1
|
Leal-Bertioli SCM, Nascimento EFMB, Chavarro MCF, Custódio AR, Hopkins MS, Moretzsohn MC, Bertioli DJ, Araújo ACG. Spontaneous generation of diversity in Arachis neopolyploids (Arachis ipaënsis × Arachis duranensis)4x replays the early stages of peanut evolution. G3-GENES GENOMES GENETICS 2021; 11:6353644. [PMID: 34510200 PMCID: PMC8527490 DOI: 10.1093/g3journal/jkab289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/01/2021] [Indexed: 02/05/2023]
Abstract
Polyploidy is considered a driving force in plant evolution and domestication. Although in the genus Arachis, several diploid species were traditionally cultivated for their seeds, only the allotetraploid peanut Arachis hypogaea became the successful, widely spread legume crop. This suggests that polyploidy has given selective advantage for domestication of peanut. Here, we study induced allotetraploid (neopolyploid) lineages obtained from crosses between the peanut's progenitor species, Arachis ipaënsis and Arachis duranensis, at earlier and later generations. We observed plant morphology, seed dimensions, and genome structure using cytogenetics (FISH and GISH) and SNP genotyping. The neopolyploid lineages show more variable fertility and seed morphology than their progenitors and cultivated peanut. They also showed sexual and somatic genome instability, evidenced by changes of number of detectable 45S rDNA sites, and extensive homoeologous recombination indicated by mosaic patterns of chromosomes and changes in dosage of SNP alleles derived from the diploid species. Genome instability was not randomly distributed across the genome: the more syntenic chromosomes, the higher homoeologous recombination. Instability levels are higher than observed on peanut lines, therefore it is likely that more unstable lines tend to perish. We conclude that early stages of the origin and domestication of the allotetraploid peanut involved two genetic bottlenecks: the first, common to most allotetraploids, is composed of the rare hybridization and polyploidization events, followed by sexual reproductive isolation from its wild diploid relatives. Here, we suggest a second bottleneck: the survival of the only very few lineages that had stronger mechanisms for limiting genomic instability.
Collapse
Affiliation(s)
- Soraya C M Leal-Bertioli
- Institute of Plant Breeding, Genetics and Genomics, Athens, GA 30602-6810, USA.,Department of Plant Pathology, University of Georgia, Athens, GA 30602, USA
| | - Eliza F M B Nascimento
- Embrapa Genetic Resources and Biotechnology, Brasília, 70770-917, Brazill.,Institute of Biological Sciences, University of Brasilia, Brasília, 70910-000, Brazil
| | | | - Adriana R Custódio
- Embrapa Genetic Resources and Biotechnology, Brasília, 70770-917, Brazill
| | - Mark S Hopkins
- Institute of Plant Breeding, Genetics and Genomics, Athens, GA 30602-6810, USA
| | | | - David J Bertioli
- Institute of Plant Breeding, Genetics and Genomics, Athens, GA 30602-6810, USA.,Department of Crop and Soil Science, University of Georgia, Athens, GA 30602-6810, USA
| | | |
Collapse
|
2
|
Dong S, Zhang L, Pang W, Zhang Y, Wang C, Li Z, Ma L, Tang W, Yang G, Song H. Comprehensive analysis of coding sequence architecture features and gene expression in Arachis duranensis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:213-222. [PMID: 33707864 PMCID: PMC7907404 DOI: 10.1007/s12298-021-00938-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/04/2021] [Accepted: 01/20/2021] [Indexed: 06/09/2023]
Abstract
Coding sequence (CDS) architecture affects gene expression levels in organisms. Codon optimization can increase the gene expression level. Therefore, understanding codon usage patterns has important implications for research on genetic engineering and exogenous gene expression. To date, the codon usage patterns of many model plants have been analyzed. However, the relationship between CDS architecture and gene expression in Arachis duranensis remains poorly understood. According to the results of genome sequencing, A. duranensis has many resistant genes that can be used to improve the cultivated peanut. In this study, bioinformatic approaches were used to estimate A. duranensis CDS architectures, including frequency of the optimal codon (Fop), polypeptide length and GC contents at the first (GC1), second (GC2) and third (GC3) codon positions. In addition, Arachis RNA-seq datasets were downloaded from PeanutBase. The relationships between gene expression and CDS architecture were assessed both under normal growth as well as nematode and drought stress conditions. A total of 26 codons with high frequency were identified, which preferentially ended with A or T in A. duranensis CDSs under the above-mentioned three conditions. A similar CDS architecture was found in differentially expressed genes (DEGs) under nematode and drought stresses. The GC1 content differed between DEGs and non-differentially expressed genes (NDEGs) under both drought and nematode stresses. The expression levels of DEGs were affected by different CDS architectures compared with NDEGs under drought stress. In addition, no correlation was found between differential gene expression and CDS architecture neither under nematode nor under drought stress. These results aid the understanding of gene expression in A. duranensis.
Collapse
Affiliation(s)
- Shuwei Dong
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Long Zhang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Wenhui Pang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Yongli Zhang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Chang Wang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Zhenyi Li
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Lichao Ma
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Wei Tang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Guofeng Yang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Hui Song
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
3
|
Genome-wide identification and characterization of nonspecific lipid transfer protein (nsLTP) genes in Arachis duranensis. Genomics 2020; 112:4332-4341. [PMID: 32717318 DOI: 10.1016/j.ygeno.2020.07.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/07/2020] [Accepted: 07/20/2020] [Indexed: 11/24/2022]
Abstract
Nonspecific lipid transfer proteins (nsLTPs) play vital roles in lipid metabolism, cell apoptosis and biotic and abiotic stresses in plants. However, the distribution of nsLTPs in Arachis duranensis has not been fully characterized. In this study, we identified 64 nsLTP genes in A. duranensis (designated AdLTPs), which were classified into six subfamilies and randomly distributed along nine chromosomes. Tandem and segmental duplication events were detected in the evolution of AdLTPs. The Ks and ω values differed significantly between Types 1 and D subfamilies, and eight AdLTPs were under positive selection. The expression levels of AdLTPs were changed after salinity, PEG, low-temperature and ABA treatments. Three AdLTPs were associated with resistance to nematode infection, and DOF and WRI1 transcription factors may regulate the AdLTP response to nematode infection. Our results may provide valuable genomic information for the breeding of peanut cultivars that are resistant to biotic and abiotic stresses.
Collapse
|
4
|
Abstract
Legumes (Fabaceae) are agronomically and economically one of the most important crops. Because legumes serve as a source of food, feed, and industrial materials, many studies in the field of legume genomics, including genome sequencing, have been conducted over the last decade. Here, we update the progress in genome sequencing of legume crops, including soybean (Glycine max [L.] Merr.), mung bean (V. radiata var. radiata), adzuki bean (V. angularis var. angularis), common bean (Phaseolus vulgaris L.), pigeon pea (Cajanus cajan), chickpea (Cicer arietinum), and peanut (Arachis hypogaea). Since the publication of the first reference genome sequence of each species, many accessions have been resequenced to study genetic diversity, speciation, and polyploidization in the legume lineage.
Collapse
Affiliation(s)
- Jungmin Ha
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Suk-Ha Lee
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Hilu KW, Friend SA, Vallanadu V, Brown AM, Hollingsworth LR, Bevan DR. Molecular evolution of genes encoding allergen proteins in the peanuts genus Arachis: Structural and functional implications. PLoS One 2019; 14:e0222440. [PMID: 31675366 PMCID: PMC6824556 DOI: 10.1371/journal.pone.0222440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/29/2019] [Indexed: 12/14/2022] Open
Abstract
Food allergies are severe immune responses to plant and animal products mediated by immunoglobulin E (IgE). Peanuts (Arachis hypogaea L.) are among the top 15 crops that feed the world. However, peanuts is among the "big eight food allergens", and allergies induced by peanuts are a significant public health problem and a life-threatening concern. Targeted mutation studies in peanuts demonstrate that single residue alterations in these allergen proteins could result in substantial reduction in allergenicity. Knowledge of peanut allergen proteins is confined to the allotetraploid crop and its two progenitors. We explored frequencies and positions of natural mutations in the hyperallergenic homologues Ara h 2 and Ara h 6 in newly generated sequences for 24 Arachis wild species and the crop species, assessed potential mutational impact on allergenicity using immunoblots and structural modeling, and evaluated whether these mutations follow evolutionary trends. We uncovered a wealth of natural mutations, both substitutions and gaps, including the elimination of immunodominant epitopes in some species. These molecular alterations appear to be associated with substantial reductions in allergenicity. The study demonstrated that Ara h 2 and Ara h 6 follow contrasting modes of natural selection and opposing mutational patterns, particularly in epitope regions. Phylogenetic analysis revealed a progressive trend towards immunodominant epitope evolution in Ara h 2. The findings provide valuable insight into the interactions among mutations, protein structure and immune system response, thus presenting a valuable platform for future manipulation of allergens to minimize, treat or eliminate allergenicity. The study strongly encourages exploration of genepools of economically important plants in allergenicity research.
