoresis mobility shift assay revealed that the recombinant LexA protein can bind to the upstream region of each fab gene tested (fabD, fabH, fabF, fabG, fabZ and fabI). Quantitative RT-PCR analysis of the wild type and a lexA-disrupted mutant strain suggested that LexA acts as a repressor of the fab genes involved in initiation of fatty acid biosynthesis (fabD, fabH and fabF) and the first reductive step in the subsequent elongation cycle (fabG) under normal growth conditions. Under nitrogen-depleted conditions, downregulation of fab gene expression is partly achieved through an increase in LexA-repressing activity. In contrast, under phosphate-depleted conditions, fab gene expression is upregulated, probably due to the loss of repression by LexA. We further demonstrate that elimination of LexA largely increases the production of fatty acids in strains modified to secrete free fatty acids.
Collapse
Affiliation(s)
- Ayumi Kizawa
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Akihito Kawahara
- Biological Science Research, KAO Corporation, Wakayama, 640-8580, Japan
| | - Kosuke Takashima
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Yasushi Takimura
- Biological Science Research, KAO Corporation, Wakayama, 640-8580, Japan
| | - Yoshitaka Nishiyama
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Yukako Hihara
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
- Core Research of Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan
| |
Collapse
|
9
|
Kirti A, Kumar A, Rajaram H. Differential regulation of ssb genes in the nitrogen-fixing cyanobacterium, Anabaena sp. strain PCC7120 1. JOURNAL OF PHYCOLOGY 2017; 53:322-332. [PMID: 28000228 DOI: 10.1111/jpy.12500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 09/23/2016] [Indexed: 06/06/2023]
Abstract
Anabaena sp. PCC7120 possesses three genes coding for single-stranded DNA-binding (SSB) protein, of which ssb1 was a single gene, and ssb2 and ssb3 are the first genes of their corresponding operons. Regulation of the truncated ssb genes, ssb1 (alr0088) and ssb2 (alr7559), was unaffected by N-status of growth. They were negatively regulated by the SOS-response regulatory protein LexA, as indicated by the (i) binding of Anabaena LexA to the LexA box of regulatory regions of ssb1 and ssb2, and (ii) decreased expression of the downstream gfp reporter gene in Escherichia coli upon co-expression of LexA. However, the full-length ssb gene, ssb3 (all4779), was regulated by the availability of Fe2+ and combined nitrogen, as indicated by (i) increase in the levels of SSB3 protein on Fe2+ -depletion and decrease under Fe2+ -excess conditions, and (ii) 1.5- to 1.6-fold decrease in activity under nitrogen-fixing conditions compared to nitrogen-supplemented conditions. The requirement of Fe2+ as a co-factor for repression by FurA and the increase in levels of FurA under nitrogen-deficient conditions in Anabaena (Lopez-Gomollon et al. 2007) indicated a possible regulation of ssb3 by FurA. This was substantiated by (i) the binding of FurA to the regulatory region of ssb3, (ii) repression of the expression of the downstream gfp reporter gene in E. coli upon co-expression of FurA, and (iii) negative regulation of ssb3 promoter activity by the upstream AT-rich region in Anabaena. This is the first report on possible role of FurA, an important protein for iron homeostasis, in DNA repair of cyanobacteria.
Collapse
Affiliation(s)
- Anurag Kirti
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Arvind Kumar
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Hema Rajaram
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| |
Collapse
|
10
|
Erill I, Campoy S, Kılıç S, Barbé J. The Verrucomicrobia LexA-Binding Motif: Insights into the Evolutionary Dynamics of the SOS Response. Front Mol Biosci 2016; 3:33. [PMID: 27489856 PMCID: PMC4951493 DOI: 10.3389/fmolb.2016.00033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/04/2016] [Indexed: 12/20/2022] Open
Abstract
The SOS response is the primary bacterial mechanism to address DNA damage, coordinating multiple cellular processes that include DNA repair, cell division, and translesion synthesis. In contrast to other regulatory systems, the composition of the SOS genetic network and the binding motif of its transcriptional repressor, LexA, have been shown to vary greatly across bacterial clades, making it an ideal system to study the co-evolution of transcription factors and their regulons. Leveraging comparative genomics approaches and prior knowledge on the core SOS regulon, here we define the binding motif of the Verrucomicrobia, a recently described phylum of emerging interest due to its association with eukaryotic hosts. Site directed mutagenesis of the Verrucomicrobium spinosum recA promoter confirms that LexA binds a 14 bp palindromic motif with consensus sequence TGTTC-N4-GAACA. Computational analyses suggest that recognition of this novel motif is determined primarily by changes in base-contacting residues of the third alpha helix of the LexA helix-turn-helix DNA binding motif. In conjunction with comparative genomics analysis of the LexA regulon in the Verrucomicrobia phylum, electrophoretic shift assays reveal that LexA binds to operators in the promoter region of DNA repair genes and a mutagenesis cassette in this organism, and identify previously unreported components of the SOS response. The identification of tandem LexA-binding sites generating instances of other LexA-binding motifs in the lexA gene promoter of Verrucomicrobia species leads us to postulate a novel mechanism for LexA-binding motif evolution. This model, based on gene duplication, successfully addresses outstanding questions in the intricate co-evolution of the LexA protein, its binding motif and the regulatory network it controls.
Collapse
Affiliation(s)
- Ivan Erill
- Erill Lab, Department of Biological Sciences, University of Maryland Baltimore County Baltimore, MD, USA
| | - Susana Campoy
- Unitat de Microbiologia, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Sefa Kılıç
- Erill Lab, Department of Biological Sciences, University of Maryland Baltimore County Baltimore, MD, USA
| | - Jordi Barbé
- Unitat de Microbiologia, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Barcelona, Spain
| |
Collapse
|
11
|
Kizawa A, Kawahara A, Takimura Y, Nishiyama Y, Hihara Y. RNA-seq Profiling Reveals Novel Target Genes of LexA in the Cyanobacterium Synechocystis sp. PCC 6803. Front Microbiol 2016; 7:193. [PMID: 26925056 PMCID: PMC4759255 DOI: 10.3389/fmicb.2016.00193] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/04/2016] [Indexed: 11/13/2022] Open
Abstract
LexA is a well-established transcriptional repressor of SOS genes induced by DNA damage in Escherichia coli and other bacterial species. However, LexA in the cyanobacterium Synechocystis sp. PCC 6803 has been suggested not to be involved in SOS response. In this study, we performed RNA-seq analysis of the wild-type strain and the lexA-disrupted mutant to obtain the comprehensive view of LexA-regulated genes in Synechocystis. Disruption of lexA positively or negatively affected expression of genes related to various cellular functions such as phototactic motility, accumulation of the major compatible solute glucosylglycerol and subunits of bidirectional hydrogenase, photosystem I, and phycobilisome complexes. We also observed increase in the expression level of genes related to iron and manganese uptake in the mutant at the later stage of cultivation. However, none of the genes related to DNA metabolism were affected by disruption of lexA. DNA gel mobility shift assay using the recombinant LexA protein suggested that LexA binds to the upstream region of pilA7, pilA9, ggpS, and slr1670 to directly regulate their expression, but changes in the expression level of photosystem I genes by disruption of lexA is likely a secondary effect.
Collapse
Affiliation(s)
- Ayumi Kizawa
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University Saitama, Japan
| | - Akihito Kawahara
- Biological Science Laboratories, KAO Corporation Wakayama, Japan
| | - Yasushi Takimura
- Biological Science Laboratories, KAO Corporation Wakayama, Japan
| | - Yoshitaka Nishiyama
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University Saitama, Japan
| | - Yukako Hihara
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama UniversitySaitama, Japan; Core Research of Evolutional Science and Technology, Japan Science and Technology AgencySaitama, Japan
| |
Collapse
|
12
|
An SOS Regulon under Control of a Noncanonical LexA-Binding Motif in the Betaproteobacteria. J Bacteriol 2015; 197:2622-30. [PMID: 25986903 DOI: 10.1128/jb.00035-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/09/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The SOS response is a transcriptional regulatory network governed by the LexA repressor that activates in response to DNA damage. In the Betaproteobacteria, LexA is known to target a palindromic sequence with the consensus sequence CTGT-N8-ACAG. We report the characterization of a LexA regulon in the iron-oxidizing betaproteobacterium Sideroxydans lithotrophicus. In silico and in vitro analyses show that LexA targets six genes by recognizing a binding motif with the consensus sequence GAACGaaCGTTC, which is strongly reminiscent of the Bacillus subtilis LexA-binding motif. We confirm that the closely related Gallionella capsiferriformans shares the same LexA-binding motif, and in silico analyses indicate that this motif is also conserved in the Nitrosomonadales and the Methylophilales. Phylogenetic analysis of LexA and the alpha subunit of DNA polymerase III (DnaE) reveal that the organisms harboring this noncanonical LexA form a compact taxonomic cluster within the Betaproteobacteria. However, their lexA gene is unrelated to the standard Betaproteobacteria lexA, and there is evidence of its spread through lateral gene transfer. In contrast to other reported cases of noncanonical LexA-binding motifs, the regulon of S. lithotrophicus is comparable in size and function to that of many other Betaproteobacteria, suggesting that a convergent SOS regulon has reevolved under the control of a new LexA protein. Analysis of the DNA-binding domain of S. lithotrophicus LexA reveals little sequence similarity with that of other LexA proteins targeting similar binding motifs, suggesting that network structure may limit site evolution or that structural constrains make the B. subtilis-type motif an optimal interface for multiple LexA sequences. IMPORTANCE Understanding the evolution of transcriptional systems enables us to address important questions in microbiology, such as the emergence and transfer potential of different regulatory systems to regulate virulence or mediate responses to stress. The results reported here constitute the first characterization of a noncanonical LexA protein regulating a standard SOS regulon. This is significant because it illustrates how a complex transcriptional program can be put under the control of a novel transcriptional regulator. Our results also reveal a substantial degree of plasticity in the LexA recognition domain, raising intriguing questions about the space of protein-DNA interfaces and the specific evolutionary constrains faced by these elements.
