1
|
Doerfler AM, Park SH, Assini JM, Youssef A, Saxena L, Yaseen AB, De Giorgi M, Chuecos M, Hurley AE, Li A, Marcovina SM, Bao G, Boffa MB, Koschinsky ML, Lagor WR. LPA disruption with AAV-CRISPR potently lowers plasma apo(a) in transgenic mouse model: A proof-of-concept study. Mol Ther Methods Clin Dev 2022; 27:337-351. [PMID: 36381302 PMCID: PMC9630778 DOI: 10.1016/j.omtm.2022.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Lipoprotein(a) (Lp(a)) represents a unique subclass of circulating lipoprotein particles and consists of an apolipoprotein(a) (apo(a)) molecule covalently bound to apolipoprotein B-100. The metabolism of Lp(a) particles is distinct from that of low-density lipoprotein (LDL) cholesterol, and currently approved lipid-lowering drugs do not provide substantial reductions in Lp(a), a causal risk factor for cardiovascular disease. Somatic genome editing has the potential to be a one-time therapy for individuals with extremely high Lp(a). We generated an LPA transgenic mouse model expressing apo(a) of physiologically relevant size. Adeno-associated virus (AAV) vector delivery of CRISPR-Cas9 was used to disrupt the LPA transgene in the liver. AAV-CRISPR nearly completely eliminated apo(a) from the circulation within a week. We performed genome-wide off-target assays to determine the specificity of CRISPR-Cas9 editing within the context of the human genome. Interestingly, we identified intrachromosomal rearrangements within the LPA cDNA in the transgenic mice as well as in the LPA gene in HEK293T cells, due to the repetitive sequences within LPA itself and neighboring pseudogenes. This proof-of-concept study establishes the feasibility of using CRISPR-Cas9 to disrupt LPA in vivo, and highlights the importance of examining the diverse consequences of CRISPR cutting within repetitive loci and in the genome globally.
Collapse
Affiliation(s)
- Alexandria M. Doerfler
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - So Hyun Park
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Julia M. Assini
- Department of Biochemistry, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, ON N6A 5B7, Canada
| | - Amer Youssef
- Robarts Research Institute, Schulich School of Medicine and Dentistry, London, ON N6G 2V4, Canada
| | - Lavanya Saxena
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Adam B. Yaseen
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Marco De Giorgi
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Marcel Chuecos
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ayrea E. Hurley
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ang Li
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | | | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Michael B. Boffa
- Department of Biochemistry, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, ON N6A 5B7, Canada
- Robarts Research Institute, Schulich School of Medicine and Dentistry, London, ON N6G 2V4, Canada
| | - Marlys L. Koschinsky
- Robarts Research Institute, Schulich School of Medicine and Dentistry, London, ON N6G 2V4, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, London, ON N6A 5B7, Canada
| | - William R. Lagor
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| |
Collapse
|
2
|
Smirnov A, Battulin N. Concatenation of Transgenic DNA: Random or Orchestrated? Genes (Basel) 2021; 12:genes12121969. [PMID: 34946918 PMCID: PMC8701086 DOI: 10.3390/genes12121969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/18/2022] Open
Abstract
Generation of transgenic organisms by pronuclear microinjection has become a routine procedure. However, while the process of DNA integration in the genome is well understood, we still do not know much about the recombination between transgene molecules that happens in the first moments after DNA injection. Most of the time, injected molecules are joined together in head-to-tail tandem repeats-the so-called concatemers. In this review, we focused on the possible concatenation mechanisms and how they could be studied with genetic reporters tracking individual copies in concatemers. We also discuss various features of concatemers, including palindromic junctions and repeat-induced gene silencing (RIGS). Finally, we speculate how cooperation of DNA repair pathways creates a multicopy concatenated insert.
Collapse
Affiliation(s)
- Alexander Smirnov
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia;
| | - Nariman Battulin
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia;
- Institute of Genetic Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
3
|
Zelensky AN, Schimmel J, Kool H, Kanaar R, Tijsterman M. Inactivation of Pol θ and C-NHEJ eliminates off-target integration of exogenous DNA. Nat Commun 2017; 8:66. [PMID: 28687761 PMCID: PMC5501794 DOI: 10.1038/s41467-017-00124-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 06/01/2017] [Indexed: 11/09/2022] Open
Abstract
Off-target or random integration of exogenous DNA hampers precise genomic engineering and presents a safety risk in clinical gene therapy strategies. Genetic definition of random integration has been lacking for decades. Here, we show that the A-family DNA polymerase θ (Pol θ) promotes random integration, while canonical non-homologous DNA end joining plays a secondary role; cells double deficient for polymerase θ and canonical non-homologous DNA end joining are devoid of any integration events, demonstrating that these two mechanisms define random integration. In contrast, homologous recombination is not reduced in these cells and gene targeting is improved to 100% efficiency. Such complete reversal of integration outcome, from predominately random integration to exclusively gene targeting, provides a rational way forward to improve the efficacy and safety of DNA delivery and gene correction approaches.Random off-target integration events can impair precise gene targeting and poses a safety risk for gene therapy. Here the authors show that repression of polymerase θ and classical non-homologous recombination eliminates random integration.