Collapse
Affiliation(s)
- Khidir W. Hilu
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States of America
| | - Sheena A. Friend
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States of America
| | - Viruthika Vallanadu
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States of America
| | - Anne M. Brown
- Research and Informatics, Virginia Tech, Blacksburg, VA, United States of America
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States of America
| | | | - David R. Bevan
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States of America
| |
Collapse
|
6
|
Song H, Sun J, Yang G. Old and young duplicate genes reveal different responses to environmental changes in Arachis duranensis. Mol Genet Genomics 2019; 294:1199-1209. [PMID: 31076861 DOI: 10.1007/s00438-019-01574-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/03/2019] [Indexed: 11/24/2022]
Abstract
Old and young duplicate genes have been reported in some organisms. However, little is known about the properties of old and young duplicate genes in Arachis. Here, we have identified old and young duplicate genes in Arachis duranensis, and analyzed the evolution, gene complexity, gene expression pattern, and functional divergence between old and young duplicate genes. Our results showed different evolutionary, gene complexity and gene expression patterns, as well as differing correlations between old and young duplicate genes. Gene ontology results showed that old duplicate genes play a crucial role in lipid and amino acid biosynthesis and the oxidation-reduction process and that young duplicate genes are preferentially involved in photosynthesis and response to biotic stimulus. Transcriptome data sets revealed that most old and young duplicate genes had asymmetric function, and only a few duplicate genes exhibited symmetric function under drought and nematode stress. We found that old duplicate genes are preferentially involved in lipid and amino acid metabolism and response to abiotic stress, while young duplicate genes are likely to participate in photosynthesis and response to biotic stress. This work provides a better understanding of the evolution and functional divergence of old and young duplicate genes in A. duranensis.
Collapse
Affiliation(s)
- Hui Song
- Grassland Agri-husbandry Research Center, Qingdao Agricultural University, Qingdao, China.
| | - Juan Sun
- Grassland Agri-husbandry Research Center, Qingdao Agricultural University, Qingdao, China
| | - Guofeng Yang
- Grassland Agri-husbandry Research Center, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
7
|
Bertioli DJ, Jenkins J, Clevenger J, Dudchenko O, Gao D, Seijo G, Leal-Bertioli SCM, Ren L, Farmer AD, Pandey MK, Samoluk SS, Abernathy B, Agarwal G, Ballén-Taborda C, Cameron C, Campbell J, Chavarro C, Chitikineni A, Chu Y, Dash S, El Baidouri M, Guo B, Huang W, Kim KD, Korani W, Lanciano S, Lui CG, Mirouze M, Moretzsohn MC, Pham M, Shin JH, Shirasawa K, Sinharoy S, Sreedasyam A, Weeks NT, Zhang X, Zheng Z, Sun Z, Froenicke L, Aiden EL, Michelmore R, Varshney RK, Holbrook CC, Cannon EKS, Scheffler BE, Grimwood J, Ozias-Akins P, Cannon SB, Jackson SA, Schmutz J. The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat Genet 2019; 51:877-884. [PMID: 31043755 DOI: 10.1038/s41588-019-0405-z] [Citation(s) in RCA: 346] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 03/28/2019] [Indexed: 12/24/2022]
Abstract
Like many other crops, the cultivated peanut (Arachis hypogaea L.) is of hybrid origin and has a polyploid genome that contains essentially complete sets of chromosomes from two ancestral species. Here we report the genome sequence of peanut and show that after its polyploid origin, the genome has evolved through mobile-element activity, deletions and by the flow of genetic information between corresponding ancestral chromosomes (that is, homeologous recombination). Uniformity of patterns of homeologous recombination at the ends of chromosomes favors a single origin for cultivated peanut and its wild counterpart A. monticola. However, through much of the genome, homeologous recombination has created diversity. Using new polyploid hybrids made from the ancestral species, we show how this can generate phenotypic changes such as spontaneous changes in the color of the flowers. We suggest that diversity generated by these genetic mechanisms helped to favor the domestication of the polyploid A. hypogaea over other diploid Arachis species cultivated by humans.
Collapse
Affiliation(s)
- David J Bertioli
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA. .,Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA. .,Department of Crop and Soil Science, University of Georgia, Athens, GA, USA.
| | - Jerry Jenkins
- HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA
| | - Josh Clevenger
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA.,Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA.,Department of Crop and Soil Science, University of Georgia, Athens, GA, USA
| | - Olga Dudchenko
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA
| | - Dongying Gao
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Guillermo Seijo
- Instituto de Botánica del Nordeste (CONICET-UNNE), Corrientes, Argentina.,FACENA, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Soraya C M Leal-Bertioli
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA.,Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA.,Department of Plant Pathology, University of Georgia, Tifton, GA, USA
| | - Longhui Ren
- Interdepartmental Genetics Graduate Program, Iowa State University, Ames, IA, USA
| | | | - Manish K Pandey
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Sergio S Samoluk
- Instituto de Botánica del Nordeste (CONICET-UNNE), Corrientes, Argentina.,FACENA, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Brian Abernathy
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Gaurav Agarwal
- Department of Plant Pathology, University of Georgia, Tifton, GA, USA
| | | | | | | | - Carolina Chavarro
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA.,Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA
| | - Annapurna Chitikineni
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Ye Chu
- Department of Horticulture, University of Georgia, Tifton, GA, USA
| | - Sudhansu Dash
- National Center for Genome Resources, Santa Fe, NM, USA
| | - Moaine El Baidouri
- UMR5096, Laboratoire Génome et Développement des Plantes, CNRS, Perpignan, France.,UMR5096, Laboratoire Génome et Développement des Plantes, Université de Perpignan, Perpignan, France
| | - Baozhu Guo
- Crop Protection and Management Research Unit, US Department of Agriculture, Agricultural Research Service, Tifton, GA, USA
| | - Wei Huang
- Department of Computer Science, Iowa State University, Ames, IA, USA
| | - Kyung Do Kim
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA.,Corporate R&D, LG Chem, Seoul, Republic of Korea
| | - Walid Korani
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Sophie Lanciano
- UMR5096, Laboratoire Génome et Développement des Plantes, Université de Perpignan, Perpignan, France.,UMR232, Diversité, Adaptation et Développement des Plantes, IRD, Montpellier, France.,UMR232, Diversité, Adaptation et Développement des Plantes, Université de Montpellier, Montpellier, France
| | - Christopher G Lui
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA
| | - Marie Mirouze
- UMR5096, Laboratoire Génome et Développement des Plantes, Université de Perpignan, Perpignan, France.,UMR232, Diversité, Adaptation et Développement des Plantes, IRD, Montpellier, France.,UMR232, Diversité, Adaptation et Développement des Plantes, Université de Montpellier, Montpellier, France
| | | | - Melanie Pham
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA
| | - Jin Hee Shin
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA.,Corporate R&D, LG Chem, Seoul, Republic of Korea
| | - Kenta Shirasawa
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | | | | | - Nathan T Weeks
- Corn Insects and Crop Genetics Research Unit, US Department of Agriculture Agricultural Research Service, Ames, IA, USA
| | - Xinyou Zhang
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Industrial Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China.,Key Laboratory of Oil Crops in Huanghuaihai Plains, Ministry of Agriculture and Rural Affairs, Zhengzhou, China
| | - Zheng Zheng
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Industrial Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China.,Key Laboratory of Oil Crops in Huanghuaihai Plains, Ministry of Agriculture and Rural Affairs, Zhengzhou, China
| | - Ziqi Sun
- Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Industrial Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China.,Key Laboratory of Oil Crops in Huanghuaihai Plains, Ministry of Agriculture and Rural Affairs, Zhengzhou, China
| | - Lutz Froenicke
- Genome Center, University of California, Davis, Davis, CA, USA
| | - Erez L Aiden
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA
| | | | - Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - C Corley Holbrook
- Crop Genetics and Breeding Research Unit, US Department of Agriculture Agricultural Research Service, Tifton, GA, USA
| | | | - Brian E Scheffler
- Genomics and Bioinformatics Research Unit, US Department of Agriculture Agricultural Research Service, Stoneville, MS, USA
| | - Jane Grimwood
- HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA
| | - Peggy Ozias-Akins
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA.,Department of Horticulture, University of Georgia, Tifton, GA, USA
| | - Steven B Cannon
- Corn Insects and Crop Genetics Research Unit, US Department of Agriculture Agricultural Research Service, Ames, IA, USA
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA. .,Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA. .,Department of Crop and Soil Science, University of Georgia, Athens, GA, USA.
