1
|
Lu Y, Cheng K, Tang H, Li J, Zhang C, Zhu H. The role of Rab GTPase in Plant development and stress. JOURNAL OF PLANT PHYSIOLOGY 2024; 296:154239. [PMID: 38574493 DOI: 10.1016/j.jplph.2024.154239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Small GTPase is a type of crucial regulator in eukaryotes. It acts as a molecular switch by binding with GTP and GDP in cytoplasm, affecting various cellular processes. Small GTPase were divided into five subfamilies based on sequence, structure and function: Ras, Rho, Rab, Arf/Sar and Ran, with Rab being the largest subfamily. Members of the Rab subfamily play an important role in regulating complex vesicle transport and microtubule system activity. Plant cells are composed of various membrane-bound organelles, and vesicle trafficking is fundamental to the existence of plants. At present, the function of some Rab members, such as RabA1a, RabD2b/c and RabF2, has been well characterized in plants. This review summarizes the role of Rab GTPase in regulating plant tip growth, morphogenesis, fruit ripening and stress response, and briefly describes the regulatory mechanisms involved. It provides a reference for further alleviating environmental stress, improving plant resistance and even improving fruit quality.
Collapse
Affiliation(s)
- Yao Lu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Ke Cheng
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Hui Tang
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Jinyan Li
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Chunjiao Zhang
- Supervision, Inspection & Testing Center of Agricultural Products Quality, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China.
| | - Hongliang Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
2
|
Al-Zahrani HS, Moussa TAA, Alsamadany H, Hafez RM, Fuller MP. Phylogenetic and Expression Studies of Small GTP-Binding Proteins in Solanum lycopersicum Super Strain B. PLANTS 2022; 11:plants11050641. [PMID: 35270112 PMCID: PMC8912273 DOI: 10.3390/plants11050641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022]
Abstract
This investigation involved a comparative analysis of the small GTPase superfamily in S. lycopersicum super strain B compared to their analogues in leguminous and other non-leguminous species. The small GTPases superfamily members were recognized by tBLASTn searches. The sequences of amino acid were aligned using Clustal Omega and the analysis of phylogeny was performed with the MEGA7 package. Protein alignments were applied for all studied species. Three-dimensional models of RABA2, ROP9, and ROP10 from Solanum lycopersicum “Super strain B” were performed. The levels of mRNA of the Rab, Arf, Rop, and Ran subfamilies were detected in aerial tissues vs. roots. Significant divergences were found in the number of members and groups comprising each subfamily of the small GTPases and Glycine max had the highest count. High expression of Rab and Arf proteins was shown in the roots of legumes whilst in non-legume plants, the highest values were recorded in aerial tissues. S. lycopersicum super strain B had the highest expression of Rab and Arf proteins in its aerial tissues, which may indicate that diazotroph strains have supreme activities in the aerial tissues of strain B and act as associated N-fixing bacteria. The phylogenies of the small GTPase superfamily of the studied plants did not reveal asymmetric evolution of the Ra, Arf, Rop, and Ran subfamilies. Multiple sequence alignments derived from each of the Rab, Arf, and Rop proteins of S. lycopersicum super strain B showed a low frequency of substitutions in their domains. GTPases superfamily members have definite functions during infection, delivery, and maintenance of N2-fixing diazotroph but show some alterations in their function among S. lycopersicum super strain B, and other species.
Collapse
Affiliation(s)
- Hassan S. Al-Zahrani
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.S.A.-Z.); (H.A.)
| | - Tarek A. A. Moussa
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.S.A.-Z.); (H.A.)
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
- Correspondence: ; Tel.: +20-1001531738
| | - Hameed Alsamadany
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.S.A.-Z.); (H.A.)