Collapse
|
13
|
LexA protein of cyanobacterium Anabaena sp. strain PCC7120 exhibits in vitro pH-dependent and RecA-independent autoproteolytic activity. Int J Biochem Cell Biol 2015; 59:84-93. [DOI: 10.1016/j.biocel.2014.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 11/27/2014] [Accepted: 12/08/2014] [Indexed: 02/04/2023]
|
14
|
Baharoglu Z, Mazel D. SOS, the formidable strategy of bacteria against aggressions. FEMS Microbiol Rev 2014; 38:1126-45. [PMID: 24923554 DOI: 10.1111/1574-6976.12077] [Citation(s) in RCA: 279] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 05/01/2014] [Accepted: 05/07/2014] [Indexed: 12/22/2022] Open
Abstract
The presence of an abnormal amount of single-stranded DNA in the bacterial cell constitutes a genotoxic alarm signal that induces the SOS response, a broad regulatory network found in most bacterial species to address DNA damage. The aim of this review was to point out that beyond being a repair process, SOS induction leads to a very strong but transient response to genotoxic stress, during which bacteria can rearrange and mutate their genome, induce several phenotypic changes through differential regulation of genes, and sometimes acquire characteristics that potentiate bacterial survival and adaptation to changing environments. We review here the causes and consequences of SOS induction, but also how this response can be modulated under various circumstances and how it is connected to the network of other important stress responses. In the first section, we review articles describing the induction of the SOS response at the molecular level. The second section discusses consequences of this induction in terms of DNA repair, changes in the genome and gene expression, and sharing of genomic information, with their effects on the bacteria's life and evolution. The third section is about the fine tuning of this response to fit with the bacteria's 'needs'. Finally, we discuss recent findings linking the SOS response to other stress responses. Under these perspectives, SOS can be perceived as a powerful bacterial strategy against aggressions.
Collapse
Affiliation(s)
- Zeynep Baharoglu
- Institut Pasteur, Département Génomes et Génétique, Unité Plasticité du Génome Bactérien, Paris, France; CNRS, UMR3525, Paris, France
| | | |
Collapse
|
15
|
Kirti A, Rajaram H, Apte SK. Characterization of two naturally truncated, Ssb-like proteins from the nitrogen-fixing cyanobacterium, Anabaena sp. PCC7120. PHOTOSYNTHESIS RESEARCH 2013; 118:147-154. [PMID: 23928723 DOI: 10.1007/s11120-013-9904-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/30/2013] [Indexed: 06/02/2023]
Abstract
Single-stranded (ss) DNA-binding (Ssb) proteins are vital for all DNA metabolic processes and are characterized by an N-terminal OB-fold followed by P/G-rich spacer region and a C-terminal tail. In the genome of the heterocystous, nitrogen-fixing cyanobacterium, Anabaena sp. strain PCC 7120, two genes alr0088 and alr7579 are annotated as ssb, but the corresponding proteins have only the N-terminal OB-fold and no P/G-rich region or acidic tail, thereby rendering them unable to interact with genome maintenance proteins. Both the proteins were expressed under normal growth conditions in Anabaena PCC7120 and regulated differentially under abiotic stresses which induce DNA damage, indicating that these are functional genes. Constitutive overexpression of Alr0088 in Anabaena enhanced the tolerance to DNA-damaging stresses which caused formation of DNA adducts such as UV and MitomycinC, but significantly decreased the tolerance to γ-irradiation, which causes single- and double-stranded DNA breaks. On the other hand, overexpression of Alr7579 had no significant effect on normal growth or stress tolerance of Anabaena. Thus, of the two truncated Ssb-like proteins, Alr0088 may be involved in protection of ssDNA from damage, but due to the absence of acidic tail, it may not aid in repair of damaged DNA. These two proteins are present across cyanobacterial genera and unique to them. These initial studies pave the way to the understanding of DNA repair in cyanobacteria, which is not very well documented.
Collapse
Affiliation(s)
- Anurag Kirti
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | | | | |
Collapse
|
16
|
Induction of Weigle reactivation of cyanophage PP in Plectonema boryanum. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-011-0305-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
17
|
Sanchez-Alberola N, Campoy S, Barbé J, Erill I. Analysis of the SOS response of Vibrio and other bacteria with multiple chromosomes. BMC Genomics 2012; 13:58. [PMID: 22305460 PMCID: PMC3323433 DOI: 10.1186/1471-2164-13-58] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 02/03/2012] [Indexed: 12/18/2022] Open
Abstract
Background The SOS response is a well-known regulatory network present in most bacteria and aimed at addressing DNA damage. It has also been linked extensively to stress-induced mutagenesis, virulence and the emergence and dissemination of antibiotic resistance determinants. Recently, the SOS response has been shown to regulate the activity of integrases in the chromosomal superintegrons of the Vibrionaceae, which encompasses a wide range of pathogenic species harboring multiple chromosomes. Here we combine in silico and in vitro techniques to perform a comparative genomics analysis of the SOS regulon in the Vibrionaceae, and we extend the methodology to map this transcriptional network in other bacterial species harboring multiple chromosomes. Results Our analysis provides the first comprehensive description of the SOS response in a family (Vibrionaceae) that includes major human pathogens. It also identifies several previously unreported members of the SOS transcriptional network, including two proteins of unknown function. The analysis of the SOS response in other bacterial species with multiple chromosomes uncovers additional regulon members and reveals that there is a conserved core of SOS genes, and that specialized additions to this basic network take place in different phylogenetic groups. Our results also indicate that across all groups the main elements of the SOS response are always found in the large chromosome, whereas specialized additions are found in the smaller chromosomes and plasmids. Conclusions Our findings confirm that the SOS response of the Vibrionaceae is strongly linked with pathogenicity and dissemination of antibiotic resistance, and suggest that the characterization of the newly identified members of this regulon could provide key insights into the pathogenesis of Vibrio. The persistent location of key SOS genes in the large chromosome across several bacterial groups confirms that the SOS response plays an essential role in these organisms and sheds light into the mechanisms of evolution of global transcriptional networks involved in adaptability and rapid response to environmental changes, suggesting that small chromosomes may act as evolutionary test beds for the rewiring of transcriptional networks.
Collapse
Affiliation(s)
- Neus Sanchez-Alberola
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | | | | |
Collapse
|
18
|
Blot N, Mella-Flores D, Six C, Le Corguillé G, Boutte C, Peyrat A, Monnier A, Ratin M, Gourvil P, Campbell DA, Garczarek L. Light history influences the response of the marine cyanobacterium Synechococcus sp. WH7803 to oxidative stress. PLANT PHYSIOLOGY 2011; 156:1934-54. [PMID: 21670225 PMCID: PMC3149967 DOI: 10.1104/pp.111.174714] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 06/09/2011] [Indexed: 05/23/2023]
Abstract
Marine Synechococcus undergo a wide range of environmental stressors, especially high and variable irradiance, which may induce oxidative stress through the generation of reactive oxygen species (ROS). While light and ROS could act synergistically on the impairment of photosynthesis, inducing photodamage and inhibiting photosystem II repair, acclimation to high irradiance is also thought to confer resistance to other stressors. To identify the respective roles of light and ROS in the photoinhibition process and detect a possible light-driven tolerance to oxidative stress, we compared the photophysiological and transcriptomic responses of Synechococcus sp. WH7803 acclimated to low light (LL) or high light (HL) to oxidative stress, induced by hydrogen peroxide (H₂O₂) or methylviologen. While photosynthetic activity was much more affected in HL than in LL cells, only HL cells were able to recover growth and photosynthesis after the addition of 25 μM H₂O₂. Depending upon light conditions and H₂O₂ concentration, the latter oxidizing agent induced photosystem II inactivation through both direct damage to the reaction centers and inhibition of its repair cycle. Although the global transcriptome response appeared similar in LL and HL cells, some processes were specifically induced in HL cells that seemingly helped them withstand oxidative stress, including enhancement of photoprotection and ROS detoxification, repair of ROS-driven damage, and regulation of redox state. Detection of putative LexA binding sites allowed the identification of the putative LexA regulon, which was down-regulated in HL compared with LL cells but up-regulated by oxidative stress under both growth irradiances.