| | - Jeremy Schmutz
- HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA. .,Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA.
| |
Collapse
|
8
|
The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nat Genet 2019; 51:865-876. [PMID: 31043757 PMCID: PMC7188672 DOI: 10.1038/s41588-019-0402-2] [Citation(s) in RCA: 335] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 03/22/2019] [Indexed: 11/09/2022]
Abstract
High oil and protein content make tetraploid peanut a leading oil and food legume. Here we report a high-quality peanut genome sequence, comprising 2.54 Gb with 20 pseudomolecules and 83,709 protein-coding gene models. We characterize gene functional groups implicated in seed size evolution, seed oil content, disease resistance and symbiotic nitrogen fixation. The peanut B subgenome has more genes and general expression dominance, temporally associated with long-terminal-repeat expansion in the A subgenome that also raises questions about the A-genome progenitor. The polyploid genome provided insights into the evolution of Arachis hypogaea and other legume chromosomes. Resequencing of 52 accessions suggests that independent domestications formed peanut ecotypes. Whereas 0.42-0.47 million years ago (Ma) polyploidy constrained genetic variation, the peanut genome sequence aids mapping and candidate-gene discovery for traits such as seed size and color, foliar disease resistance and others, also providing a cornerstone for functional genomics and peanut improvement.
Collapse
|
9
|
Abstract
Peanut allergens have the potential to negatively impact on the health and quality of life of millions of consumers worldwide. The seeds of the peanut plant Arachis hypogaea contain an array of allergens that are able to induce the production of specific IgE antibodies in predisposed individuals. A lot of effort has been focused on obtaining the sequences and structures of these allergens due to the high health risk they represent. At present, 16 proteins present in peanuts are officially recognized as allergens. Research has also focused on their in-depth immunological characterization as well as on the design of modified hypoallergenic derivatives for potential use in clinical studies and the formulation of strategies for immunotherapy. Detailed research protocols are available for the purification of natural allergens as well as their recombinant production in bacterial, yeast, insect, and algal cells. Purified allergen molecules are now routinely used in diagnostic multiplex protein arrays for the detection of the presence of allergen-specific IgE. This review gives an overview on the wealth of knowledge that is available on individual peanut allergens.
Collapse
Affiliation(s)
- Chiara Palladino
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Heimo Breiteneder
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
10
|
do Nascimento EFDMB, Dos Santos BV, Marques LOC, Guimarães PM, Brasileiro ACM, Leal-Bertioli SCM, Bertioli DJ, Araujo ACG. The genome structure of Arachis hypogaea (Linnaeus, 1753) and an induced Arachis allotetraploid revealed by molecular cytogenetics. COMPARATIVE CYTOGENETICS 2018; 12:111-140. [PMID: 29675140 PMCID: PMC5904367 DOI: 10.3897/compcytogen.v12i1.20334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/23/2018] [Indexed: 05/03/2023]
Abstract
Peanut, Arachis hypogaea (Linnaeus, 1753) is an allotetraploid cultivated plant with two subgenomes derived from the hybridization between two diploid wild species, A. duranensis (Krapovickas & W. C. Gregory, 1994) and A. ipaensis (Krapovickas & W. C. Gregory, 1994), followed by spontaneous chromosomal duplication. To understand genome changes following polyploidy, the chromosomes of A. hypogaea, IpaDur1, an induced allotetraploid (A. ipaensis × A. duranensis)4x and the diploid progenitor species were cytogenetically compared. The karyotypes of the allotetraploids share the number and general morphology of chromosomes; DAPI+ bands pattern and number of 5S rDNA loci. However, one 5S rDNA locus presents a heteromorphic FISH signal in both allotetraploids, relative to corresponding progenitor. Whilst for A. hypogaea the number of 45S rDNA loci was equivalent to the sum of those present in the diploid species, in IpaDur1, two loci have not been detected. Overall distribution of repetitive DNA sequences was similar in both allotetraploids, although A. hypogaea had additional CMA3+ bands and few slight differences in the LTR-retrotransposons distribution compared to IpaDur1. GISH showed that the chromosomes of both allotetraploids had preferential hybridization to their corresponding diploid genomes. Nevertheless, at least one pair of IpaDur1 chromosomes had a clear mosaic hybridization pattern indicating recombination between the subgenomes, clear evidence that the genome of IpaDur1 shows some instability comparing to the genome of A. hypogaea that shows no mosaic of subgenomes, although both allotetraploids derive from the same progenitor species. For some reasons, the chromosome structure of A. hypogaea is inherently more stable, or, it has been at least, partially stabilized through genetic changes and selection.
Collapse
Affiliation(s)
- Eliza F de M B do Nascimento
- University of Brasilia, Institute of Biological Sciences, Campus Darcy Ribeiro, CEP 70.910-900, Brasília, DF, Brazil
- Embrapa Genetic Resources and Biotechnology, PqEB W5 Norte Final, CP 02372, CEP 70.770-917, Brasília, DF, Brazil
| | - Bruna V Dos Santos
- Embrapa Genetic Resources and Biotechnology, PqEB W5 Norte Final, CP 02372, CEP 70.770-917, Brasília, DF, Brazil
| | - Lara O C Marques
- Embrapa Genetic Resources and Biotechnology, PqEB W5 Norte Final, CP 02372, CEP 70.770-917, Brasília, DF, Brazil
- Catholic University of Brasilia, Campus I, CEP 71966-700, Brasília, DF, Brazil
| | - Patricia M Guimarães
- Embrapa Genetic Resources and Biotechnology, PqEB W5 Norte Final, CP 02372, CEP 70.770-917, Brasília, DF, Brazil
| | - Ana C M Brasileiro
- Embrapa Genetic Resources and Biotechnology, PqEB W5 Norte Final, CP 02372, CEP 70.770-917, Brasília, DF, Brazil
| | - Soraya C M Leal-Bertioli
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, 30602-6810, Athens, Georgia, USA
| | - David J Bertioli
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, 30602-6810, Athens, Georgia, USA
| | - Ana C G Araujo
- Embrapa Genetic Resources and Biotechnology, PqEB W5 Norte Final, CP 02372, CEP 70.770-917, Brasília, DF, Brazil
| |
Collapse
|
11
|
Lu Q, Li H, Hong Y, Zhang G, Wen S, Li X, Zhou G, Li S, Liu H, Liu H, Liu Z, Varshney RK, Chen X, Liang X. Genome Sequencing and Analysis of the Peanut B-Genome Progenitor ( Arachis ipaensis). FRONTIERS IN PLANT SCIENCE 2018; 9:604. [PMID: 29774047 PMCID: PMC5943715 DOI: 10.3389/fpls.2018.00604] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/16/2018] [Indexed: 05/21/2023]
Abstract
Peanut (Arachis hypogaea L.), an important leguminous crop, is widely cultivated in tropical and subtropical regions. Peanut is an allotetraploid, having A and B subgenomes that maybe have originated in its diploid progenitors Arachis duranensis (A-genome) and Arachis ipaensis (B-genome), respectively. We previously sequenced the former and here present the draft genome of the latter, expanding our knowledge of the unique biology of Arachis. The assembled genome of A. ipaensis is ~1.39 Gb with 39,704 predicted protein-encoding genes. A gene family analysis revealed that the FAR1 family may be involved in regulating peanut special fruit development. Genomic evolutionary analyses estimated that the two progenitors diverged ~3.3 million years ago and suggested that A. ipaensis experienced a whole-genome duplication event after the divergence of Glycine max. We identified a set of disease resistance-related genes and candidate genes for biological nitrogen fixation. In particular, two and four homologous genes that may be involved in the regulation of nodule development were obtained from A. ipaensis and A. duranensis, respectively. We outline a comprehensive network involved in drought adaptation. Additionally, we analyzed the metabolic pathways involved in oil biosynthesis and found genes related to fatty acid and triacylglycerol synthesis. Importantly, three new FAD2 homologous genes were identified from A. ipaensis and one was completely homologous at the amino acid level with FAD2 from A. hypogaea. The availability of the A. ipaensis and A. duranensis genomic assemblies will advance our knowledge of the peanut genome.
