1
|
Understanding the Dynamics of Blast Resistance in Rice-Magnaporthe oryzae Interactions. J Fungi (Basel) 2022; 8:jof8060584. [PMID: 35736067 PMCID: PMC9224618 DOI: 10.3390/jof8060584] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 01/09/2023] Open
Abstract
Rice is a global food grain crop for more than one-third of the human population and a source for food and nutritional security. Rice production is subjected to various stresses; blast disease caused by Magnaporthe oryzae is one of the major biotic stresses that has the potential to destroy total crop under severe conditions. In the present review, we discuss the importance of rice and blast disease in the present and future global context, genomics and molecular biology of blast pathogen and rice, and the molecular interplay between rice–M. oryzae interaction governed by different gene interaction models. We also elaborated in detail on M. oryzae effector and Avr genes, and the role of noncoding RNAs in disease development. Further, rice blast resistance QTLs; resistance (R) genes; and alleles identified, cloned, and characterized are discussed. We also discuss the utilization of QTLs and R genes for blast resistance through conventional breeding and transgenic approaches. Finally, we review the demonstrated examples and potential applications of the latest genome-editing tools in understanding and managing blast disease in rice.
Collapse
|
2
|
Kim KT, Ko J, Song H, Choi G, Kim H, Jeon J, Cheong K, Kang S, Lee YH. Evolution of the Genes Encoding Effector Candidates Within Multiple Pathotypes of Magnaporthe oryzae. Front Microbiol 2019; 10:2575. [PMID: 31781071 PMCID: PMC6851232 DOI: 10.3389/fmicb.2019.02575] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/24/2019] [Indexed: 01/08/2023] Open
Abstract
Magnaporthe oryzae infects rice, wheat, and many grass species in the Poaceae family by secreting protein effectors. Here, we analyzed the distribution, sequence variation, and genomic context of effector candidate (EFC) genes in 31 isolates that represent five pathotypes of M. oryzae, three isolates of M. grisea, a sister species of M. oryzae, and one strain each for eight species in the family Magnaporthaceae to investigate how the host range expansion of M. oryzae has likely affected the evolution of effectors. We used the EFC genes of M. oryzae strain 70-15, whose genome has served as a reference for many comparative genomics analyses, to identify their homologs in these strains. We also analyzed the previously characterized avirulence (AVR) genes and single-copy orthologous (SCO) genes in these strains, which showed that the EFC and AVR genes evolved faster than the SCO genes. The EFC and AVR repertoires among M. oryzae pathotypes varied widely probably because adaptation to individual hosts exerted different types of selection pressure. Repetitive DNA elements appeared to have caused the variation of some EFC genes. Lastly, we analyzed expression patterns of the AVR and EFC genes to test the hypothesis that such genes are preferentially expressed during host infection. This comprehensive dataset serves as a foundation for future studies on the genetic basis of the evolution and host specialization in M. oryzae.
Collapse
Affiliation(s)
- Ki-Tae Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Jaeho Ko
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Hyeunjeong Song
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
| | - Gobong Choi
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
| | - Hyunbin Kim
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
| | - Jongbum Jeon
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
| | - Kyeongchae Cheong
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
| | - Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, State College, PA, United States
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea.,Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea.,Center for Fungal Genetic Resources, Seoul National University, Seoul, South Korea.,Plant Immunity Research Center, Seoul National University, Seoul, South Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
3
|
Korinsak S, Tangphatsornruang S, Pootakham W, Wanchana S, Plabpla A, Jantasuriyarat C, Patarapuwadol S, Vanavichit A, Toojinda T. Genome-wide association mapping of virulence gene in rice blast fungus Magnaporthe oryzae using a genotyping by sequencing approach. Genomics 2018; 111:661-668. [PMID: 29775784 DOI: 10.1016/j.ygeno.2018.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/04/2018] [Accepted: 05/11/2018] [Indexed: 01/22/2023]
Abstract
Magnaporthe oryzae is a fungal pathogen causing blast disease in many plant species. In this study, seventy three isolates of M. oryzae collected from rice (Oryza sativa) in 1996-2014 were genotyped using a genotyping-by-sequencing approach to detect genetic variation. An association study was performed to identify single nucleotide polymorphisms (SNPs) associated with virulence genes using 831 selected SNP and infection phenotypes on local and improved rice varieties. Population structure analysis revealed eight subpopulations. The division into eight groups was not related to the degree of virulence. Association mapping showed five SNPs associated with fungal virulence on chromosome 1, 2, 3, 4 and 7. The SNP on chromosome 1 was associated with virulence against RD6-Pi7 and IRBL7-M which might be linked to the previously reported AvrPi7.