Collapse
|
19
|
Novel insights into the regulation of LexA in the cyanobacterium Synechocystis sp. Strain PCC 6803. J Bacteriol 2011; 193:3804-14. [PMID: 21642463 DOI: 10.1128/jb.00289-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The transcription factor LexA in the cyanobacterium Synechocystis sp. strain PCC 6803 has been shown to regulate genes that are not directly involved in DNA repair but instead in several different metabolic pathways. However, the signal transduction pathways remain largely uncharacterized. The present work gives novel insights into the regulation of LexA in this unicellular cyanobacterium. A combination of Northern and Western blotting, using specific antibodies against the cyanobacterial LexA, was employed to show that this transcription regulator is under posttranscriptional control, in addition to the classical and already-described transcriptional regulation. Moreover, detailed two-dimensional (2D) electrophoresis analyses of the protein revealed that LexA undergoes posttranslational modifications. Finally, a fully segregated LexA::GFP (green fluorescent protein) fusion-modified strain was produced to image LexA's spatial distribution in live cells. The fusion protein retains DNA binding capabilities, and the GFP fluorescence indicates that LexA is localized in the innermost region of the cytoplasm, decorating the DNA in an evenly distributed pattern. The implications of these findings for the overall role of LexA in Synechocystis sp. strain PCC 6803 are further discussed.
Collapse
|
20
|
Teixidó L, Carrasco B, Alonso JC, Barbé J, Campoy S. Fur activates the expression of Salmonella enterica pathogenicity island 1 by directly interacting with the hilD operator in vivo and in vitro. PLoS One 2011; 6:e19711. [PMID: 21573071 PMCID: PMC3089636 DOI: 10.1371/journal.pone.0019711] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 04/04/2011] [Indexed: 11/18/2022] Open
Abstract
Previous studies have established that the expression of Salmonella enterica pathogenicity island 1 (SPI1), which is essential for epithelial invasion, is mainly regulated by the HilD protein. The ferric uptake regulator, Fur, in turn modulates the expression of the S. enterica hilD gene, albeit through an unknown mechanism. Here we report that S. enterica Fur, in its metal-bound form, specifically binds to an AT-rich region (BoxA), located upstream of the hilD promoter (PhilD), at position -191 to -163 relative to the hilD transcription start site. Furthermore, in a PhilD variant with mutations in BoxA, PhilD*, Fur·Mn2+ binding is impaired. In vivo experiments using S. enterica strains carrying wild-type PhilD or the mutant variant PhilD* showed that Fur activates hilD expression, while in vitro experiments revealed that the Fur·Mn2+ protein is sufficient to increase hilD transcription. Together, these results present the first evidence that Fur·Mn2+, by binding to the upstream BoxA sequence, directly stimulates the expression of hilD in S. enterica.
Collapse
Affiliation(s)
- Laura Teixidó
- Departament de Genètica i de Microbiologia, Facultat de Biociències. Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Begoña Carrasco
- Area de Microbiología, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Juan C. Alonso
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Jordi Barbé
- Departament de Genètica i de Microbiologia, Facultat de Biociències. Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Susana Campoy
- Departament de Genètica i de Microbiologia, Facultat de Biociències. Universitat Autònoma de Barcelona, Bellaterra, Spain
- * E-mail:
| |
Collapse
|
21
|
Cambray G, Sanchez-Alberola N, Campoy S, Guerin É, Da Re S, González-Zorn B, Ploy MC, Barbé J, Mazel D, Erill I. Prevalence of SOS-mediated control of integron integrase expression as an adaptive trait of chromosomal and mobile integrons. Mob DNA 2011; 2:6. [PMID: 21529368 PMCID: PMC3108266 DOI: 10.1186/1759-8753-2-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 04/30/2011] [Indexed: 11/26/2022] Open
Abstract
Background Integrons are found in hundreds of environmental bacterial species, but are mainly known as the agents responsible for the capture and spread of antibiotic-resistance determinants between Gram-negative pathogens. The SOS response is a regulatory network under control of the repressor protein LexA targeted at addressing DNA damage, thus promoting genetic variation in times of stress. We recently reported a direct link between the SOS response and the expression of integron integrases in Vibrio cholerae and a plasmid-borne class 1 mobile integron. SOS regulation enhances cassette swapping and capture in stressful conditions, while freezing the integron in steady environments. We conducted a systematic study of available integron integrase promoter sequences to analyze the extent of this relationship across the Bacteria domain. Results Our results showed that LexA controls the expression of a large fraction of integron integrases by binding to Escherichia coli-like LexA binding sites. In addition, the results provide experimental validation of LexA control of the integrase gene for another Vibrio chromosomal integron and for a multiresistance plasmid harboring two integrons. There was a significant correlation between lack of LexA control and predicted inactivation of integrase genes, even though experimental evidence also indicates that LexA regulation may be lost to enhance expression of integron cassettes. Conclusions Ancestral-state reconstruction on an integron integrase phylogeny led us to conclude that the ancestral integron was already regulated by LexA. The data also indicated that SOS regulation has been actively preserved in mobile integrons and large chromosomal integrons, suggesting that unregulated integrase activity is selected against. Nonetheless, additional adaptations have probably arisen to cope with unregulated integrase activity. Identifying them may be fundamental in deciphering the uneven distribution of integrons in the Bacteria domain.
Collapse
Affiliation(s)
- Guillaume Cambray
- Institut Pasteur, Unité Plasticité du Génome Bactérien, CNRS URA 2171, 75015 Paris, France
| | - Neus Sanchez-Alberola
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,Department of Biological Sciences, University of Maryland Baltimore County, Baltimore 21228, USA
| | - Susana Campoy
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Émilie Guerin
- Université de Limoges, Faculté de Médecine, EA3175, INSERM, Equipe Avenir, Limoges 87000, France
| | - Sandra Da Re
- Université de Limoges, Faculté de Médecine, EA3175, INSERM, Equipe Avenir, Limoges 87000, France
| | - Bruno González-Zorn
- Departamento de Sanidad Animal, Facultad de Veterinaria, and VISAVET, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Marie-Cécile Ploy
- Université de Limoges, Faculté de Médecine, EA3175, INSERM, Equipe Avenir, Limoges 87000, France
| | - Jordi Barbé
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore 21228, USA
| | - Didier Mazel
- Institut Pasteur, Unité Plasticité du Génome Bactérien, CNRS URA 2171, 75015 Paris, France
| | - Ivan Erill
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore 21228, USA
| |
Collapse
|
22
|
Li S, Xu M, Su Z. Computational analysis of LexA regulons in Cyanobacteria. BMC Genomics 2010; 11:527. [PMID: 20920248 PMCID: PMC3091678 DOI: 10.1186/1471-2164-11-527] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 09/29/2010] [Indexed: 12/13/2022] Open
Abstract
Background The transcription factor LexA plays an important role in the SOS response in Escherichia coli and many other bacterial species studied. Although the lexA gene is encoded in almost every bacterial group with a wide range of evolutionary distances, its precise functions in each group/species are largely unknown. More recently, it has been shown that lexA genes in two cyanobacterial genomes Nostoc sp. PCC 7120 and Synechocystis sp. PCC 6803 might have distinct functions other than the regulation of the SOS response. To gain a general understanding of the functions of LexA and its evolution in cyanobacteria, we conducted the current study. Results Our analysis indicates that six of 33 sequenced cyanobacterial genomes do not harbor a lexA gene although they all encode the key SOS response genes, suggesting that LexA is not an indispensable transcription factor in these cyanobacteria, and that their SOS responses might be regulated by different mechanisms. Our phylogenetic analysis suggests that lexA was lost during the course of evolution in these six cyanobacterial genomes. For the 26 cyanobacterial genomes that encode a lexA gene, we have predicted their LexA-binding sites and regulons using an efficient binding site/regulon prediction algorithm that we developed previously. Our results show that LexA in most of these 26 genomes might still function as the transcriptional regulator of the SOS response genes as seen in E. coli and other organisms. Interestingly, putative LexA-binding sites were also found in some genomes for some key genes involved in a variety of other biological processes including photosynthesis, drug resistance, etc., suggesting that there is crosstalk between the SOS response and these biological processes. In particular, LexA in both Synechocystis sp. PCC6803 and Gloeobacter violaceus PCC7421 has largely diverged from those in other cyanobacteria in the sequence level. It is likely that LexA is no longer a regulator of the SOS response in Synechocystis sp. PCC6803. Conclusions In most cyanobacterial genomes that we analyzed, LexA appears to function as the transcriptional regulator of the key SOS response genes. There are possible couplings between the SOS response and other biological processes. In some cyanobacteria, LexA has adapted distinct functions, and might no longer be a regulator of the SOS response system. In some other cyanobacteria, lexA appears to have been lost during the course of evolution. The loss of lexA in these genomes might lead to the degradation of its binding sites.