Collapse
Affiliation(s)
- Qing Lu
- South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Haifen Li
- South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yanbin Hong
- South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Guoqiang Zhang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, National Orchid Conservation Center of China and Orchid Conservation and Research Center of Shenzhen, Shenzhen, China
| | - Shijie Wen
- South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xingyu Li
- South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Guiyuan Zhou
- South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shaoxiong Li
- South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hao Liu
- South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Haiyan Liu
- South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhongjian Liu
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, National Orchid Conservation Center of China and Orchid Conservation and Research Center of Shenzhen, Shenzhen, China
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
- School of Plant Biology, The Institute of Agriculture, University of Western Australia, University of Western Australia, Crawley, WA, Australia
| | - Xiaoping Chen
- South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- *Correspondence: Xiaoping Chen
| | - Xuanqiang Liang
- South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Xuanqiang Liang
| |
Collapse
|
12
|
Song H, Gao H, Liu J, Tian P, Nan Z. Comprehensive analysis of correlations among codon usage bias, gene expression, and substitution rate in Arachis duranensis and Arachis ipaënsis orthologs. Sci Rep 2017; 7:14853. [PMID: 29093502 PMCID: PMC5665869 DOI: 10.1038/s41598-017-13981-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/04/2017] [Indexed: 11/22/2022] Open
Abstract
The relationship between evolutionary rates and gene expression in model plant orthologs is well documented. However, little is known about the relationships between gene expression and evolutionary trends in Arachis orthologs. We identified 7,435 one-to-one orthologs, including 925 single-copy and 6,510 multiple-copy sequences in Arachis duranensis and Arachis ipaënsis. Codon usage was stronger for shorter polypeptides, which were encoded by codons with higher GC contents. Highly expressed coding sequences had higher codon usage bias, GC content, and expression breadth. Additionally, expression breadth was positively correlated with polypeptide length, but there was no correlation between gene expression and polypeptide length. Inferred selective pressure was also negatively correlated with both gene expression and expression breadth in all one-to-one orthologs, while positively but non-significantly correlated with gene expression in sequences with signatures of positive selection. Gene expression levels and expression breadth were significantly higher for single-copy genes than for multiple-copy genes. Similarly, the gene expression and expression breadth in sequences with signatures of purifying selection were higher than those of sequences with positive selective signatures. These results indicated that gene expression differed between single-copy and multiple-copy genes as well as sequences with signatures of positive and purifying selection.
Collapse
Affiliation(s)
- Hui Song
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China.
| | - Hongjuan Gao
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Jing Liu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Pei Tian
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Zhibiao Nan
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
13
|
Song H, Wang P, Li C, Han S, Zhao C, Xia H, Bi Y, Guo B, Zhang X, Wang X. Comparative analysis of NBS-LRR genes and their response to Aspergillus flavus in Arachis. PLoS One 2017; 12:e0171181. [PMID: 28158222 PMCID: PMC5291535 DOI: 10.1371/journal.pone.0171181] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/17/2017] [Indexed: 12/31/2022] Open
Abstract
Studies have demonstrated that nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes respond to pathogen attack in plants. Characterization of NBS-LRR genes in peanut is not well documented. The newly released whole genome sequences of Arachis duranensis and Arachis ipaënsis have allowed a global analysis of this important gene family in peanut to be conducted. In this study, we identified 393 (AdNBS) and 437 (AiNBS) NBS-LRR genes from A. duranensis and A. ipaënsis, respectively, using bioinformatics approaches. Full-length sequences of 278 AdNBS and 303 AiNBS were identified. Fifty-one orthologous, four AdNBS paralogous, and six AiNBS paralogous gene pairs were predicted. All paralogous gene pairs were located in the same chromosomes, indicating that tandem duplication was the most likely mechanism forming these paralogs. The paralogs mainly underwent purifying selection, but most LRR 8 domains underwent positive selection. More gene clusters were found in A. ipaënsis than in A. duranensis, possibly owing to tandem duplication events occurring more frequently in A. ipaënsis. The expression profile of NBS-LRR genes was different between A. duranensis and A. hypogaea after Aspergillus flavus infection. The up-regulated expression of NBS-LRR in A. duranensis was continuous, while these genes responded to the pathogen temporally in A. hypogaea.
Collapse
Affiliation(s)
- Hui Song
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Pengfei Wang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Changsheng Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Science, Shandong Normal University, Jinan, China
| | - Suoyi Han
- Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Chuanzhi Zhao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Han Xia
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Yuping Bi
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Baozhu Guo
- Crop Protection and Management Research Unit, USDA-ARS, Tifton, Georgia, United States of America
| | - Xinyou Zhang
- Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xingjun Wang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
14
|
Song H, Wang P, Lin JY, Zhao C, Bi Y, Wang X. Genome-Wide Identification and Characterization of WRKY Gene Family in Peanut. FRONTIERS IN PLANT SCIENCE 2016; 7:534. [PMID: 27200012 PMCID: PMC4845656 DOI: 10.3389/fpls.2016.00534] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/04/2016] [Indexed: 05/18/2023]
Abstract
WRKY, an important transcription factor family, is widely distributed in the plant kingdom. Many reports focused on analysis of phylogenetic relationship and biological function of WRKY protein at the whole genome level in different plant species. However, little is known about WRKY proteins in the genome of Arachis species and their response to salicylic acid (SA) and jasmonic acid (JA) treatment. In this study, we identified 77 and 75 WRKY proteins from the two wild ancestral diploid genomes of cultivated tetraploid peanut, Arachis duranensis and Arachis ipaënsis, using bioinformatics approaches. Most peanut WRKY coding genes were located on A. duranensis chromosome A6 and A. ipaënsis chromosome B3, while the least number of WRKY genes was found in chromosome 9. The WRKY orthologous gene pairs in A. duranensis and A. ipaënsis chromosomes were highly syntenic. Our analysis indicated that segmental duplication events played a major role in AdWRKY and AiWRKY genes, and strong purifying selection was observed in gene duplication pairs. Furthermore, we translate the knowledge gained from the genome-wide analysis result of wild ancestral peanut to cultivated peanut to reveal that gene activities of specific cultivated peanut WRKY gene were changed due to SA and JA treatment. Peanut WRKY7, 8 and 13 genes were down-regulated, whereas WRKY1 and 12 genes were up-regulated with SA and JA treatment. These results could provide valuable information for peanut improvement.
Collapse
Affiliation(s)
- Hui Song
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Biotechnology Research Center, Shandong Academy of Agricultural SciencesJinan, China
| | - Pengfei Wang
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Biotechnology Research Center, Shandong Academy of Agricultural SciencesJinan, China
| | - Jer-Young Lin
- Department of Molecular, Cell, and Developmental Biology, University of California, Los AngelesLos Angeles, CA, USA
| | - Chuanzhi Zhao
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Biotechnology Research Center, Shandong Academy of Agricultural SciencesJinan, China
| | - Yuping Bi
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Biotechnology Research Center, Shandong Academy of Agricultural SciencesJinan, China
| | - Xingjun Wang
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Biotechnology Research Center, Shandong Academy of Agricultural SciencesJinan, China
| |
Collapse
|
15
|
The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet 2016; 48:438-46. [PMID: 26901068 DOI: 10.1038/ng.3517] [Citation(s) in RCA: 513] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/29/2016] [Indexed: 12/20/2022]
Abstract
Cultivated peanut (Arachis hypogaea) is an allotetraploid with closely related subgenomes of a total size of ∼2.7 Gb. This makes the assembly of chromosomal pseudomolecules very challenging. As a foundation to understanding the genome of cultivated peanut, we report the genome sequences of its diploid ancestors (Arachis duranensis and Arachis ipaensis). We show that these genomes are similar to cultivated peanut's A and B subgenomes and use them to identify candidate disease resistance genes, to guide tetraploid transcript assemblies and to detect genetic exchange between cultivated peanut's subgenomes. On the basis of remarkably high DNA identity of the A. ipaensis genome and the B subgenome of cultivated peanut and biogeographic evidence, we conclude that A. ipaensis may be a direct descendant of the same population that contributed the B subgenome to cultivated peanut.