| | - Rehab M. Hafez
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Michael P. Fuller
- School of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK;
| |
Collapse
|
3
|
Rüping B, Ernst AM, Jekat SB, Nordzieke S, Reineke AR, Müller B, Bornberg-Bauer E, Prüfer D, Noll GA. Molecular and phylogenetic characterization of the sieve element occlusion gene family in Fabaceae and non-Fabaceae plants. BMC PLANT BIOLOGY 2010; 10:219. [PMID: 20932300 PMCID: PMC3017817 DOI: 10.1186/1471-2229-10-219] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 10/08/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND The phloem of dicotyledonous plants contains specialized P-proteins (phloem proteins) that accumulate during sieve element differentiation and remain parietally associated with the cisternae of the endoplasmic reticulum in mature sieve elements. Wounding causes P-protein filaments to accumulate at the sieve plates and block the translocation of photosynthate. Specialized, spindle-shaped P-proteins known as forisomes that undergo reversible calcium-dependent conformational changes have evolved exclusively in the Fabaceae. Recently, the molecular characterization of three genes encoding forisome components in the model legume Medicago truncatula (MtSEO1, MtSEO2 and MtSEO3; SEO = sieve element occlusion) was reported, but little is known about the molecular characteristics of P-proteins in non-Fabaceae. RESULTS We performed a comprehensive genome-wide comparative analysis by screening the M. truncatula, Glycine max, Arabidopsis thaliana, Vitis vinifera and Solanum phureja genomes, and a Malus domestica EST library for homologs of MtSEO1, MtSEO2 and MtSEO3 and identified numerous novel SEO genes in Fabaceae and even non-Fabaceae plants, which do not possess forisomes. Even in Fabaceae some SEO genes appear to not encode forisome components. All SEO genes have a similar exon-intron structure and are expressed predominantly in the phloem. Phylogenetic analysis revealed the presence of several subgroups with Fabaceae-specific subgroups containing all of the known as well as newly identified forisome component proteins. We constructed Hidden Markov Models that identified three conserved protein domains, which characterize SEO proteins when present in combination. In addition, one common and three subgroup specific protein motifs were found in the amino acid sequences of SEO proteins. SEO genes are organized in genomic clusters and the conserved synteny allowed us to identify several M. truncatula vs G. max orthologs as well as paralogs within the G. max genome. CONCLUSIONS The unexpected occurrence of forisome-like genes in non-Fabaceae plants may indicate that these proteins encode species-specific P-proteins, which is backed up by the phloem-specific expression profiles. The conservation of gene structure, the presence of specific motifs and domains and the genomic synteny argue for a common phylogenetic origin of forisomes and other P-proteins.
Collapse
Affiliation(s)
- Boris Rüping
- Institut für Biochemie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Hindenburgplatz 55, D-48143 Münster, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstraße 6, D-52074 Aachen, Germany
| | - Antonia M Ernst
- Institut für Biochemie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Hindenburgplatz 55, D-48143 Münster, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstraße 6, D-52074 Aachen, Germany
| | - Stephan B Jekat
- Institut für Biochemie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Hindenburgplatz 55, D-48143 Münster, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstraße 6, D-52074 Aachen, Germany
| | - Steffen Nordzieke
- Institut für Biochemie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Hindenburgplatz 55, D-48143 Münster, Germany
| | - Anna R Reineke
- Institut für Evolution und Biodiversität, Westfälische Wilhelms-Universität Münster, Hüfferstraße 1, D-48149 Münster, Germany
| | - Boje Müller
- Institut für Biochemie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Hindenburgplatz 55, D-48143 Münster, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstraße 6, D-52074 Aachen, Germany
| | - Erich Bornberg-Bauer
- Institut für Evolution und Biodiversität, Westfälische Wilhelms-Universität Münster, Hüfferstraße 1, D-48149 Münster, Germany
| | - Dirk Prüfer
- Institut für Biochemie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Hindenburgplatz 55, D-48143 Münster, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstraße 6, D-52074 Aachen, Germany
| | - Gundula A Noll
- Institut für Biochemie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Hindenburgplatz 55, D-48143 Münster, Germany
| |
Collapse
|
4
|
Blanco FA, Peltzer Meschini E, Zanetti ME, Aguilar OM. A small GTPase of the Rab family is required for root hair formation and preinfection stages of the common bean-Rhizobium symbiotic association. THE PLANT CELL 2009; 21:2797-810. [PMID: 19749154 PMCID: PMC2768941 DOI: 10.1105/tpc.108.063420] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 08/04/2009] [Accepted: 08/17/2009] [Indexed: 05/18/2023]
Abstract
Legume plants are able to establish a symbiotic relationship with soil bacteria from the genus Rhizobium, leading to the formation of nitrogen-fixing root nodules. Successful nodulation requires both the formation of infection threads (ITs) in the root epidermis and the activation of cell division in the cortex to form the nodule primordium. This study describes the characterization of RabA2, a common bean (Phaseolus vulgaris) cDNA previously isolated as differentially expressed in root hairs infected with Rhizobium etli, which encodes a protein highly similar to small GTPases of the RabA2 subfamily. This gene is expressed in roots, particularly in root hairs, where the protein was found to be associated with vesicles that move along the cell. The role of this gene during nodulation has been studied in common bean transgenic roots using a reverse genetic approach. Examination of root morphology in RabA2 RNA interference (RNAi) plants revealed that the number and length of the root hairs were severely reduced in these plants. Upon inoculation with R. etli, nodulation was completely impaired and no induction of early nodulation genes (ENODs), such as ERN1, ENOD40, and Hap5, was detected in silenced hairy roots. Moreover, RabA2 RNAi plants failed to induce root hair deformation and to initiate ITs, indicating that morphological changes that precede bacterial infection are compromised in these plants. We propose that RabA2 acts in polar growth of root hairs and is required for reorientation of the root hair growth axis during bacterial infection.