Collapse
Affiliation(s)
- Shan Li
- Bioinformatics Research Center, Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | | | | |
Collapse
|
23
|
Kolowrat C, Partensky F, Mella-Flores D, Le Corguillé G, Boutte C, Blot N, Ratin M, Ferréol M, Lecomte X, Gourvil P, Lennon JF, Kehoe DM, Garczarek L. Ultraviolet stress delays chromosome replication in light/dark synchronized cells of the marine cyanobacterium Prochlorococcus marinus PCC9511. BMC Microbiol 2010; 10:204. [PMID: 20670397 PMCID: PMC2921402 DOI: 10.1186/1471-2180-10-204] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Accepted: 07/29/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The marine cyanobacterium Prochlorococcus is very abundant in warm, nutrient-poor oceanic areas. The upper mixed layer of oceans is populated by high light-adapted Prochlorococcus ecotypes, which despite their tiny genome (approximately 1.7 Mb) seem to have developed efficient strategies to cope with stressful levels of photosynthetically active and ultraviolet (UV) radiation. At a molecular level, little is known yet about how such minimalist microorganisms manage to sustain high growth rates and avoid potentially detrimental, UV-induced mutations to their DNA. To address this question, we studied the cell cycle dynamics of P. marinus PCC9511 cells grown under high fluxes of visible light in the presence or absence of UV radiation. Near natural light-dark cycles of both light sources were obtained using a custom-designed illumination system (cyclostat). Expression patterns of key DNA synthesis and repair, cell division, and clock genes were analyzed in order to decipher molecular mechanisms of adaptation to UV radiation. RESULTS The cell cycle of P. marinus PCC9511 was strongly synchronized by the day-night cycle. The most conspicuous response of cells to UV radiation was a delay in chromosome replication, with a peak of DNA synthesis shifted about 2 h into the dark period. This delay was seemingly linked to a strong downregulation of genes governing DNA replication (dnaA) and cell division (ftsZ, sepF), whereas most genes involved in DNA repair (such as recA, phrA, uvrA, ruvC, umuC) were already activated under high visible light and their expression levels were only slightly affected by additional UV exposure. CONCLUSIONS Prochlorococcus cells modified the timing of the S phase in response to UV exposure, therefore reducing the risk that mutations would occur during this particularly sensitive stage of the cell cycle. We identified several possible explanations for the observed timeshift. Among these, the sharp decrease in transcript levels of the dnaA gene, encoding the DNA replication initiator protein, is sufficient by itself to explain this response, since DNA synthesis starts only when the cellular concentration of DnaA reaches a critical threshold. However, the observed response likely results from a more complex combination of UV-altered biological processes.
Collapse
Affiliation(s)
- Christian Kolowrat
- UPMC-Université Paris 06, Station Biologique, Place Georges Teissier, 29680 Roscoff, France
- CNRS, UMR 7144, Groupe Plancton Océanique, 29680 Roscoff, France
| | - Frédéric Partensky
- UPMC-Université Paris 06, Station Biologique, Place Georges Teissier, 29680 Roscoff, France
- CNRS, UMR 7144, Groupe Plancton Océanique, 29680 Roscoff, France
| | - Daniella Mella-Flores
- UPMC-Université Paris 06, Station Biologique, Place Georges Teissier, 29680 Roscoff, France
- CNRS, UMR 7144, Groupe Plancton Océanique, 29680 Roscoff, France
| | - Gildas Le Corguillé
- UPMC-Université Paris 06, Station Biologique, Place Georges Teissier, 29680 Roscoff, France
- CNRS, FR 2424, Service Informatique et Génomique, 29680 Roscoff, France
| | - Christophe Boutte
- UPMC-Université Paris 06, Station Biologique, Place Georges Teissier, 29680 Roscoff, France
- CNRS, UMR 7144, Groupe Plancton Océanique, 29680 Roscoff, France
| | - Nicolas Blot
- UPMC-Université Paris 06, Station Biologique, Place Georges Teissier, 29680 Roscoff, France
- CNRS, UMR 7144, Groupe Plancton Océanique, 29680 Roscoff, France
- Clermont Université, Université Blaise Pascal, UMR CNRS 6023, Laboratoire Microorganismes: Génome et Environnement, BP 10448, 63000 Clermont-Ferrand, France
| | - Morgane Ratin
- UPMC-Université Paris 06, Station Biologique, Place Georges Teissier, 29680 Roscoff, France
- CNRS, UMR 7144, Groupe Plancton Océanique, 29680 Roscoff, France
| | - Martial Ferréol
- CEMAGREF, UR Biologie des Ecosystèmes Aquatiques, Laboratoire d'Hydroécologie Quantitative, 3 bis quai Chauveau, CP 220, 69336 Lyon Cedex 09, France
| | - Xavier Lecomte
- UPMC-Université Paris 06, Station Biologique, Place Georges Teissier, 29680 Roscoff, France
- CNRS, UMR 7144, Groupe Plancton Océanique, 29680 Roscoff, France
| | - Priscillia Gourvil
- UPMC-Université Paris 06, Station Biologique, Place Georges Teissier, 29680 Roscoff, France
- CNRS, UMR 7144, Groupe Plancton Océanique, 29680 Roscoff, France
| | - Jean-François Lennon
- UPMC-Université Paris 06, Station Biologique, Place Georges Teissier, 29680 Roscoff, France
| | - David M Kehoe
- Department of Biology, 1001 East Third Street, Indiana University, Bloomington, IN 47405, USA
| | - Laurence Garczarek
- UPMC-Université Paris 06, Station Biologique, Place Georges Teissier, 29680 Roscoff, France
- CNRS, UMR 7144, Groupe Plancton Océanique, 29680 Roscoff, France
| |
Collapse
|
24
|
Oliveira P, Lindblad P. Transcriptional regulation of the cyanobacterial bidirectional Hox-hydrogenase. Dalton Trans 2009:9990-6. [PMID: 19904424 DOI: 10.1039/b908593a] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The overall processes of transcription and its regulation have advanced significantly in the last years, making our understanding of prokaryotic biology more complex and detailed. In fact, a systematic study of different aspects of transcriptional regulation opens up outstanding opportunities to improve and develop the perception of complex reaction mechanisms, genetic processes and cell functions. In close connection to the cyanobacterial bidirectional hydrogenase, the main hydrogen-evolving enzyme in non-nitrogen fixing strains, two novel transcription factors have received increasing attention over the past five years: a LexA-related protein and the AbrB-like family members. Recent work on these regulators has produced new insights and advances towards the understanding (and possible interconnection) of several regulatory networks in cyanobacteria, namely nitrogen metabolism, redox response, toxin production, CO2 concentrating mechanisms and hydrogen metabolism. The fact that a LexA-related protein and AbrB-like family members have been co-purified in independent laboratories studying different sets of cyanobacterial genes suggests a possible common and/or complementary function of these regulators. In this review, we summarize the knowledge gained thus far regarding the transcriptional regulation of the cyanobacterial bidirectional hydrogenase, with special focus on the above mentioned transcription factors. Moreover, we discuss several additional points that warrants further investigation to increase our knowledge in this fast evolving research field.
Collapse
Affiliation(s)
- Paulo Oliveira
- Department of Photochemistry and Molecular Science, Angström Laboratories, Uppsala University, P. O. Box 523, SE-751 20, Uppsala, Sweden
| | | |
Collapse
|
25
|
Venancio TM, Aravind L. Reconstructing prokaryotic transcriptional regulatory networks: lessons from actinobacteria. J Biol 2009; 8:29. [PMID: 19435474 PMCID: PMC2689436 DOI: 10.1186/jbiol132] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Reconstruction of transcriptional regulatory networks of uncharacterized bacteria is a main challenge for the post-genomic era. Recent studies, including one in BMC Systems Biology, address this problem in the relatively underexplored actinobacteria clade, which includes major pathogenic and economically relevant taxa.