Collapse
|
16
|
Chandran M, Chu Y, Maleki SJ, Ozias-Akins P. Stability of transgene expression in reduced allergen peanut (Arachis hypogaea L.) across multiple generations and at different soil sulfur levels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:1788-1797. [PMID: 25616282 DOI: 10.1021/jf504892f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Transgenic peanut (Arachis hypogaea L.) containing a gene designed for RNA interference (RNAi) showed stable complete silencing of Ara h 2 and partial silencing of Ara h 6, two potent peanut allergens/proteins, along with minimal collateral changes to other allergens, Ara h 1 and Ara h 3, across three generations (T3, T4, and T5) under field conditions. Different soil sulfur levels (0.012, 0.3, and 3.0 mM) differentially impacted sulfur-rich (Ara h 2, Ara h 3, and Ara h 6) versus sulfur-poor (Ara h 1) proteins in non-transgenic versus transgenic peanut. The sulfur level had no effect on Ara h 1, whereas low sulfur led to a significant reduction of Ara h 3 in transgenic and non-transgenic seeds and Ara h 2 and Ara h 6 in non-transgenic but not in transgenic peanuts because these proteins already were reduced by gene silencing. These results demonstrate stability of transgene expression and the potential utility of RNAi in allergen manipulation.
Collapse
Affiliation(s)
- Manju Chandran
- Department of Horticulture, University of Georgia , Tifton, Georgia 31793-5766, United States
| | | | | | | |
Collapse
|
17
|
Apostolovic D, Luykx D, Warmenhoven H, Verbart D, Stanic-Vucinic D, de Jong GAH, Velickovic TC, Koppelman SJ. Reduction and alkylation of peanut allergen isoforms Ara h 2 and Ara h 6; characterization of intermediate- and end products. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2832-42. [PMID: 24145103 DOI: 10.1016/j.bbapap.2013.10.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 09/12/2013] [Accepted: 10/04/2013] [Indexed: 10/26/2022]
Abstract
Conglutins, the major peanut allergens, Ara h 2 and Ara h 6, are highly structured proteins stabilized by multiple disulfide bridges and are stable towards heat-denaturation and digestion. We sought a way to reduce their potent allergenicity in view of the development of immunotherapy for peanut allergy. Isoforms of conglutin were purified, reduced with dithiothreitol and subsequently alkylated with iodoacetamide. The effect of this modification was assessed on protein folding and IgE-binding. We found that all disulfide bridges were reduced and alkylated. As a result, the secondary structure lost α-helix and gained some β-structure content, and the tertiary structure stability was reduced. On a functional level, the modification led to a strongly decreased IgE-binding. Using conditions for limited reduction and alkylation, partially reduced and alkylated proteins were found with rearranged disulfide bridges and, in some cases, intermolecular cross-links were found. Peptide mass finger printing was applied to control progress of the modification reaction and to map novel disulfide bonds. There was no preference for the order in which disulfides were reduced, and disulfide rearrangement occurred in a non-specific way. Only minor differences in kinetics of reduction and alkylation were found between the different conglutin isoforms. We conclude that the peanut conglutins Ara h 2 and Ara h 6 can be chemically modified by reduction and alkylation, such that they substantially unfold and that their allergenic potency decreases.
Collapse
Affiliation(s)
- Danijela Apostolovic
- HAL Allergy B.V., J.H. Oortweg 15-17, 2333 CH Leiden, The Netherlands; Faculty of Chemistry, University of Belgrade, Studentski trg 16, 11 000 Belgrade, Serbia
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Bertioli DJ, Vidigal B, Nielen S, Ratnaparkhe MB, Lee TH, Leal-Bertioli SCM, Kim C, Guimarães PM, Seijo G, Schwarzacher T, Paterson AH, Heslop-Harrison P, Araujo ACG. The repetitive component of the A genome of peanut (Arachis hypogaea) and its role in remodelling intergenic sequence space since its evolutionary divergence from the B genome. ANNALS OF BOTANY 2013; 112:545-59. [PMID: 23828319 PMCID: PMC3718217 DOI: 10.1093/aob/mct128] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS Peanut (Arachis hypogaea) is an allotetraploid (AABB-type genome) of recent origin, with a genome of about 2·8 Gb and a high repetitive content. This study reports an analysis of the repetitive component of the peanut A genome using bacterial artificial chromosome (BAC) clones from A. duranensis, the most probable A genome donor, and the probable consequences of the activity of these elements since the divergence of the peanut A and B genomes. METHODS The repetitive content of the A genome was analysed by using A. duranensis BAC clones as probes for fluorescence in situ hybridization (BAC-FISH), and by sequencing and characterization of 12 genomic regions. For the analysis of the evolutionary dynamics, two A genome regions are compared with their B genome homeologues. KEY RESULTS BAC-FISH using 27 A. duranensis BAC clones as probes gave dispersed and repetitive DNA characteristic signals, predominantly in interstitial regions of the peanut A chromosomes. The sequences of 14 BAC clones showed complete and truncated copies of ten abundant long terminal repeat (LTR) retrotransposons, characterized here. Almost all dateable transposition events occurred <3·5 million years ago, the estimated date of the divergence of A and B genomes. The most abundant retrotransposon is Feral, apparently parasitic on the retrotransposon FIDEL, followed by Pipa, also non-autonomous and probably parasitic on a retrotransposon we named Pipoka. The comparison of the A and B genome homeologous regions showed conserved segments of high sequence identity, punctuated by predominantly indel regions without significant similarity. CONCLUSIONS A substantial proportion of the highly repetitive component of the peanut A genome appears to be accounted for by relatively few LTR retrotransposons and their truncated copies or solo LTRs. The most abundant of the retrotransposons are non-autonomous. The activity of these retrotransposons has been a very significant driver of genome evolution since the evolutionary divergence of the A and B genomes.
Collapse
Affiliation(s)
- David J. Bertioli
- University of Brasilia, Department of Genetics, Campus Universitário, Brasília DF, Brazil
| | - Bruna Vidigal
- University of Brasilia, Department of Genetics, Campus Universitário, Brasília DF, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasilia, DF, Brazil
| | - Stephan Nielen
- Embrapa Genetic Resources and Biotechnology, Brasilia, DF, Brazil
| | | | - Tae-Ho Lee
- Plant Genome Mapping Laboratory, The University of Georgia, Athens, GA 30605, USA
| | | | - Changsoo Kim
- Plant Genome Mapping Laboratory, The University of Georgia, Athens, GA 30605, USA
| | | | - Guillermo Seijo
- Plant Cytogenetic and Evolution Laboratory, Instituto de Botánica del Nordeste and Faculty of Exact and Natural Sciences, National University of the Northeast, Corrientes, Argentina
| | | | - Andrew H. Paterson
- Plant Genome Mapping Laboratory, The University of Georgia, Athens, GA 30605, USA
| | | | - Ana C. G. Araujo
- Embrapa Genetic Resources and Biotechnology, Brasilia, DF, Brazil
- For correspondence. E-mail
| |
Collapse
|
19
|
Felker P, Takeoka G, Dao L. Pod Mesocarp Flour of North and South American Species of Leguminous TreeProsopis(Mesquite): Composition and Food Applications. FOOD REVIEWS INTERNATIONAL 2013. [DOI: 10.1080/87559129.2012.692139] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Guo Y, Khanal S, Tang S, Bowers JE, Heesacker AF, Khalilian N, Nagy ED, Zhang D, Taylor CA, Stalker HT, Ozias-Akins P, Knapp SJ. Comparative mapping in intraspecific populations uncovers a high degree of macrosynteny between A- and B-genome diploid species of peanut. BMC Genomics 2012; 13:608. [PMID: 23140574 PMCID: PMC3532320 DOI: 10.1186/1471-2164-13-608] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/31/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cultivated peanut or groundnut (Arachis hypogaea L.) is an important oilseed crop with an allotetraploid genome (AABB, 2n = 4x = 40). Both the low level of genetic variation within the cultivated gene pool and its polyploid nature limit the utilization of molecular markers to explore genome structure and facilitate genetic improvement. Nevertheless, a wealth of genetic diversity exists in diploid Arachis species (2n = 2x = 20), which represent a valuable gene pool for cultivated peanut improvement. Interspecific populations have been used widely for genetic mapping in diploid species of Arachis. However, an intraspecific mapping strategy was essential to detect chromosomal rearrangements among species that could be obscured by mapping in interspecific populations. To develop intraspecific reference linkage maps and gain insights into karyotypic evolution within the genus, we comparatively mapped the A- and B-genome diploid species using intraspecific F2 populations. Exploring genome organization among diploid peanut species by comparative mapping will enhance our understanding of the cultivated tetraploid peanut genome. Moreover, new sources of molecular markers that are highly transferable between species and developed from expressed genes will be required to construct saturated genetic maps for peanut. RESULTS A total of 2,138 EST-SSR (expressed sequence tag-simple sequence repeat) markers were developed by mining a tetraploid peanut EST assembly including 101,132 unigenes (37,916 contigs and 63,216 singletons) derived from 70,771 long-read (Sanger) and 270,957 short-read (454) sequences. A set of 97 SSR markers were also developed by mining 9,517 genomic survey sequences of Arachis. An SSR-based intraspecific linkage map was constructed using an F2 population derived from a cross between K 9484 (PI 298639) and GKBSPSc 30081 (PI 468327) in the B-genome species A. batizocoi. A high degree of macrosynteny was observed when comparing the homoeologous linkage groups between A (A. duranensis) and B (A. batizocoi) genomes. Comparison of the A- and B-genome genetic linkage maps also showed a total of five inversions and one major reciprocal translocation between two pairs of chromosomes under our current mapping resolution. CONCLUSIONS Our findings will contribute to understanding tetraploid peanut genome origin and evolution and eventually promote its genetic improvement. The newly developed EST-SSR markers will enrich current molecular marker resources in peanut.