Collapse
Affiliation(s)
- Siripar Korinsak
- Plant Breeding Program, Faculty of Agriculture at Kamphaeng Saen, Kesetsart University, Nakhon Pathom 73140, Thailand
| | - Sithichoke Tangphatsornruang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, PathumThani 12120, Thailand
| | - Wirulda Pootakham
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, PathumThani 12120, Thailand
| | - Samart Wanchana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, PathumThani 12120, Thailand
| | - Anucha Plabpla
- Interdisciplinary Graduate Program in Genetic Engineering, Kasetsart University, Bangkok 10900, Thailand
| | | | - Sujin Patarapuwadol
- Department of Plant Pathology, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Apichart Vanavichit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand; Rice Science Center, Kasetsart University, Kamphaeng Saen, Nakhon Pathom 73140, Thailand
| | - Theerayut Toojinda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, PathumThani 12120, Thailand.
| |
Collapse
|
4
|
Sharpee W, Oh Y, Yi M, Franck W, Eyre A, Okagaki LH, Valent B, Dean RA. Identification and characterization of suppressors of plant cell death (SPD) effectors from Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2017; 18:850-863. [PMID: 27301772 PMCID: PMC6638229 DOI: 10.1111/mpp.12449] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 05/04/2023]
Abstract
Phytopathogenic microorganisms, including the fungal pathogen Magnaporthe oryzae, secrete a myriad of effector proteins to facilitate infection. Utilizing the transient expression of candidate effectors in the leaves of the model plant Nicotiana benthamiana, we identified 11 suppressors of plant cell death (SPD) effectors from M. oryzae that were able to block the host cell death reaction induced by Nep1. Ten of these 11 were also able to suppress BAX-mediated plant cell death. Five of the 11 SPD genes have been identified previously as either essential for the pathogenicity of M. oryzae, secreted into the plant during disease development, or as suppressors or homologues of other characterized suppressors. In addition, of the remaining six, we showed that SPD8 (previously identified as BAS162) was localized to the rice cytoplasm in invaded and surrounding uninvaded cells during biotrophic invasion. Sequence analysis of the 11 SPD genes across 43 re-sequenced M. oryzae genomes revealed that SPD2, SPD4 and SPD7 have nucleotide polymorphisms amongst the isolates. SPD4 exhibited the highest level of nucleotide diversity of any currently known effector from M. oryzae in addition to the presence/absence polymorphisms, suggesting that this gene is potentially undergoing selection to avoid recognition by the host. Taken together, we have identified a series of effectors, some of which were previously unknown or whose function was unknown, that probably act at different stages of the infection process and contribute to the virulence of M. oryzae.