Collapse
Affiliation(s)
- Thiago M Venancio
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | |
Collapse
|
26
|
Devine E, Holmqvist M, Stensjö K, Lindblad P. Diversity and transcription of proteases involved in the maturation of hydrogenases in Nostoc punctiforme ATCC 29133 and Nostoc sp. strain PCC 7120. BMC Microbiol 2009; 9:53. [PMID: 19284580 PMCID: PMC2670836 DOI: 10.1186/1471-2180-9-53] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 03/11/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The last step in the maturation process of the large subunit of [NiFe]-hydrogenases is a proteolytic cleavage of the C-terminal by a hydrogenase specific protease. Contrary to other accessory proteins these hydrogenase proteases are believed to be specific whereby one type of hydrogenases specific protease only cleaves one type of hydrogenase. In cyanobacteria this is achieved by the gene product of either hupW or hoxW, specific for the uptake or the bidirectional hydrogenase respectively. The filamentous cyanobacteria Nostoc punctiforme ATCC 29133 and Nostoc sp strain PCC 7120 may contain a single uptake hydrogenase or both an uptake and a bidirectional hydrogenase respectively. RESULTS In order to examine these proteases in cyanobacteria, transcriptional analyses were performed of hupW in Nostoc punctiforme ATCC 29133 and hupW and hoxW in Nostoc sp. strain PCC 7120. These studies revealed numerous transcriptional start points together with putative binding sites for NtcA (hupW) and LexA (hoxW). In order to investigate the diversity and specificity among hydrogeanse specific proteases we constructed a phylogenetic tree which revealed several subgroups that showed a striking resemblance to the subgroups previously described for [NiFe]-hydrogenases. Additionally the proteases specificity was also addressed by amino acid sequence analysis and protein-protein docking experiments with 3D-models derived from bioinformatic studies. These studies revealed a so called "HOXBOX"; an amino acid sequence specific for protease of Hox-type which might be involved in docking with the large subunit of the hydrogenase. CONCLUSION Our findings suggest that the hydrogenase specific proteases are under similar regulatory control as the hydrogenases they cleave. The result from the phylogenetic study also indicates that the hydrogenase and the protease have co-evolved since ancient time and suggests that at least one major horizontal gene transfer has occurred. This co-evolution could be the result of a close interaction between the protease and the large subunit of the [NiFe]-hydrogenases, a theory supported by protein-protein docking experiments performed with 3D-models. Finally we present data that may explain the specificity seen among hydrogenase specific proteases, the so called "HOXBOX"; an amino acid sequence specific for proteases of Hox-type. This opens the door for more detailed studies of the specificity found among hydrogenase specific proteases and the structural properties behind it.
Collapse
Affiliation(s)
- Ellenor Devine
- Department of Photochemistry and Molecular Science, The Angström Laboratories, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|
27
|
Patterson-Fortin LM, Owttrim GW. A Synechocystis LexA-orthologue binds direct repeats in target genes. FEBS Lett 2008; 582:2424-30. [PMID: 18555801 DOI: 10.1016/j.febslet.2008.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 06/03/2008] [Accepted: 06/04/2008] [Indexed: 10/21/2022]
Abstract
Although evidence for LexA-orthologues, which do not regulate DNA damage repair, is accumulating, identification of binding sites and regulon members remains poorly characterized. In the cyanobacterium, Synechocystis sp. strain PCC 6803, we have recently identified a LexA-related protein that regulates expression of the crhR RNA helicase gene. Here we show that the Synechocystis LexA-orthologue binds as a dimer to 12 bp direct repeats containing a CTA-N9-CTA sequence conserved in two target genes, lexA and crhR. Characterization of this site provides the basis for identification of additional LexA targets and further evidence for LexA's divergence during evolution.
Collapse
|
28
|
Yang MK, Hsu CH, Sung VL. Analyses of binding sequences of the two LexA proteins of Xanthomonas axonopodis pathovar citri. Mol Genet Genomics 2008; 280:49-58. [PMID: 18437426 DOI: 10.1007/s00438-008-0344-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 04/07/2008] [Indexed: 10/22/2022]
Abstract
Xanthomonas axonopodis pv. citri (X. axonopodis pv. citri) possesses two lexA genes, designated lexA1 and lexA2. Electrophoretic mobility shift data show that LexA1 binds to both lexA1 and lexA2 promoters, but LexA2 does not bind to the lexA1 promoter, suggesting that LexA1 and LexA2 play different roles in regulating the expression of SOS genes. In this study, we have determined that LexA2 binds to a 14-bp dyad-spacer-dyad palindromic sequence, 5'-TGTACAAATGTACA-3', located at nucleotides -41 to -28 relative to the translation start site of lexA2 of X. axonopodis pv. citri. The two spacer nucleotides in this sequence can be changed from AA to TT without affecting LexA2 binding; all other base deletions or substitutions abolish LexA2 binding. The LexA1 binding sequence in the promoter region of lexA2 is TTAGTACTAAAGTTATAA and is located at -133 to -116, and that in the lexA1 gene is AGTAGTAATACTACT located at nucleotides -19 to -5 relative to the translation start site of lexA1. Any base change in the latter sequence abolishes LexA1 binding.
Collapse
Affiliation(s)
- Mei-Kwei Yang
- Department of Life Science, Fu Jen University, 510 Chun-Chen Road, Taipei 242, Taiwan, ROC.
| | | | | |
Collapse
|
29
|
Janky R, van Helden J. Evaluation of phylogenetic footprint discovery for predicting bacterial cis-regulatory elements and revealing their evolution. BMC Bioinformatics 2008; 9:37. [PMID: 18215291 PMCID: PMC2248561 DOI: 10.1186/1471-2105-9-37] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 01/23/2008] [Indexed: 11/24/2022] Open
Abstract
Background The detection of conserved motifs in promoters of orthologous genes (phylogenetic footprints) has become a common strategy to predict cis-acting regulatory elements. Several software tools are routinely used to raise hypotheses about regulation. However, these tools are generally used as black boxes, with default parameters. A systematic evaluation of optimal parameters for a footprint discovery strategy can bring a sizeable improvement to the predictions. Results We evaluate the performances of a footprint discovery approach based on the detection of over-represented spaced motifs. This method is particularly suitable for (but not restricted to) Bacteria, since such motifs are typically bound by factors containing a Helix-Turn-Helix domain. We evaluated footprint discovery in 368 Escherichia coli K12 genes with annotated sites, under 40 different combinations of parameters (taxonomical level, background model, organism-specific filtering, operon inference). Motifs are assessed both at the levels of correctness and significance. We further report a detailed analysis of 181 bacterial orthologs of the LexA repressor. Distinct motifs are detected at various taxonomical levels, including the 7 previously characterized taxon-specific motifs. In addition, we highlight a significantly stronger conservation of half-motifs in Actinobacteria, relative to Firmicutes, suggesting an intermediate state in specificity switching between the two Gram-positive phyla, and thereby revealing the on-going evolution of LexA auto-regulation. Conclusion The footprint discovery method proposed here shows excellent results with E. coli and can readily be extended to predict cis-acting regulatory signals and propose testable hypotheses in bacterial genomes for which nothing is known about regulation.
Collapse
Affiliation(s)
- Rekin's Janky
- Laboratoire de Bioinformatique des Génomes et des Réseaux, Université Libre de Bruxelles (ULB), Campus Plaine, CP 263, Boulevard du Triomphe, 1050 Bruxelles, Belgium.
| | | |
Collapse
|
30
|
Erill I, Campoy S, Barbé J. Aeons of distress: an evolutionary perspective on the bacterial SOS response. FEMS Microbiol Rev 2007; 31:637-56. [PMID: 17883408 DOI: 10.1111/j.1574-6976.2007.00082.x] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The SOS response of bacteria is a global regulatory network targeted at addressing DNA damage. Governed by the products of the lexA and recA genes, it co-ordinates a comprehensive response against DNA lesions and its description in Escherichia coli has stood for years as a textbook paradigm of stress-response systems in bacteria. In this paper we review the current state of research on the SOS response outside E. coli. By retracing research on the identification of multiple diverging LexA-binding motifs across the Bacteria Domain, we show how this work has led to the description of a minimum regulon core, but also of a heterogeneous collection of SOS regulatory networks that challenges many tenets of the E. coli model. We also review recent attempts at reconstructing the evolutionary history of the SOS network that have cast new light on the SOS response. Exploiting the newly gained knowledge on LexA-binding motifs and the tight association of LexA with a recently described mutagenesis cassette, these works put forward likely evolutionary scenarios for the SOS response, and we discuss their relevance on the ultimate nature of this stress-response system and the evolutionary pressures driving its evolution.