Collapse
Affiliation(s)
- Yufang Guo
- Institute of Plant Breeding, Genetics, and Genomics, 111 Riverbend Road, The University of Georgia, Athens, GA, 30602, USA
- Department of Horticulture, The University of Georgia, Tifton, GA, 31973, USA
| | - Sameer Khanal
- Institute of Plant Breeding, Genetics, and Genomics, 111 Riverbend Road, The University of Georgia, Athens, GA, 30602, USA
| | - Shunxue Tang
- Institute of Plant Breeding, Genetics, and Genomics, 111 Riverbend Road, The University of Georgia, Athens, GA, 30602, USA
| | - John E Bowers
- Institute of Plant Breeding, Genetics, and Genomics, 111 Riverbend Road, The University of Georgia, Athens, GA, 30602, USA
| | - Adam F Heesacker
- Institute of Plant Breeding, Genetics, and Genomics, 111 Riverbend Road, The University of Georgia, Athens, GA, 30602, USA
| | - Nelly Khalilian
- Institute of Plant Breeding, Genetics, and Genomics, 111 Riverbend Road, The University of Georgia, Athens, GA, 30602, USA
| | - Ervin D Nagy
- Institute of Plant Breeding, Genetics, and Genomics, 111 Riverbend Road, The University of Georgia, Athens, GA, 30602, USA
| | - Dong Zhang
- Institute of Plant Breeding, Genetics, and Genomics, 111 Riverbend Road, The University of Georgia, Athens, GA, 30602, USA
| | - Christopher A Taylor
- Institute of Plant Breeding, Genetics, and Genomics, 111 Riverbend Road, The University of Georgia, Athens, GA, 30602, USA
| | - H Thomas Stalker
- Department of Crop Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Peggy Ozias-Akins
- Department of Horticulture, The University of Georgia, Tifton, GA, 31973, USA
| | - Steven J Knapp
- Institute of Plant Breeding, Genetics, and Genomics, 111 Riverbend Road, The University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
21
|
Zhuang Y, Durrani S, Hodges BDM, Dreskin SC, Chen X. Expression of recombinant Ara h 6 in Pichia pastoris but not in Escherichia coli preserves allergic effector function and allows assessment of specific mutations. Mol Nutr Food Res 2012; 56:986-95. [PMID: 22707273 DOI: 10.1002/mnfr.201100827] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
SCOPE Ara h 6 has recently been recognized as an important peanut allergen. Recombinant allergens have been used for analysis of IgE binding, but have not been used to analyze the allergic effector activity that is more relevant to allergic reactions. METHODS AND RESULTS Ara h 6 was expressed as a recombinant protein in both Escherichia coli and Pichia pastoris (rAra h 6-E. coli and rAra h 6-Pichia, respectively). Effector activity was assayed by measuring degranulation of RBL SX-38 cells sensitized with IgE from patients with severe peanut allergy. Compared to native Ara h 6 (nAra h 6), rAra h 6-Pichia had intact effector function whereas rAra h 6-E. coli had significantly reduced function. The lower effector activity in rAra h 6-E. coli compared to nAra h 6 and rAra h 6-Pichia did not appear to be due to differences in posttranslational modifications (analyzed by mass spectrometry and staining for carbohydrates) and may be due to subtle alteration(s) of folding seen on CD analysis and on nonreduced gels. Finally, we introduced point mutations in four important IgE-binding linear epitopes of Ara h 6 and found dramatically reduced allergic effector activity. CONCLUSION Our studies demonstrate the utility of fully functional rAra h 6-Pichia as a starting point for analysis of specific mutations that adversely affect allergic effector function.
Collapse
Affiliation(s)
- Yonghua Zhuang
- Department of Medicine, Division of Allergy and Clinical Immunology, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | | | |
Collapse
|
22
|
Chen X, Wang Q, El-Mezayen R, Zhuang Y, Dreskin SC. Ara h 2 and Ara h 6 have similar allergenic activity and are substantially redundant. Int Arch Allergy Immunol 2012; 160:251-8. [PMID: 23075924 DOI: 10.1159/000341642] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 07/06/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The moderately homologous (approx. 60%) proteins Ara h 2 and Ara h 6 are the most potent peanut allergens. This study was designed to define the relative individual contributions of Ara h 2 and Ara h 6 to the overall allergenic activity of a crude peanut extract (CPE). METHODS Ara h 2 and Ara h 6 were removed from CPE by gel filtration chromatography. Ara h 2.01, Ara h 2.02 and Ara h 6 were further purified (>99%). The potency of each allergen and the ability of these allergens to reconstitute the allergenic activity of CPE depleted of Ara h 2 and Ara h 6 was measured with RBL SX-38 cells sensitized with IgE from sensitized peanut allergic patients. RESULTS The potency of the native proteins were significantly different (p < 0.0001) although not dramatically so, with a rank order of Ara h 2.01 > Ara h 2.02 > Ara h 6. The addition of either purified Ara h 2 or Ara h 6 independently at their original concentration to CPE depleted of both Ara h 2 and Ara h 6 restored 80-100% of the original CPE allergenic activity. Addition of both Ara h 2 and Ara h 6 consistently completely restored the allergenic activity of CPE. CONCLUSIONS These studies indicate that either Ara h 2 or Ara h 6 independently can account for most of the allergenic activity in a CPE and demonstrate important redundancy in the allergenic activity of these related molecules.
Collapse
Affiliation(s)
- Xueni Chen
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | | | |
Collapse
|
23
|
Bhattacharya A, Ramos ML, Faustinelli P, Ozias-Akins P. Reporter Gene Expression Patterns Regulated by an Ara h 2 Promoter Differ in Homologous Versus Heterologous Systems1. ACTA ACUST UNITED AC 2012. [DOI: 10.3146/ps11-16.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Abstract
Peanut (Arachis hypogaea L.) is a globally important crop whose seeds are widely used in food products. Peanut seeds contain proteins that serve a nutrient reservoir function and that also are major allergens. As part of an investigation to determine the effect of reducing/eliminating the peanut allergen Ara h 2 from seeds, gene sequence including upstream regulatory regions was characterized. The ability of regions upstream of the translation initiation site to regulate seed-specific expression of reporter genes was tested in peanut and Arabidopsis. Two independent transgenic peanut lines biolistically transformed with 1kb of DNA upstream of the Ara h 2.02 (B-genome) coding sequence controlling a Green Fluorescent Protein – β-glucuronidase (Gfp-Gus) fusion were obtained. All T1, T2 and T3 generations of transgenic plants showed the expression of GFP and GUS restricted to seeds and near background levels in vegetative tissues. However, constitutive GUS expression was observed in Arabidopsis transgenic lines, a heterologous system. It is possible that trans-acting factors regulating seed specificity in peanut are too divergent in Arabidopsis to enable the seed specific response. Thus, the promoter described in this paper may have potential use for expression of transgenes in peanut where seed-specificity is desired, but expression patterns should be tested in heterologous systems prior to off-the-shelf adoption.