Collapse
|
5
|
Yuksel B, Memon AR. Comparative phylogenetic analysis of small GTP-binding genes of model legume plants and assessment of their roles in root nodules. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3831-44. [PMID: 18849296 PMCID: PMC2576638 DOI: 10.1093/jxb/ern223] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 07/17/2008] [Accepted: 08/06/2008] [Indexed: 05/03/2023]
Abstract
Small GTP-binding genes play an essential regulatory role in a multitude of cellular processes such as vesicle-mediated intracellular trafficking, signal transduction, cytoskeletal organization, and cell division in plants and animals. Medicago truncatula and Lotus japonicus are important model plants for studying legume-specific biological processes such as nodulation. The publicly available online resources for these plants from websites such as http://www.ncbi.nih.gov, http://www.medicago.org, http://www.tigr.org, and related sites were searched to collect nucleotide sequences that encode GTP-binding protein homologues. A total of 460 small GTPase sequences from several legume species including Medicago and Lotus, Arabidopsis, human, and yeast were phyletically analysed to shed light on the evolution and functional characteristics of legume-specific homologues. One of the main emphases of this study was the elucidation of the possible involvement of some members of small GTPase homologues in the establishment and maintenance of symbiotic associations in root nodules of legumes. A high frequency of vesicle-mediated trafficking in nodules led to the idea of a probable subfunctionalization of some members of this family in legumes. As a result of the analyses, a group of 10 small GTPases that are likely to be mainly expressed in nodules was determined. The sequences determined as a result of this study could be used in more detailed molecular genetic analyses such as creation of RNA interference silencing mutants for further clarification of the role of GTPases in nodulation. This study will also assist in furthering our understanding of the evolutionary history of small GTPases in legume species.
Collapse
Affiliation(s)
- Bayram Yuksel
- Plant Molecular Biology Laboratory, Genetic Engineering and Biotechnology Institute, Marmara Research Center, TUBITAK, PO Box 21, 41400, Gebze, Kocaeli, Turkey.
| | | |
Collapse
|
6
|
Lycett G. The role of Rab GTPases in cell wall metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:4061-74. [PMID: 18945942 DOI: 10.1093/jxb/ern255] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The synthesis and modification of the cell wall must involve the production of new cell wall polymers and enzymes. Their targeted secretion to the apoplast is one of many potential control points. Since Rab GTPases have been strongly implicated in the regulation of vesicle trafficking, a review of their involvement in cell wall metabolism should throw light on this possibility. Cell wall polymer biosynthesis occurs mainly in the Golgi apparatus, except for cellulose and callose, which are made at the plasma membrane by an enzyme complex that cycles through the endomembrane system and which may be regulated by this cycling. Several systems, including the growth of root hairs and pollen tubes, cell wall softening in fruit, and the development of root nodules, are now being dissected. In these systems, secretion of wall polymers and modifying enzymes has been documented, and Rab GTPases are highly expressed. Reverse genetic experiments have been used to interfere with these GTPases and this is revealing their importance in regulation of trafficking to the wall. The role of the RabA (or Rab11) GTPases is particularly exciting in this respect.