Collapse
Affiliation(s)
- Ivan Erill
- Biomedical Applications Group, Centro Nacional de Microelectrónica, Barcelona, Spain
| | | | | |
Collapse
|
31
|
Enikeeva FN, Kotelnikova EA, Gelfand MS, Makeev VJ. A model of evolution with constant selective pressure for regulatory DNA sites. BMC Evol Biol 2007; 7:125. [PMID: 17662135 PMCID: PMC1978210 DOI: 10.1186/1471-2148-7-125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 07/27/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Molecular evolution is usually described assuming a neutral or weakly non-neutral substitution model. Recently, new data have become available on evolution of sequence regions under a selective pressure, e.g. transcription factor binding sites. To reconstruct the evolutionary history of such sequences, one needs evolutionary models that take into account a substantial constant selective pressure. RESULTS We present a simple evolutionary model with a single preferred (consensus) nucleotide and the neutral substitution model adopted for all other nucleotides. This evolutionary model has a rate matrix in which all substitutions that do not involve the consensus nucleotide occur with the same rate. The model has two time scales for achieving a stationary distribution; in the general case only one of the two rate parameters can be evaluated from the stationary distribution. In the middle-time zone, a counterintuitive behavior was observed for some parameter values, with a probability of conservation for a non-consensus nucleotide greater than that for the consensus nucleotide. Such an effect can be observed only in the case of weak preference for the consensus nucleotide, when the probability to observe the consensus nucleotide in the stationary distribution is less than 1/2. If the substitution rate is represented as a product of mutation and fixation, only the fixation can be calculated from the stationary distribution. The exhibited conservation of non-consensus nucleotides does not take place if the elements of mutation matrix are identical, and can be related to the reduced mutation rate between the non-consensus nucleotides. This bias can have no effect on the stationary distribution of nucleotide frequencies calculated over the ensemble of multiple alignments, e.g. transcription factor binding sites upstream of different sets of co-regulated orthologous genes. CONCLUSION The derived model can be used as a null model when analyzing the evolution of orthologous transcription factor binding sites. In particular, our findings show that a nucleotide preferred at some position of a multiple alignment of binding sites for some transcription factor in the same genome is not necessarily the most conserved nucleotide in an alignment of orthologous sites from different species. However, this effect can take place only in the case of a mutation matrix whose elements are not identical.
Collapse
Affiliation(s)
- Farida N Enikeeva
- Institute for Information Transmission Problems (the Kharkevich Institute) of RAS, Bolshoi Karetny pereulok, 19, GSP-4, Moscow, 127994, Russia
| | - Ekaterina A Kotelnikova
- State Research Institute of Genetics and Selection of Industrial Microorganisms, 1st Dorozhnyj proezd, 1, Moscow, 113535, Russia
- Ariadne Genomics Inc. 9700 Great Seneca Highway, Suite 113, Rockville, MD 20850, USA
| | - Mikhail S Gelfand
- Institute for Information Transmission Problems (the Kharkevich Institute) of RAS, Bolshoi Karetny pereulok, 19, GSP-4, Moscow, 127994, Russia
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Vorobyevy Gory 1-73, Moscow, 119992, Russia
| | - Vsevolod J Makeev
- State Research Institute of Genetics and Selection of Industrial Microorganisms, 1st Dorozhnyj proezd, 1, Moscow, 113535, Russia
- Engelgardt Institute of Molecular Biology of RAS, Vavilova 32, Moscow, 119991, Russia
| |
Collapse
|
32
|
Sjöholm J, Oliveira P, Lindblad P. Transcription and regulation of the bidirectional hydrogenase in the cyanobacterium Nostoc sp. strain PCC 7120. Appl Environ Microbiol 2007; 73:5435-46. [PMID: 17630298 PMCID: PMC2042057 DOI: 10.1128/aem.00756-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The filamentous, heterocystous cyanobacterium Nostoc sp. strain PCC 7120 (Anabaena sp. strain PCC 7120) possesses an uptake hydrogenase and a bidirectional enzyme, the latter being capable of catalyzing both H2 production and evolution. The completely sequenced genome of Nostoc sp. strain PCC 7120 reveals that the five structural genes encoding the bidirectional hydrogenase (hoxEFUYH) are separated in two clusters at a distance of approximately 8.8 kb. The transcription of the hox genes was examined under nitrogen-fixing conditions, and the results demonstrate that the cluster containing hoxE and hoxF can be transcribed as one polycistronic unit together with the open reading frame alr0750. The second cluster, containing hoxU, hoxY, and hoxH, is transcribed together with alr0763 and alr0765, located between the hox genes. Moreover, alr0760 and alr0761 form an additional larger operon. Nevertheless, Northern blot hybridizations revealed a rather complex transcription pattern in which the different hox genes are expressed differently. Transcriptional start points (TSPs) were identified 66 and 57 bp upstream from the start codon of alr0750 and hoxU, respectively. The transcriptions of the two clusters containing the hox genes are both induced under anaerobic conditions concomitantly with the induction of a higher level of hydrogenase activity. An additional TSP, within the annotated alr0760, 244 bp downstream from the suggested translation start codon, was identified. Electrophoretic mobility shift assays with purified LexA from Nostoc sp. strain PCC 7120 demonstrated specific interactions between the transcriptional regulator and both hox promoter regions. However, when LexA from Synechocystis sp. strain PCC 6803 was used, the purified protein interacted only with the promoter region of the alr0750-hoxE-hoxF operon. A search of the whole Nostoc sp. strain PCC 7120 genome demonstrated the presence of 216 putative LexA binding sites in total, including recA and recF. This indicates that, in addition to the bidirectional hydrogenase gene, a number of other genes, including open reading frames connected to DNA replication, recombination, and repair, may be part of the LexA regulatory network in Nostoc sp. strain PCC 7120.
Collapse
Affiliation(s)
- Johannes Sjöholm
- Department of Photochemistry and Molecular Science, The Angström Laboratories, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | | | | |
Collapse
|
33
|
Ludwig M, Schulz-Friedrich R, Appel J. Occurrence of hydrogenases in cyanobacteria and anoxygenic photosynthetic bacteria: implications for the phylogenetic origin of cyanobacterial and algal hydrogenases. J Mol Evol 2006; 63:758-68. [PMID: 17103058 DOI: 10.1007/s00239-006-0001-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2006] [Accepted: 08/17/2006] [Indexed: 10/23/2022]
Abstract
Hydrogenases are important enzymes in the energy metabolism of microorganisms. Therefore, they are widespread in prokaryotes. We analyzed the occurrence of hydrogenases in cyanobacteria and deduced a FeFe-hydrogenase in three different heliobacterial strains. This allowed the first phylogenetic analysis of the hydrogenases of all five major groups of photosynthetic bacteria (heliobacteria, green nonsulfur bacteria, green sulfur bacteria, photosynthetic proteobacteria, and cyanobacteria). In the case of both hydrogenases found in cyanobacteria (uptake and bidirectional), the green nonsulfur bacterium Chloroflexus aurantiacus was found to be the closest ancestor. Apart from a close relation between the archaebacterial and the green sulfur bacterial sulfhydrogenase, we could not find any evidence for horizontal gene transfer. Therefore, it would be most parsimonious if a Chloroflexus-like bacterium was the ancestor of Chloroflexus aurantiacus and cyanobacteria. After having transmitted both hydrogenase genes vertically to the different cyanobacterial species, either no, one, or both enzymes were lost, thus producing the current distribution. Our data and the available data from the literature on the occurrence of cyanobacterial hydrogenases show that the cyanobacterial uptake hydrogenase is strictly linked to the occurrence of the nitrogenase. Nevertheless, we did identify a nitrogen-fixing Synechococcus strain without an uptake hydrogenase. Since we could not find genes of a FeFe-hydrogenase in any of the tested cyanobacteria, although strains performing anoxygenic photosynthesis were also included in the analysis, a cyanobacterial origin of the contemporary FeFe-hydrogenase of algal plastids seems unlikely.
Collapse
Affiliation(s)
- Marcus Ludwig
- Botanisches Institut, Christian-Albrechts-Universität, Am Botanischen Garten 1-9, D-24118, Kiel, Germany
| | | | | |
Collapse
|
34
|
Mazón G, Campoy S, Fernández de Henestrosa AR, Barbé J. Insights into the LexA regulon of Thermotogales. Antonie Van Leeuwenhoek 2006; 90:123-37. [PMID: 16897562 DOI: 10.1007/s10482-006-9066-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 02/09/2006] [Indexed: 10/24/2022]
Abstract
The lexA genes of Thermotoga maritima and Petrotoga miotherma, both members of the Order Thermotogales, have been cloned and their transcriptional organization, as well as the functional characteristics of their encoded products, analyzed. In both bacterial species, the lexA gene was found to be co-transcribed together with another four (T. maritima) or three (P. miotherma) upstream open-reading frames. The P. miotherma LexA was able to bind promoters of both the cognate lexA encoding operon and the uvrA gene but not to that of the recA. Conversely, LexA protein and crude cell extracts from T. maritima were unable to bind promoters governing the expression of either its lexA or recA genes. In agreement with these observations, no functional copy of the P. miotherma LexA box, corresponding to the GANTN(6)GANNAC motif, seems to be present in the T. maritima genome. Giving support to the proposal that the evolutionary branching order of the Order Thermotogales is very close to that of Gram-positive bacteria, the P. miotherma LexA protein was still able to recognize the previously described LexA-binding sequence for Gram-positive bacteria.