Collapse
Affiliation(s)
- A Bhattacharya
- Present address: Bench Biotechnology, Vapi, Gujarat, India
| | - M. L. Ramos
- Present address: NIDERA S.A., Departamento de Biotecnologia, Venado Tuerto, Santa Fe CP2600, Argentina
| | - P. Faustinelli
- Present address: Faculty of Agricultural Sciences, Catholic University of Cordoba, Camino a Alta Gracia km 7 1/2 (5017), Cordoba, Argentina
| | - P. Ozias-Akins
- Research location and current address of P. Ozias-Akins: Department of Horticulture and NESPAL, The University of Georgia Tifton Campus, Tifton, GA 31793-5766
| |
Collapse
|
24
|
Barkley NA, Wang ML. Application of TILLING and EcoTILLING as Reverse Genetic Approaches to Elucidate the Function of Genes in Plants and Animals. Curr Genomics 2011; 9:212-26. [PMID: 19452039 PMCID: PMC2682938 DOI: 10.2174/138920208784533656] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 04/24/2008] [Accepted: 04/28/2008] [Indexed: 11/22/2022] Open
Abstract
With the fairly recent advent of inexpensive, rapid sequencing technologies that continue to improve sequencing efficiency and accuracy, many species of animals, plants, and microbes have annotated genomic information publicly available. The focus on genomics has thus been shifting from the collection of whole sequenced genomes to the study of functional genomics. Reverse genetic approaches have been used for many years to advance from sequence data to the resulting phenotype in an effort to deduce the function of a gene in the species of interest. Many of the currently used approaches (RNAi, gene knockout, site-directed mutagenesis, transposon tagging) rely on the creation of transgenic material, the development of which is not always feasible for many plant or animal species. TILLING is a non-transgenic reverse genetics approach that is applicable to all animal and plant species which can be mutagenized, regardless of its mating / pollinating system, ploidy level, or genome size. This approach requires prior DNA sequence information and takes advantage of a mismatch endonuclease to locate and detect induced mutations. Ultimately, it can provide an allelic series of silent, missense, nonsense, and splice site mutations to examine the effect of various mutations in a gene. TILLING has proven to be a practical, efficient, and an effective approach for functional genomic studies in numerous plant and animal species. EcoTILLING, which is a variant of TILLING, examines natural genetic variation in populations and has been successfully utilized in animals and plants to discover SNPs including rare ones. In this review, TILLING and EcoTILLING techniques, beneficial applications and limitations from plant and animal studies are discussed.
Collapse
Affiliation(s)
- N A Barkley
- USDA-ARS, Plant Genetic Resources Conservation Unit (PGRCU), 1109 Experiment Street, Griffin, GA 30223, USA
| | | |
Collapse
|
25
|
Knoll JE, Ramos ML, Zeng Y, Holbrook CC, Chow M, Chen S, Maleki S, Bhattacharya A, Ozias-Akins P. TILLING for allergen reduction and improvement of quality traits in peanut (Arachis hypogaea L.). BMC PLANT BIOLOGY 2011; 11:81. [PMID: 21569438 PMCID: PMC3113929 DOI: 10.1186/1471-2229-11-81] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 05/12/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND Allergic reactions to peanuts (Arachis hypogaea L.) can cause severe symptoms and in some cases can be fatal, but avoidance is difficult due to the prevalence of peanut-derived products in processed foods. One strategy of reducing the allergenicity of peanuts is to alter or eliminate the allergenic proteins through mutagenesis. Other seed quality traits could be improved by altering biosynthetic enzyme activities. Targeting Induced Local Lesions in Genomes (TILLING), a reverse-genetics approach, was used to identify mutations affecting seed traits in peanut. RESULTS Two similar copies of a major allergen gene, Ara h 1, have been identified in tetraploid peanut, one in each subgenome. The same situation has been shown for major allergen Ara h 2. Due to the challenge of discriminating between homeologous genes in allotetraploid peanut, nested PCR was employed, in which both gene copies were amplified using unlabeled primers. This was followed by a second PCR using gene-specific labeled primers, heteroduplex formation, CEL1 nuclease digestion, and electrophoretic detection of labeled fragments. Using ethyl methanesulfonate (EMS) as a mutagen, a mutation frequency of 1 SNP/967 kb (3,420 M2 individuals screened) was observed. The most significant mutations identified were a disrupted start codon in Ara h 2.02 and a premature stop codon in Ara h 1.02. Homozygous individuals were recovered in succeeding generations for each of these mutations, and elimination of Ara h 2.02 protein was confirmed. Several Ara h 1 protein isoforms were eliminated or reduced according to 2D gel analyses. TILLING also was used to identify mutations in fatty acid desaturase AhFAD2 (also present in two copies), a gene which controls the ratio of oleic to linoleic acid in the seed. A frameshift mutation was identified, resulting in truncation and inactivation of AhFAD2B protein. A mutation in AhFAD2A was predicted to restore function to the normally inactive enzyme. CONCLUSIONS This work represents the first steps toward the goal of creating a peanut cultivar with reduced allergenicity. TILLING in peanut can be extended to virtually any gene, and could be used to modify other traits such as nutritional properties of the seed, as shown in this study.
Collapse
Affiliation(s)
- Joseph E Knoll
- Department of Horticulture/NESPAL, University of Georgia-Tifton Campus, Tifton, GA 31793, USA
- USDA-ARS Crop Genetics and Breeding Research Unit, Tifton, GA 31793, USA
| | - M Laura Ramos
- Department of Horticulture/NESPAL, University of Georgia-Tifton Campus, Tifton, GA 31793, USA
| | - Yajuan Zeng
- Department of Horticulture/NESPAL, University of Georgia-Tifton Campus, Tifton, GA 31793, USA
| | - C Corley Holbrook
- USDA-ARS Crop Genetics and Breeding Research Unit, Tifton, GA 31793, USA
| | - Marjorie Chow
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32611, USA
| | - Sixue Chen
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32611, USA
| | - Soheila Maleki
- USDA-ARS Southern Regional Research Center, New Orleans, LA 70124, USA
| | - Anjanabha Bhattacharya
- Department of Horticulture/NESPAL, University of Georgia-Tifton Campus, Tifton, GA 31793, USA
| | - Peggy Ozias-Akins
- Department of Horticulture/NESPAL, University of Georgia-Tifton Campus, Tifton, GA 31793, USA
| |
Collapse
|
26
|
Radosavljevic J, Dobrijevic D, Jadranin M, Blanusa M, Vukmirica J, Cirkovic Velickovic T. Insights into proteolytic processing of the major peanut allergen Ara h 2 by endogenous peanut proteases. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2010; 90:1702-1708. [PMID: 20564442 DOI: 10.1002/jsfa.4005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
BACKGROUND The major peanut allergens are Ara h 1, Ara h 2 and Ara h 6. Proteolytic processing has been shown to be required for the maturation process of Ara h 6. The aim of this study was to examine whether Ara h 2 undergoes proteolytic processing and, if so, whether proteolytic processing influences its ability to bind human immunoglobulin E (IgE). RESULTS Ara h 2 isolated from peanut extract under conditions of protease inhibition revealed a single additional peak for its two known isoforms (Ara h 2.01 and Ara h 2.02), corresponding to a C-terminally truncated form lacking a dipeptide (RY). Ara h 2 isolated in the absence of protease inhibition, however, yielded two additional peaks, identified as C-terminally truncated forms lacking either a dipeptide (RY) or a single tyrosine residue. The IgE-binding capacity of the Ara h 2 truncated forms was not altered. CONCLUSION Ara h 2 undergoes proteolytic processing by peanut proteases that involves C-terminal removal of a dipeptide. Hence Ara h 2 isolated from peanut extract is a complex mixture of two isoforms expressed by different genes, Ara h 2.01 and Ara h 2.02, as well as truncated forms generated by the proteolytic processing of these isoforms.