Collapse
Affiliation(s)
- Grantley Lycett
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Near Loughborough, LE12 5RD, UK.
| |
Collapse
|
7
|
Gonçalves S, Cairney J, Rodríguez MP, Cánovas F, Oliveira M, Miguel C. PpRab1, a Rab GTPase from maritime pine is differentially expressed during embryogenesis. Mol Genet Genomics 2007; 278:273-82. [PMID: 17562081 DOI: 10.1007/s00438-007-0247-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 05/07/2007] [Indexed: 10/23/2022]
Abstract
Rab-related small GTP-binding proteins are known to be involved in the regulation of the vesicular transport system in eukaryotic cells. We report the characterization of a previously isolated full-length cDNA PpRab1 from Pinus pinaster. Amino acid sequence analysis revealed the presence of G1-G5 conserved domains of the GTPase Ras superfamily and a double cysteine motif in the C-terminal, characteristic of Rab proteins. The PpRab1 protein shows high sequence similarity to several Rab1 GTP-binding proteins in plants. Phylogenetic analysis showed that, within the Ras superfamily, PpRab1 is more closely related to the Rab family and within this, PpRab1 protein was found to cluster with Arabidopsis subfamily AtRABE, whose members are known to regulate ER-to-Golgi membrane trafficking steps. PpRab1 transcripts were expressed at constitutively high levels for the initial stages of zygotic embryo development, and then their relative abundance decreased as embryo matures. The PpRab1 transcript is not embryo-specific as it was found in roots, cotyledons and hypocotyls. An increase in PpRab1 expression level was observed when seeds are germinated and collected at successive time points of development. In situ RT-PCR analysis revealed an expression signal in early zygotic embryos. In view of the proposed roles of Rab1 GTP-binding protein, the possible function of the protein encoded by PpRab1 in embryogenesis is discussed.
Collapse
Affiliation(s)
- Sónia Gonçalves
- Forest Biotech Lab, Instituto de Biologia Experimental e Tecnológica (IBET)/Instituto de Tecnologia Química e Biológica (ITQB), Quinta do Marquês, 2784-505 Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
8
|
Yaneva IA, Niehaus K. Molecular cloning and characterisation of a Rab-binding GDP-dissociation inhibitor from Medicago truncatula. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2005; 43:203-12. [PMID: 15854828 DOI: 10.1016/j.plaphy.2005.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Accepted: 01/12/2005] [Indexed: 05/02/2023]
Abstract
We have isolated and sequenced the full-length cDNA of a GDP-dissociation inhibitor (GDI) from the model legume Medicago truncatula L. The cDNA (MtGDI) contains an open reading frame of 1335 bp, coding for a protein of 444 amino acids with a calculated molecular mass of 49,785 kDa. The deduced amino acid sequence shows significant homology to other plant GDIs, the highest homology being found to GDI from the legume Cicer arietinum (96% identity). The MtGDI was expressed as a N-terminal FLAG-fusion protein in Escherichia coli BL21 (DE3). Its direct interaction with a small G protein of Rab type from Medicago sativa, MsRab11f, was demonstrated in vitro by co-immunoprecipitation using a peptide-specific antibody raised against MtGDI. The dissociation constant of the MtGDI-MsRab11f complex (4 muM) was determined by a surface plasmon resonance (SPR) assay. Real-time RT-PCR and Western blot analyses suggested that MtGDI is ubiquitously expressed in M. truncatula. High levels of MtGDI mRNA were detected in uninfected roots, leaves and root nodules. In etiolated seedlings and cell cultures, the amount of MtGDI mRNA was much lower. In all tissues tested, the peptide-specific anti-MtGDI antibody detected the expected 50 kDa protein in the total protein extracts. MtGDI was found in the cytosol; however, a significant fraction was associated with the intracellular membranes in seedlings and roots indicating a membrane localisation of the protein. A second immunoreactive band was detected in leaves suggesting that more than one GDI isoform exist in M. truncatula.
Collapse
Affiliation(s)
- Ivanka Asparuhova Yaneva
- Department of Genetics, Biology Faculty, University of Bielefeld, Post-Box 100131, 33501 Bielefeld, Germany.
| | | |
Collapse
|