Collapse
Affiliation(s)
- Alex N Zelensky
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus University Medical Centre, Rotterdam,, 3000 CA, The Netherlands
| | - Joost Schimmel
- Department of Human Genetics, Leiden University Medical Centre, PO Box 9600, Leiden,, 2300 RC, The Netherlands
| | - Hanneke Kool
- Department of Human Genetics, Leiden University Medical Centre, PO Box 9600, Leiden,, 2300 RC, The Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus University Medical Centre, Rotterdam,, 3000 CA, The Netherlands.
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Centre, PO Box 9600, Leiden,, 2300 RC, The Netherlands.
| |
Collapse
|
4
|
Widespread Expression of a Membrane-Tethered Version of the Soluble Lysosomal Enzyme Palmitoyl Protein Thioesterase-1. JIMD Rep 2017; 36:85-92. [PMID: 28213849 DOI: 10.1007/8904_2017_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/13/2016] [Accepted: 12/29/2016] [Indexed: 12/13/2022] Open
Abstract
"Cross-correction," the transfer of soluble lysosomal enzymes between neighboring cells, forms the foundation for therapeutics of lysosomal storage disorders (LSDs). However, "cross-correction" poses a significant barrier to studying the role of specific cell types in LSD pathogenesis. By expressing the native enzyme in only one cell type, neighboring cell types are invariably corrected. In this study, we present a strategy to limit "cross-correction" of palmitoyl-protein thioesterase-1(PPT1), a lysosomal hydrolase deficient in Infantile Neuronal Ceroid Lipofuscinosis (INCL, Infantile Batten disease) to the lysosomal membrane via the C-terminus of lysosomal associated membrane protein-1 (LAMP1). Tethering PPT1 to the lysosomal membrane prevented "cross-correction" while allowing PPT1 to retain its enzymatic function and localization in vitro. A transgenic line harboring the lysosomal membrane-tethered PPT1 was then generated. We show that expression of lysosome-restricted PPT1 in vivo largely rescues the INCL biochemical, histological, and functional phenotype. These data suggest that lysosomal tethering of PPT1 via the C-terminus of LAMP1 is a viable strategy and that this general approach can be used to study the role of specific cell types in INCL pathogenesis, as well as other LSDs. Ultimately, understanding the role of specific cell types in the disease progression of LSDs will help guide the development of more targeted therapeutics. One Sentence Synopsis: Tethering PPT1 to the lysosomal membrane is a viable strategy to prevent "cross-correction" and will allow for the study of specific cellular contributions in INCL pathogenesis.
Collapse
|
5
|
Vartak SV, Raghavan SC. Inhibition of nonhomologous end joining to increase the specificity of CRISPR/Cas9 genome editing. FEBS J 2015; 282:4289-94. [PMID: 26290158 DOI: 10.1111/febs.13416] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/02/2015] [Accepted: 08/04/2015] [Indexed: 12/22/2022]
Abstract
DNA repair, one of the fundamental processes occurring in a cell, safeguards the genome and maintains its integrity. Among various DNA lesions, double-strand breaks are considered to be the most deleterious, as they can lead to potential loss of genetic information, if not repaired. Nonhomologous end joining (NHEJ) and homologous recombination are two major double-strand break repair pathways. SCR7, a DNA ligase IV inhibitor, was recently identified and characterized as a potential anticancer compound. Interestingly, SCR7 was shown to have several applications, owing to its unique property as an NHEJ inhibitor. Here, we focus on three main areas of research in which SCR7 is actively being used, and discuss one of the applications, i.e. genome editing via CRISPR/Cas, in detail. In the past year, different studies have shown that SCR7 significantly increases the efficiency of precise genome editing by inhibiting NHEJ, and favouring the error-free homologous recombination pathway, both in vitro and in vivo. Overall, we discuss the current applications of SCR7 to shed light on the unique property of the small molecule of having distinct applications in normal and cancer cells, when used at different cellular concentrations.