Collapse
Affiliation(s)
- William Sharpee
- Center for Integrated Fungal Research, Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNC27606USA
| | - Yeonyee Oh
- Center for Integrated Fungal Research, Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNC27606USA
| | - Mihwa Yi
- Department of Plant PathologyKansas State UniversityManhattanKS66506USA
- Present address:
Noble FoundationArdmoreOK73401USA
| | - William Franck
- Center for Integrated Fungal Research, Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNC27606USA
- Present address:
USDA‐ARS Northern Plains Agricultural Research ServiceSidneyMT59270USA
| | - Alex Eyre
- Center for Integrated Fungal Research, Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNC27606USA
| | - Laura H. Okagaki
- Center for Integrated Fungal Research, Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNC27606USA
- Present address:
Department of Microbiology and ImmunologyUniversity of MinnesotaMN55455USA
| | - Barbara Valent
- Department of Plant PathologyKansas State UniversityManhattanKS66506USA
| | - Ralph A. Dean
- Center for Integrated Fungal Research, Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNC27606USA
| |
Collapse
|
5
|
Qi Z, Liu M, Dong Y, Zhu Q, Li L, Li B, Yang J, Li Y, Ru Y, Zhang H, Zheng X, Wang P, Zhang Z. The syntaxin protein (MoSyn8) mediates intracellular trafficking to regulate conidiogenesis and pathogenicity of rice blast fungus. THE NEW PHYTOLOGIST 2016; 209:1655-1667. [PMID: 26522477 DOI: 10.1111/nph.13710] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/14/2015] [Indexed: 06/05/2023]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) mediate cellular membrane fusion and intracellular vesicle trafficking in eukaryotic cells, and are critical in the growth and development of pathogenic fungi such as Magnaporthe oryzae which causes rice blast. Rice blast is thought to involve distinct SNARE-mediated transport and secretion of fungal effector proteins into the host to modulate rice immunity. We have previously characterized two SNARE proteins, secretory protein (MoSec22) and vesicle-associated membrane protein (MoVam7), as being important in cellular transport and pathogenicity. Here, we show that syntaxin 8 (MoSyn8), a Qc-SNARE protein homolog, also plays important roles in growth, conidiation, and pathogenicity. The MoSYN8 deletion mutant (∆Mosyn8) mutant exhibits defects in endocytosis and F-actin organization, appressorium turgor pressure generation, and host penetration. In addition, the ∆Mosyn8 mutant cannot elaborate biotrophic invasion of the susceptible rice host, or secrete avirulence factors Avr-Pia (corresponding to the rice resistance gene Pia) and Avrpiz-t (the cognate Avr gene for the resistance gene Piz-t) proteins. Our study of MoSyn8 advances our understanding of SNARE proteins in effector secretion which underlies the normal physiology and pathogenicity of M. oryzae, and it sheds new light on the mechanism of the blight disease caused by M. oryzae.
Collapse
Affiliation(s)
- Zhongqiang Qi
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Yanhan Dong
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Qian Zhu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Lianwei Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Bing Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Jie Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Ying Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Yanyan Ru
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Ping Wang
- Department of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, LA, 70118, USA
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
6
|
Wu J, Kou Y, Bao J, Li Y, Tang M, Zhu X, Ponaya A, Xiao G, Li J, Li C, Song MY, Cumagun CJR, Deng Q, Lu G, Jeon JS, Naqvi NI, Zhou B. Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9-mediated blast resistance in rice. THE NEW PHYTOLOGIST 2015; 206:1463-75. [PMID: 25659573 DOI: 10.1111/nph.13310] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 12/22/2014] [Indexed: 05/20/2023]
Abstract
We identified the Magnaporthe oryzae avirulence effector AvrPi9 cognate to rice blast resistance gene Pi9 by comparative genomics of requisite strains derived from a sequential planting method. AvrPi9 encodes a small secreted protein that appears to localize in the biotrophic interfacial complex and is translocated to the host cell during rice infection. AvrPi9 forms a tandem gene array with its paralogue proximal to centromeric region of chromosome 7. AvrPi9 is expressed highly at early stages during initiation of blast disease. Virulent isolate strains contain Mg-SINE within the AvrPi9 coding sequence. Loss of AvrPi9 did not lead to any discernible defects during growth or pathogenesis in M. oryzae. This study reiterates the role of diverse transposable elements as off-switch agents in acquisition of gain-of-virulence in the rice blast fungus. The prevalence of AvrPi9 correlates well with the avirulence pathotype in diverse blast isolates from the Philippines and China, thus supporting the broad-spectrum resistance conferred by Pi9 in different rice growing areas. Our results revealed that Pi9 and Piz-t at the Pi2/9 locus activate race specific resistance by recognizing sequence-unrelated AvrPi9 and AvrPiz-t genes, respectively.