Collapse
Affiliation(s)
- Gerard Mazón
- Centre de Recerca en Sanitat Animal, 08193 Bellaterra, Spain
| | | | | | | |
Collapse
|
35
|
Mazón G, Campoy S, Erill I, Barbé J. Identification of the Acidobacterium capsulatum LexA box reveals a lateral acquisition of the Alphaproteobacteria lexA gene. MICROBIOLOGY-SGM 2006; 152:1109-1118. [PMID: 16549674 DOI: 10.1099/mic.0.28376-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Acidobacterium capsulatum is the most thoroughly studied species of a new bacterial phylogenetic group designated the phylum Acidobacteria. Through a tblastn search, the A. capsulatum lexA gene has been identified, and its product purified. Electrophoretic mobility shift assays have shown that A. capsulatum LexA protein binds specifically to the direct repeat GTTCN(7)GTTC motif. Strikingly, this is also the LexA box of the Alphaproteobacteria, but had not previously been described outside this subclass of the Proteobacteria. In addition, a phylogenetic analysis of the LexA protein clusters together Acidobacterium and the Alphaproteobacteria, moving the latter away from their established phylogenetic position as a subclass of the Proteobacteria, and pointing to a lateral gene transfer of the lexA gene from the phylum Acidobacteria, or an immediate ancestor, to the Alphaproteobacteria. Lastly, in vivo experiments demonstrate that the A. capsulatum recA gene is DNA-damage inducible, despite the fact that a LexA-binding sequence is not present in its promoter region.
Collapse
Affiliation(s)
- Gerard Mazón
- Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Susana Campoy
- Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Ivan Erill
- Biomedical Applications Group, Centro Nacional de Microelectrónica, 08193 Bellaterra, Spain
| | - Jordi Barbé
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
36
|
Patterson-Fortin LM, Colvin KR, Owttrim GW. A LexA-related protein regulates redox-sensitive expression of the cyanobacterial RNA helicase, crhR. Nucleic Acids Res 2006; 34:3446-54. [PMID: 16840531 PMCID: PMC1524924 DOI: 10.1093/nar/gkl426] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Expression of the cyanobacterial DEAD-box RNA helicase, crhR, is regulated in response to conditions, which elicit reduction of the photosynthetic electron transport chain. A combination of electrophoretic mobility shift assay (EMSA), DNA affinity chromatography and mass spectrometry identified that a LexA-related protein binds specifically to the crhR gene. Transcript analysis indicates that lexA and crhR are divergently expressed, with lexA and crhR transcripts accumulating differentially under conditions, which respectively oxidize and reduce the electron transport chain. In addition, expression of the Synechocystis lexA gene is not DNA damage inducible and its amino acid sequence lacks two of three residues required for activity of prototypical LexA proteins, which repress expression of DNA repair genes in a range of prokaryotes. A direct effect of recombinant LexA protein on crhR expression was confirmed from the observation that LexA reduces crhR expression in a linear manner in an in vitro transcription/translation assay. The results indicate that the Synechocystis LexA-related protein functions as a regulator of redox-responsive crhR gene expression, and not DNA damage repair genes.
Collapse
Affiliation(s)
| | | | - George W. Owttrim
- To whom correspondence should be addressed. Tel: 780 492 1803; Fax: 780 492 9234;
| |
Collapse
|
37
|
Oliveira P, Lindblad P. LexA, a transcription regulator binding in the promoter region of the bidirectional hydrogenase in the cyanobacterium Synechocystis sp. PCC 6803. FEMS Microbiol Lett 2006; 251:59-66. [PMID: 16102913 DOI: 10.1016/j.femsle.2005.07.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2005] [Revised: 07/15/2005] [Accepted: 07/20/2005] [Indexed: 11/23/2022] Open
Abstract
The unicellular cyanobacterium Synechocystis PCC 6803 contains a single pentameric bidirectional hydrogenase encoded by hoxEFUYH. Transcriptional experiments demonstrated that the five hox genes are part of a single transcript together with three ORFs with unknown functions. The transcription start point was localized by 5' RACE to 168bp upstream the hoxE ATG start codon. DNA affinity assays demonstrated a specific interaction between the hox regulatory promoter region and a protein which, using mass spectrometry, was identified to be LexA. Overexpressed His-tagged Synechocystis LexA and EMSA showed a specific binding to the promoter region of the hox operon. Increasing concentrations of the purified LexA resulted in two retarded LexA-DNA complexes, in agreement with the presence of two putative LexA binding sites upstream the determined TSP.
Collapse
Affiliation(s)
- Paulo Oliveira
- Department of Physiological Botany, EBC, Uppsala University, Villavägen 6, SE-752 36 Uppsala, Sweden.
| | | |
Collapse
|
38
|
Erill I, Campoy S, Mazon G, Barbé J. Dispersal and regulation of an adaptive mutagenesis cassette in the bacteria domain. Nucleic Acids Res 2006; 34:66-77. [PMID: 16407325 PMCID: PMC1326238 DOI: 10.1093/nar/gkj412] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recently, a multiple gene cassette with mutagenic translation synthesis activity was identified and shown to be under LexA regulation in several proteobacteria species. In this work, we have traced down instances of this multiple gene cassette across the bacteria domain. Phylogenetic analyses show that this cassette has undergone several reorganizations since its inception in the actinobacteria, and that it has dispersed across the bacterial domain through a combination of vertical inheritance, lateral gene transfer and duplication. In addition, our analyses show that LexA regulation of this multiple gene cassette is persistent in all the phyla in which it has been detected, and suggest that this regulation is prompted by the combined activity of two of its constituent genes: a polymerase V homolog and an alpha subunit of the DNA polymerase III.
Collapse
Affiliation(s)
| | - Susana Campoy
- Centre de Recerca en Sanitat Animal (CReSA)08193 Bellaterra, Spain
| | - Gerard Mazon
- Centre de Recerca en Sanitat Animal (CReSA)08193 Bellaterra, Spain
| | - Jordi Barbé
- Centre de Recerca en Sanitat Animal (CReSA)08193 Bellaterra, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona 08193 BellaterraSpain
- To whom correspondence should be addressed at Departament de Genètica i Microbiologia, Ed. C, Universitat Autònoma de Barcelona 08193 Bellaterra, Spain. Tel: +34 93 581 1837; Fax: +34 93 581 2387;
| |
Collapse
|
39
|
Gutekunst K, Phunpruch S, Schwarz C, Schuchardt S, Schulz-Friedrich R, Appel J. LexA regulates the bidirectional hydrogenase in the cyanobacterium Synechocystis sp. PCC 6803 as a transcription activator. Mol Microbiol 2006; 58:810-23. [PMID: 16238629 DOI: 10.1111/j.1365-2958.2005.04867.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The bidirectional NiFe-hydrogenase of Synechocystis sp. PCC 6803 is encoded by five genes (hoxEFUYH) which are transcribed as one unit. The transcription of the hox-operon is regulated by a promoter situated upstream of hoxE. The transcription start point was located at -168 by 5'Race. Several promoter probe vectors carrying different promoter fragments revealed two regions to be essential for the promoter activity. One is situated in the untranslated 5'leader region and the other is found -569 to -690 nucleotides upstream of the ATG. The region further upstream was shown to bind a protein. Even though an imperfect NtcA binding site was identified, NtcA did not bind to this region. The protein binding to the DNA was purified and found to be LexA by MALDI-TOF. The complete LexA and its DNA binding domain were overexpressed in Escherichia coli. Both were able to bind to two sites in the examined region in band-shift-assays. Accordingly, the hydrogenase activity of a LexA-depleted mutant was reduced. This is the first report on LexA acting not as a repressor but as a transcriptional activator. Furthermore, LexA is the first transcription factor identified so far for the expression of bidirectional hydrogenases in cyanobacteria.