Collapse
Affiliation(s)
- Supriya V Vartak
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
6
|
Chiruvella KK, Sebastian R, Sharma S, Karande AA, Choudhary B, Raghavan SC. Time-Dependent Predominance of Nonhomologous DNA End-Joining Pathways during Embryonic Development in Mice. J Mol Biol 2012; 417:197-211. [DOI: 10.1016/j.jmb.2012.01.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 01/18/2012] [Accepted: 01/20/2012] [Indexed: 12/26/2022]
|
7
|
|
8
|
Abstract
Major histocompatibility complex (MHC) variation is a key determinant of susceptibility and resistance to a large number of infectious, autoimmune and other diseases. Identification of the MHC variants conferring susceptibility to disease is problematic, due to high levels of variation and linkage disequilibrium. Recent cataloguing and analysis of variation over the complete MHC has facilitated localization of susceptibility loci for autoimmune diseases, and provided insight into the MHC's evolution. This review considers how the unusual genetic characteristics of the MHC impact on strategies to identify variants causing, or contributing to, disease phenotypes. It also considers the MHC in relation to novel mechanisms influencing gene function and regulation, such as epistasis, epigenetics and microRNAs. These developments, along with recent technological advances, shed light on genetic association in complex disease.
Collapse
Affiliation(s)
- J A Traherne
- Cambridge Institute for Medical Research, Addenbrookes Hospital, Wellcome Trust/MRC Building, Cambridge, UK.
| |
Collapse
|
9
|
Chen JM, Cooper DN, Chuzhanova N, Férec C, Patrinos GP. Gene conversion: mechanisms, evolution and human disease. Nat Rev Genet 2007; 8:762-75. [PMID: 17846636 DOI: 10.1038/nrg2193] [Citation(s) in RCA: 472] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gene conversion, one of the two mechanisms of homologous recombination, involves the unidirectional transfer of genetic material from a 'donor' sequence to a highly homologous 'acceptor'. Considerable progress has been made in understanding the molecular mechanisms that underlie gene conversion, its formative role in human genome evolution and its implications for human inherited disease. Here we assess current thinking about how gene conversion occurs, explore the key part it has played in fashioning extant human genes, and carry out a meta-analysis of gene-conversion events that are known to have caused human genetic disease.
Collapse
|
10
|
Moreira PN, Pérez-Crespo M, Ramírez MA, Pozueta J, Montoliu L, Gutiérrez-Adán A. Effect of transgene concentration, flanking matrix attachment regions, and RecA-coating on the efficiency of mouse transgenesis mediated by intracytoplasmic sperm injection. Biol Reprod 2006; 76:336-43. [PMID: 17035637 DOI: 10.1095/biolreprod.106.056952] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Intracytoplasmic sperm injection (ICSI) of DNA-loaded sperm cells has been shown to be a valuable tool for the production of transgenic animals, especially when DNA constructs with submegabase magnitude are used. In order to optimize and to understand the mechanism of the ICSI-mediated transgenesis, we have evaluated the impact of transgene DNA concentration, transgene flanking with nuclear matrix attachment regions (MARs), and the use of recombinase A (RecA)-coated DNA on the efficiency of mouse transgenesis production by ICSI. Presented data include assays with three DNA constructs; an enhanced green fluorescent protein (EGFP) plasmid of 5.4 kb, this plasmid flanked with two MAR elements (2.3 Kb of the human beta-interferon domain boundaries), and a yeast artificial chromosome (YAC) construct of approximately 510 kb (the largest transgenic construct introduced by ICSI that we have seen reported). ICSI-mediated transgenesis was done in the B6D2 mouse strain using different concentrations for each construct. Analysis of generated data indicated that ICSI allows the use of higher DNA concentrations than the ones used for pronuclear microinjection, however, when a certain threshold is exceeded, embryo/fetal viability decrease dramatically. In addition, independently of the transgene concentration tested, transgene flanking with MAR sequences did not have a significant impact on the efficiency of this transgenesis method. Finally, we observed that although the overall efficiency of ICSI-mediated transgenesis with fresh spermatozoa and RecA-complexed DNA was similar to the one obtained with the common ICSI-mediated transgenesis approach with frozen-thawed spermatozoa and RecA free DNA, this method was not as efficient in maintaining a low frequency of founder animal mosaicism, suggesting that different mechanisms of transgene integration might result from each procedure.
Collapse
Affiliation(s)
- Pedro Nuno Moreira
- Departamento de Reproducción Animal y Conservación de Recursos Zoogenéticos, Instituto National de Investigación y Technología Agranria, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|