Collapse
Affiliation(s)
- Jun Wu
- State Key Laboratory of Hybrid Rice, Longping Branch of Graduate School, Central South University, Changsha, 410125, China
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yanjun Kou
- Temasek Life Sciences Laboratory, Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore
| | - Jiandong Bao
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- The Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ya Li
- The Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mingzhi Tang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaoli Zhu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- International Rice Research Institute, DAPO Box 7777, Metro Manila, 1301, Philippines
| | - Ariane Ponaya
- International Rice Research Institute, DAPO Box 7777, Metro Manila, 1301, Philippines
- College of Agriculture, University of the Philippines, Los Banos, Laguna, 4031, Philippines
| | - Gui Xiao
- International Rice Research Institute, DAPO Box 7777, Metro Manila, 1301, Philippines
| | - Jinbin Li
- Agricultural Environment and Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650201, China
| | - Chenyun Li
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Min-Young Song
- Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701, Korea
| | | | - Qiyun Deng
- State Key Laboratory of Hybrid Rice, Longping Branch of Graduate School, Central South University, Changsha, 410125, China
| | - Guodong Lu
- The Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jong-Seong Jeon
- Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701, Korea
| | - Naweed I Naqvi
- Temasek Life Sciences Laboratory, Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore
| | - Bo Zhou
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- International Rice Research Institute, DAPO Box 7777, Metro Manila, 1301, Philippines
| |
Collapse
|
7
|
Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Asfaliza R, Latif MA. Blast resistance in rice: a review of conventional breeding to molecular approaches. Mol Biol Rep 2012. [DOI: 10.1007/s11033-012-2318-0] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Li P, Bai B, Zhang HY, Zhou H, Zhou B. Genomic organization and sequence dynamics of the AvrPiz-t locus in Magnaporthe oryzae. J Zhejiang Univ Sci B 2012; 13:452-64. [PMID: 22661208 DOI: 10.1631/jzus.b1100338] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Plants utilize multiple layers of defense mechanisms to fight against the invasion of diverse pathogens. The R gene mediates resistance, in most cases, dependent on the co-existence of its cognate pathogen-derived avirulence (Avr) gene. The rice blast R gene Piz-t corresponds in gene-for-gene fashion to the Magnaporthe oryzae Avr gene AvrPiz-t. In this study, we determined and compared the genomic sequences surrounding the AvrPiz-t gene in both avirulent and virulent isolates, designating as AvrPiz-t-ZB15 and avrPiz-t-70-15 regions, respectively. The sequence of the AvrPiz-t-ZB15 region is 120966 bp whereas avrPiz-t-70-15 is 146292 bp in length. The extreme sequence similarity and good synteny in gene order and content along with the absence of two predicted genes in the avrPiz-t-70-15 region were observed in the predicted protein-coding regions in the AvrPiz-t locus. Nevertheless, frequent presence/absence and highly dynamic organization of transposable elements (TEs) were identified, representing the major variation of the AvrPiz-t locus between different isolates. Moreover, TEs constitute 27.3% and 43.2% of the genomic contents of the AvrPiz-t-ZB15 and avrPiz-t-70-15 regions, respectively, indicating that TEs contribute largely to the organization and evolution of AvrPiz-t locus. The findings of this study suggest that M. oryzae could benefit in an evolutionary sense from the presence of active TEs in genes conferring avirulence and provide an ability to rapidly change and thus to overcome host R genes.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | | | | | | | | |
Collapse
|
9
|
Yan J, Zhang L, Zhao W, Zhang G, Peng Y. Genetic and physical mapping of the avirulence gene Avr-Pik m in Magnaporthe oryzae. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0553-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
10
|
Schmidt SM, Panstruga R. Pathogenomics of fungal plant parasites: what have we learnt about pathogenesis? CURRENT OPINION IN PLANT BIOLOGY 2011; 14:392-9. [PMID: 21458359 DOI: 10.1016/j.pbi.2011.03.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/03/2011] [Accepted: 03/07/2011] [Indexed: 05/09/2023]
Abstract
Members of the kingdom fungi comprise numerous plant pathogens, including the causal agents of many agriculturally relevant plant diseases such as rust, powdery mildew, rice blast and cereal head blight. Data from recent sequencing projects provide deep insight into the genomes of a range of fungi that infect different organs of monocotyledonous or dicotyledonous hosts and that have diverse pathogenic lifestyles. These studies have revealed that, similar to sequenced phytopathogenic oomycetes, these plant parasites possess very plastic and dynamic genomes, which typically encode several hundred candidate secreted effector proteins that can be highly divergent even among related species. A new insight is the presence of lineage-specific genes on mobile and partly dispensable chromosomes that are transferred intraspecifically and possibly interspecifically, thereby constituting pathogenicity and host range determinants. Convergent lifestyle-specific adaptations have shaped the parasite genomes to maximize pathogenic success according to the different infection strategies employed.