Collapse
Affiliation(s)
- Jelena Radosavljevic
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, Belgrade, Serbia.
| | | | | | | | | | | |
Collapse
|
27
|
Ozias-Akins P, Ramos ML, Faustinelli P, Chu Y, Maleki S, Thelen JJ, Huntley J, Arias K, Jordana M. Spontaneous and induced variability of allergens in commodity crops: Ara h 2 in peanut as a case study. Regul Toxicol Pharmacol 2009; 54:S37-40. [DOI: 10.1016/j.yrtph.2008.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 11/07/2008] [Accepted: 11/10/2008] [Indexed: 10/21/2022]
|
28
|
Validation of gel-free, label-free quantitative proteomics approaches: Applications for seed allergen profiling. J Proteomics 2009; 72:555-66. [DOI: 10.1016/j.jprot.2008.11.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 10/24/2008] [Accepted: 11/07/2008] [Indexed: 01/07/2023]
|
29
|
Removing allergens and reducing toxins from food crops. Curr Opin Biotechnol 2009; 20:191-6. [DOI: 10.1016/j.copbio.2009.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 03/02/2009] [Accepted: 03/07/2009] [Indexed: 11/21/2022]
|
30
|
Ramos ML, Huntley JJ, Maleki SJ, Ozias-Akins P. Identification and characterization of a hypoallergenic ortholog of Ara h 2.01. PLANT MOLECULAR BIOLOGY 2009; 69:325-335. [PMID: 19009240 DOI: 10.1007/s11103-008-9428-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 10/29/2008] [Indexed: 05/27/2023]
Abstract
Peanut (Arachis hypogaea L.), can elicit type I allergy becoming the most common cause of fatal food-induced anaphylactic reactions. Strict avoidance is the only effective means of dealing with this allergy. Ara h 2, a peanut seed storage protein, has been identified as the most potent peanut allergen and is recognized by approximately 90% of peanut hypersensitive individuals in the US. Because peanut has limited genetic variation, wild relatives are a good source of genetic diversity. After screening 30 Arachis duranensis accessions by EcoTILLing, we characterized five different missense mutations in ara d 2.01. None of these polymorphisms induced major conformational modifications. Nevertheless, a polymorphism in the immunodominant epitope #7 (S73T) showed a 56-99% reduction in IgE-binding activity and did not affect T cell epitopes, which must be retained for effective immunotherapy. The identification of natural hypoallergenic isoforms positively contributes to future immunological and therapeutic studies and peanut cultivar development.
Collapse
Affiliation(s)
- M Laura Ramos
- Department of Horticulture, University of Georgia, Tifton Campus, Tifton, GA 31793, USA
| | | | | | | |
Collapse
|
31
|
Chu Y, Faustinelli P, Ramos ML, Hajduch M, Stevenson S, Thelen JJ, Maleki SJ, Cheng H, Ozias-Akins P. Reduction of IgE binding and nonpromotion of Aspergillus flavus fungal growth by simultaneously silencing Ara h 2 and Ara h 6 in peanut. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:11225-11233. [PMID: 19007236 DOI: 10.1021/jf802600r] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The most potent peanut allergens, Ara h 2 and Ara h 6, were silenced in transgenic plants by RNA interference. Three independent transgenic lines were recovered after microprojectile bombardment, of which two contained single, integrated copies of the transgene. The third line contained multiple copies of the transgene. Ara h 2 expression was significantly suppressed in all three lines, whereas Ara h 6 was reduced in two lines. Expression of peanut allergens Ara h 1 and Ara h 3 was not noticeably affected. Significant reduction of human IgE binding to Ara h 2 and Ara h 6 also was observed. Seed weight and germination data from transgenic and nontransgenic segregants showed no significant differences. Data collected from in vitro Aspergillus flavus infection indicate no significant difference in fungal growth between the transgenic lines and the nontransgenic controls. These data suggest that silencing Ara h 2 and Ara h 6 is a feasible approach to produce hypoallergenic peanut.
Collapse
Affiliation(s)
- Ye Chu
- Department of Horticulture, University of Georgia, 31793, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Marsh J, Rigby N, Wellner K, Reese G, Knulst A, Akkerdaas J, van Ree R, Radauer C, Lovegrove A, Sancho A, Mills C, Vieths S, Hoffmann-Sommergruber K, Shewry PR. Purification and characterisation of a panel of peanut allergens suitable for use in allergy diagnosis. Mol Nutr Food Res 2008; 52 Suppl 2:S272-85. [PMID: 18727014 DOI: 10.1002/mnfr.200700524] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Peanut is a major cause of type 1 hypersensitive reactions including anaphylaxis. This results from the presence of a number of protein allergens, six of which are being studied as part of the EU FP6 EuroPrevall programme. These are Ara h 1 (7S globulin), Ara h 2, Ara h 6 (2S albumins), Ara h 3/4 (11S globulins) and Ara h 8 (Bet v 1 homologue). Methods for the purification of Ara h 1, Ara h 3/4, Ara h 2 and Ara h 6 from peanut seeds and for the production of recombinant Ara h 8 in Escherichia coli are described with spectroscopic analyses being used to confirm that they are authentically folded. N-terminal sequencing of the proteins purified from peanut seeds also revealed details of the differences between isoforms and their generation by proteolytic processing within the seed. Preliminary IgE binding studies of the purified allergens confirmed that they retained their immunological properties indicating their suitability for use in allergy diagnosis.
Collapse
Affiliation(s)
- Justin Marsh
- Rothamsted Research, Harpenden, Hertfordshire, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Bernard H, Mondoulet L, Drumare MF, Paty E, Scheinmann P, Thaï R, Wal JM. Identification of a new natural Ara h 6 isoform and of its proteolytic product as major allergens in peanut. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:9663-9669. [PMID: 17949050 DOI: 10.1021/jf071424g] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Numerous food allergens of plant origin belong to the 2S albumin family, including peanut Ara h 2. In addition to Ara h 2, several other conglutins related to 2S albumins are present in peanut seeds. We evaluated the allergenicity of different peanut conglutins as compared with Ara h 2. Several conglutins were isolated from the kernel, i.e. Ara h 2, a new isoform of Ara h 6 and its derived product, which is likely to be naturally formed during seed processing. Enzyme allergosorbent tests performed on sera of peanut allergic patients showed that more than 94% of 47 analyzed patients had positive IgE responses to Ara h 6 isoform and to its degradation product. Skin prick tests with the new isoform of Ara h 6 led to a positive response in seven out of the eight tested patients. Both enzyme allergosorbent tests and skin prick tests showed that the reactivity of Ara h 6 was similar to, or even higher than, that of Ara h 2, suggesting that the present isoform of Ara h 6 is as allergenic as Ara h 2. In addition the IgE response to the plant processed (i.e., hydrolyzed) Ara h 6 new isoform is equivalent to the IgE response to the native isoform. The IgE immunoreactivity is mostly abrogated by chemical reduction and denaturation of Ara h 6 isoforms, which underlined the importance of tertiary structure in Ara h 6 immunoreactivity. These results, and particularly the high correlation between anti-Ara h 2 and anti-Ara h 6 IgE responses, emphasise the major role of 2S albumins in peanut allergenicity.
Collapse
Affiliation(s)
- H Bernard
- INRA-Laboratoire d'immuno-allergie alimentaire, CEA-Saclay, 91191 Gif-sur-Yvette, France.
| | | | | | | | | | | | | |
Collapse
|
34
|
Kang IH, Srivastava P, Ozias-Akins P, Gallo M. Temporal and spatial expression of the major allergens in developing and germinating peanut seed. PLANT PHYSIOLOGY 2007; 144:836-45. [PMID: 17468222 PMCID: PMC1914213 DOI: 10.1104/pp.107.096933] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Peanut (Arachis hypogaea) seed proteins Ara h 1, Ara h 2, and Ara h 3 are considered to be the major peanut allergens. However, little is known about their temporal and spatial expression during seed development and upon germination and seedling growth. In this study, transcript levels of the three major peanut allergen genes, ara h 1, ara h 2, and ara h 3, and their corresponding proteins were found in all cultivars. Expression patterns were heterogeneous depending on the specific peanut allergen gene and the cultivars tested. However, ara h 3 expression patterns among the cultivars were more variable than ara h 1 and ara h 2. Transcripts were tissue specific, observed in seeds, but not in leaves, flowers, or roots, and were undetectable during seed germination. In situ hybridizations and immunotissue prints revealed that both embryonic axes and cotyledons expressed the allergens. However, more ara h 1 and ara h 3 messenger RNA was detected in cotyledons relative to embryonic axes. Allergen polypeptide degradation patterns were different in embryonic axes compared with cotyledons during germination and seedling growth, with levels of Ara h 1 and Ara h 2 dramatically reduced compared to the Ara h 3 polypeptides in embryonic axes. These characterization studies of major peanut allergen genes and their corresponding seed storage proteins can provide the basic information needed for biochemical and molecular approaches to obtain a hypoallergenic peanut.
Collapse
Affiliation(s)
- Il-Ho Kang
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | |
Collapse
|