Collapse
Affiliation(s)
- Kirstin Gutekunst
- Botanisches Institut, Christian-Albrechts-Universität, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Minda R, Ramchandani J, Joshi VP, Bhattacharjee SK. A homozygous recA mutant of Synechocystis PCC6803: construction strategy and characteristics eliciting a novel RecA independent UVC resistance in dark. Mol Genet Genomics 2005; 274:616-24. [PMID: 16261348 DOI: 10.1007/s00438-005-0054-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Accepted: 09/19/2005] [Indexed: 10/25/2022]
Abstract
We report here the construction of a homozygous recA460::cam insertion mutant of Synechocystis sp. PCC 6803 that may be useful for plant molecular genetics by providing a plant like host free of interference from homologous recombination. The homozygous recA460::cam mutant is highly sensitive to UVC under both photoreactivating and non-photoreactivating conditions compared to the wild type (WT). The liquid culture of the mutant growing in approximately 800 lx accumulates nonviable cells to the tune of 86% as estimated by colony counts on plates incubated at the same temperature and light intensity. The generation time of recA mutant in standard light intensity (2,500 lx) increases to 50 h compared to 28 h in lower light intensity (approximately 800 lx) that was used for selection, thus explaining the earlier failures to obtain a homozygous recA mutant. The WT, in contrast, grows at faster rate (23 h generation time) in standard light intensity compared to that at approximately 800 lx (26 h). The Synechocystis RecA protein supports homologous recombination during conjugation in recA (-) mutant of Escherichia coli, but not the SOS response as measured by UV sensitivity. It is suggested that using this homozygous recA460::cam mutant, investigations can now be extended to dissect the network of DNA repair pathways involved in housekeeping activities that may be more active in cyanobacteria than in heterotrophs. Using this mutant for the first time we provide a genetic evidence of a mechanism independent of RecA that causes enhanced UVC resistance on light to dark transition.
Collapse
Affiliation(s)
- Renu Minda
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | | | | | | |
Collapse
|
41
|
Cuñé J, Cullen P, Mazon G, Campoy S, Adler B, Barbe J. The Leptospira interrogans lexA gene is not autoregulated. J Bacteriol 2005; 187:5841-5. [PMID: 16077133 PMCID: PMC1196068 DOI: 10.1128/jb.187.16.5841-5845.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Footprinting and mutagenesis experiments demonstrated that Leptospira interrogans LexA binds the palindrome TTTGN(5)CAAA found in the recA promoter but not in the lexA promoter. In silico analysis revealed that none of the other canonical SOS genes is under direct control of LexA, making the leptospiral lexA gene the first described which is not autoregulated.
Collapse
Affiliation(s)
- Jordi Cuñé
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
42
|
Campoy S, Salvador N, Cortés P, Erill I, Barbé J. Expression of canonical SOS genes is not under LexA repression in Bdellovibrio bacteriovorus. J Bacteriol 2005; 187:5367-75. [PMID: 16030231 PMCID: PMC1196036 DOI: 10.1128/jb.187.15.5367-5375.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The here-reported identification of the LexA-binding sequence of Bdellovibrio bacteriovorus, a bacterial predator belonging to the delta-Proteobacteria, has made possible a detailed study of its LexA regulatory network. Surprisingly, only the lexA gene and a multiple gene cassette including dinP and dnaE homologues are regulated by the LexA protein in this bacterium. In vivo expression analyses have confirmed that this gene cassette indeed forms a polycistronic unit that, like the lexA gene, is DNA damage inducible in B. bacteriovorus. Conversely, genes such as recA, uvrA, ruvCAB, and ssb, which constitute the canonical core of the Proteobacteria SOS system, are not repressed by the LexA protein in this organism, hinting at a persistent selective pressure to maintain both the lexA gene and its regulation on the reported multiple gene cassette. In turn, in vitro experiments show that the B. bacteriovorus LexA-binding sequence is not recognized by other delta-Proteobacteria LexA proteins but binds to the cyanobacterial LexA repressor. This places B. bacteriovorus LexA at the base of the delta-Proteobacteria LexA family, revealing a high degree of conservation in the LexA regulatory sequence prior to the diversification and specialization seen in deeper groups of the Proteobacteria phylum.
Collapse
Affiliation(s)
- Susana Campoy
- Centre de Recerca en Sanitat Animal (CReSA), 08193 Bellaterra, Spain
| | | | | | | | | |
Collapse
|
43
|
Erill I, Jara M, Salvador N, Escribano M, Campoy S, Barbé J. Differences in LexA regulon structure among Proteobacteria through in vivo assisted comparative genomics. Nucleic Acids Res 2004; 32:6617-26. [PMID: 15604457 PMCID: PMC545464 DOI: 10.1093/nar/gkh996] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The LexA regulon encompasses an ensemble of genes involved in preserving cell viability under massive DNA damage and is present in most bacterial phyla. Up to date, however, the scope of this network had only been assessed in the Gamma Proteobacteria. Here, we report the structure of the LexA regulon in the Alpha Proteobacteria, using a combined approach that makes use of in vitro and in vivo techniques to assist and validate the comparative genomics in silico methodology. This leads to the first experimentally validated description of the LexA regulon in the Alpha Proteobacteria, and comparison of regulon core structures in both classes suggests that a least common multiple set of genes (recA, ssb, uvrA and ruvCAB) might be a defining property of the Proteobacteria LexA network.
Collapse
Affiliation(s)
- Ivan Erill
- Biomedical Applications Group, Centro Nacional de Microelectrónica, 08193 Bellaterra, Spain
| | | | | | | | | | | |
Collapse
|
44
|
Abella M, Erill I, Jara M, Mazón G, Campoy S, Barbé J. Widespread distribution of a lexA-regulated DNA damage-inducible multiple gene cassette in the Proteobacteria phylum. Mol Microbiol 2004; 54:212-22. [PMID: 15458417 DOI: 10.1111/j.1365-2958.2004.04260.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The SOS response comprises a set of cellular functions aimed at preserving bacterial cell viability in front of DNA injuries. The SOS network, negatively regulated by the LexA protein, is found in many bacterial species that have not suffered major reductions in their gene contents, but presents distinctly divergent LexA-binding sites across the Bacteria domain. In this article, we report the identification and characterization of an imported multiple gene cassette in the Gamma Proteobacterium Pseudomonas putida that encodes a LexA protein, an inhibitor of cell division (SulA), an error-prone polymerase (DinP) and the alpha subunit of DNA polymerase III (DnaE). We also demonstrate that these genes constitute a DNA damage-inducible operon that is regulated by its own encoded LexA protein, and we establish that the latter is a direct derivative of the Gram-positive LexA protein. In addition, in silico analyses reveal that this multiple gene cassette is also present in many Proteobacteria families, and that both its gene content and LexA-binding sequence have evolved over time, ultimately giving rise to the lexA lineage of extant Gamma Proteobacteria.
Collapse
Affiliation(s)
- Marc Abella
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | | | | | | | | |
Collapse
|
45
|
Mazón G, Erill I, Campoy S, Cortés P, Forano E, Barbé J. Reconstruction of the evolutionary history of the LexA-binding sequence. Microbiology (Reading) 2004; 150:3783-3795. [PMID: 15528664 DOI: 10.1099/mic.0.27315-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In recent years, the recognition sequence of the SOS repressor LexA protein has been identified for several bacterial clades, such as the Gram-positive, green non-sulfur bacteria and Cyanobacteria phyla, or the ‘Alphaproteobacteria’, ‘Deltaproteobacteria’ and ‘Gammaproteobacteria’ classes. Nevertheless, the evolutionary relationship among these sequences and the proteins that recognize them has not been analysed.Fibrobacter succinogenesis an anaerobic Gram-negative bacterium that branched from a common bacterial ancestor immediately before the Proteobacteria phylum. Taking advantage of its intermediate position in the phylogenetic tree, and in an effort to reconstruct the evolutionary history of LexA-binding sequences, theF. succinogenes lexAgene has been isolated and its product purified to identify its DNA recognition motif through electrophoretic mobility assays and footprinting experiments. After comparing the available LexA DNA-binding sequences with theF. succinogenesone, reported here, directed mutagenesis of theF. succinogenesLexA-binding sequence and phylogenetic analyses of LexA proteins have revealed the existence of two independent evolutionary lanes for the LexA recognition motif that emerged from the Gram-positive box: one generating the Cyanobacteria and ‘Alphaproteobacteria’ LexA-binding sequences, and the other giving rise to theF. succinogenesandMyxococcus xanthusones, in a transitional step towards the current ‘Gammaproteobacteria’ LexA box. The contrast between the results reported here and the phylogenetic data available in the literature suggests that, some time after its emergence as a distinct bacterial class, the ‘Alphaproteobacteria’ lost its vertically receivedlexAgene, but received later through lateral gene transfer a newlexAgene belonging to either a cyanobacterium or a bacterial species closely related to this phylum. This constitutes the first report based on experimental evidence of lateral gene transfer in the evolution of a gene governing such a complex regulatory network as the bacterial SOS system.
Collapse
Affiliation(s)
- Gerard Mazón
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Ivan Erill
- Biomedical Applications Group, Centro Nacional de Microelectrónica, 08193 Bellaterra, Spain
| | - Susana Campoy
- Centre de Recerca en Sanitat Animal (CReSA), 08193 Bellaterra, Spain
| | - Pilar Cortés
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Evelyne Forano
- Unité de Microbiologie, INRA, Centre de Recherches de Clermont-Ferrand-Theix, 63122 Saint-Genès-Champanelle, France
| | - Jordi Barbé
- Centre de Recerca en Sanitat Animal (CReSA), 08193 Bellaterra, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|