Collapse
Affiliation(s)
- Sarah Maria Schmidt
- University of Amsterdam, Swammerdam Institute for Life Science, Postbus 94215, 1090 GE Amsterdam, The Netherlands
| | | |
Collapse
|
11
|
Chuma I, Isobe C, Hotta Y, Ibaragi K, Futamata N, Kusaba M, Yoshida K, Terauchi R, Fujita Y, Nakayashiki H, Valent B, Tosa Y. Multiple translocation of the AVR-Pita effector gene among chromosomes of the rice blast fungus Magnaporthe oryzae and related species. PLoS Pathog 2011; 7:e1002147. [PMID: 21829350 PMCID: PMC3145791 DOI: 10.1371/journal.ppat.1002147] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 05/17/2011] [Indexed: 01/22/2023] Open
Abstract
Magnaporthe oryzae is the causal agent of rice blast disease, a devastating problem worldwide. This fungus has caused breakdown of resistance conferred by newly developed commercial cultivars. To address how the rice blast fungus adapts itself to new resistance genes so quickly, we examined chromosomal locations of AVR-Pita, a subtelomeric gene family corresponding to the Pita resistance gene, in various isolates of M. oryzae (including wheat and millet pathogens) and its related species. We found that AVR-Pita (AVR-Pita1 and AVR-Pita2) is highly variable in its genome location, occurring in chromosomes 1, 3, 4, 5, 6, 7, and supernumerary chromosomes, particularly in rice-infecting isolates. When expressed in M. oryzae, most of the AVR-Pita homologs could elicit Pita-mediated resistance, even those from non-rice isolates. AVR-Pita was flanked by a retrotransposon, which presumably contributed to its multiple translocation across the genome. On the other hand, family member AVR-Pita3, which lacks avirulence activity, was stably located on chromosome 7 in a vast majority of isolates. These results suggest that the diversification in genome location of AVR-Pita in the rice isolates is a consequence of recognition by Pita in rice. We propose a model that the multiple translocation of AVR-Pita may be associated with its frequent loss and recovery mediated by its transfer among individuals in asexual populations. This model implies that the high mobility of AVR-Pita is a key mechanism accounting for the rapid adaptation toward Pita. Dynamic adaptation of some fungal plant pathogens may be achieved by deletion and recovery of avirulence genes using a population as a unit of adaptation.
Collapse
Affiliation(s)
- Izumi Chuma
- Graduate School of Agricultural Sciences, Kobe University, Kobe, Japan
| | - Chihiro Isobe
- Graduate School of Agricultural Sciences, Kobe University, Kobe, Japan
| | - Yuma Hotta
- Graduate School of Agricultural Sciences, Kobe University, Kobe, Japan
| | - Kana Ibaragi
- Graduate School of Agricultural Sciences, Kobe University, Kobe, Japan
| | - Natsuru Futamata
- Graduate School of Agricultural Sciences, Kobe University, Kobe, Japan
| | | | | | | | | | | | - Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, United States of America
| | - Yukio Tosa
- Graduate School of Agricultural Sciences, Kobe University, Kobe, Japan
- * E-mail:
| |
Collapse
|
12
|
Schneider DRS, Saraiva AM, Azzoni AR, Miranda HRCAN, de Toledo MAS, Pelloso AC, Souza AP. Overexpression and purification of PWL2D, a mutant of the effector protein PWL2 from Magnaporthe grisea. Protein Expr Purif 2010; 74:24-31. [PMID: 20438845 DOI: 10.1016/j.pep.2010.04.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 04/22/2010] [Accepted: 04/23/2010] [Indexed: 11/18/2022]
Abstract
The rice blast disease caused by the ascomycete Magnaporthe grisea continues to cause a tremendous impact in rice (Oryza sativa) cultures around the world. Elucidating the molecular basis of the fungus interactions with its host might help increase the general understanding of the pathogen-host relationship. At the moment of invasion, the fungus secretes effectors that modify host defenses and cellular processes as they successively invade living rice cells. PWL2, an effector protein, is a known AVR (avirulence) gene product. The PWL2 gene prevents the fungus from infecting weeping lovegrass (Eragrostis curvula). In this study, we identified a PWL2 allele gene (which we termed PWL2D) in a strain of M. grisea. The sequence of PWL2D has only two bases different from that of PWL2, producing alterations in residue 90 and residue 142. However, the alteration of residue 90 (from D(90) to N(90)) is critical to gene function. Here, we cloned the gene PWL2D in a pET System vector, expressed the gene product in Escherichia coli and evaluated by spectroscopic techniques some aspects of the PWL2D structure. While TRX-tagged PWL2D is prone to aggregation, the solubility of PWL2D is improved when it is overexpressed without its original signal peptide. Expression and purification procedures for these constructs are described. Finally, we found out that the protein seems to be an intrinsically disordered protein. Results from these studies will facilitate structural analysis of PWL2D and might contribute to understanding the gene's function and of fungal/plant interactions.
Collapse
Affiliation(s)
- D R S Schneider
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas, CP 6010, CEP 13083-970 Campinas, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
13
|
Miki S, Matsui K, Kito H, Otsuka K, Ashizawa T, Yasuda N, Fukiya S, Sato J, Hirayae K, Fujita Y, Nakajima T, Tomita F, Sone T. Molecular cloning and characterization of the AVR-Pia locus from a Japanese field isolate of Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2009; 10:361-74. [PMID: 19400839 PMCID: PMC6640357 DOI: 10.1111/j.1364-3703.2009.00534.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In order to clone and analyse the avirulence gene AVR-Pia from Japanese field isolates of Magnaporthe oryzae, a mutant of the M. oryzae strain Ina168 was isolated. This mutant, which was named Ina168m95-1, gained virulence towards the rice cultivar Aichi-asahi, which contains the resistance gene Pia. A DNA fragment (named PM01) that was deleted in the mutant and that co-segregated with avirulence towards Aichi-asahi was isolated. Three cosmid clones that included the regions that flanked PM01 were isolated from a genomic DNA library. One of these clones (46F3) complemented the mutant phenotype, which indicated clearly that this clone contained the avirulence gene AVR-Pia. Clone 46F3 contained insertions of transposable elements. The 46F3 insert was divided into fragments I-VI, and these were cloned individually into a hygromycin-resistant vector for the transformation of the mutant Ina168m95-1. An inoculation assay of the transformants revealed that fragment V (3.5 kb) contained AVR-Pia. By deletion analysis of fragment V, AVR-Pia was localized to an 1199-bp DNA fragment, which included a 255-bp open reading frame with weak homology to a bacterial cytochrome-c-like protein. Restriction fragment length polymorphism analysis of this region revealed that this DNA sequence co-segregated with the AVR-Pia locus in a genetic map that was constructed using Chinese isolates.
Collapse
Affiliation(s)
- Shinsuke Miki
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Farman ML. Telomeres in the rice blast fungus Magnaporthe oryzae: the world of the end as we know it. FEMS Microbiol Lett 2007; 273:125-32. [PMID: 17610516 DOI: 10.1111/j.1574-6968.2007.00812.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The subtelomeres of many microbial eukaryotes are highly enriched in genes with roles in niche adaptation. Host and cultivar specificity genes in the rice blast fungus Magnaporthe oryzae also tend to be located near telomeres. In addition, the M. oryzae telomeres are highly variable chromosome regions. These observations suggested that plant pathogenic fungi might also use subtelomere regions for the amplification of genes with adaptive significance. Targeted sequencing of the M. oryzae telomeres provided an opportunity to test this hypothesis, and has yielded valuable insights into the organization and dynamics of these important chromosome regions.
Collapse
Affiliation(s)
- Mark L Farman
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40503, USA.
| |
Collapse
|