1
|
Zhang C, Wang J, Xiao X, Wang D, Yuan Z, Zhang X, Sun W, Yu S. Fine Mapping of Two Interacting Loci for Transmission Ratio Distortion in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2022; 13:866276. [PMID: 35422832 PMCID: PMC9002327 DOI: 10.3389/fpls.2022.866276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Transmission ratio distortion (TRD) denotes the observed allelic or genotypic frequency deviation from the expected Mendelian segregation ratios in the offspring of a heterozygote. TRD can severely hamper gene flow between and within rice species. Here, we report the fine mapping and characterization of two loci (TRD4.1 and TRD4.2) for TRD using large F2 segregating populations, which are derived from rice chromosome segment substitution lines, each containing a particular genomic segment introduced from the japonica cultivar Nipponbare (NIP) into the indica cultivar Zhenshan (ZS97). The two loci exhibited a preferential transmission of ZS97 alleles in the derived progeny. Reciprocal crossing experiments using near-isogenic lines harboring three different alleles at TRD4.1 suggest that the gene causes male gametic selection. Moreover, the transmission bias of TRD4.2 was diminished in heterozygotes when they carried homozygous TRD4.1 ZS97. This indicates an epistatic interaction between these two loci. TRD4.2 was mapped into a 35-kb region encompassing one candidate gene that is specifically expressed in the reproductive organs in rice. These findings broaden the understanding of the genetic mechanisms of TRD and offer an approach to overcome the barrier of gene flow between the subspecies in rice, thus facilitating rice improvement by introgression breeding.
Collapse
Affiliation(s)
- Chaopu Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jilin Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiongfeng Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dianwen Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhiyang Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaodan Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenqiang Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sibin Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Shehzad M, Zhou Z, Ditta A, Khan M, Cai X, Xu Y, Maqbool A, Khalofah A, Shaban M, Naeem M, Ansari MJ, Wang K, Liu F. Identification and characterization of genes related to salt stress tolerance within segregation distortion regions of genetic map in F2 population of upland cotton. PLoS One 2021; 16:e0247593. [PMID: 33770112 PMCID: PMC7997035 DOI: 10.1371/journal.pone.0247593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
Segregation distortion (SD) is a genetic mechanism commonly found in segregating or stable populations. The principle behind this puzzles many researchers. The F2 generation developed from wild Gossypium darwinii and G. hirsutum CCRI12 species was used to investigate the possible transcription factors within the segregation distortion regions (SDRs). The 384 out of 2763 markers were distorted in 29 SDRs on 18 chromosomes. Good collinearity was observed among genetic and physical maps of G. hirsutum and G. barbadense syntenic blocks. Total 568 genes were identified from SDRs of 18 chromosomes. Out of these genes, 128 belonged to three top-ranked salt-tolerant gene families. The DUF597 contained 8 uncharacterized genes linked to Pkinase (PF00069) gene family in the phylogenetic tree, while 15 uncharacterized genes clustered with the zinc finger gene family. Two hundred thirty four miRNAs targeted numerous genes, including ghr-miR156, ghr-miR399 and ghr-miR482, while others targeted top-ranked stress-responsive transcription factors. Moreover, these genes were involved in the regulation of numerous stress-responsive cis-regulatory elements. The RNA sequence data of fifteen upregulated genes were verified through the RT-qPCR. The expression profiles of two highly upregulated genes (Gh_D01G2015 and Gh_A01G1773) in salt-tolerant G. darwinii showed antagonistic expression in G. hirsutum. The results indicated that salt-tolerant genes have been possibly transferred from the wild G. darwinii species. A detailed functional analysis of these genes can be carried out which might be helpful in the future for gene cloning, transformation, gene editing and the development of salt-resistant cotton varieties.
Collapse
Affiliation(s)
- Muhammad Shehzad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, P.R China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, P.R China
| | - Allah Ditta
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, P.R China
- Plant Breeding, and Genetics Division, Cotton Group, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Punjab, Pakistan
| | - Majid Khan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, P.R China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, P.R China
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, P.R China
| | - Amir Maqbool
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Ahlam Khalofah
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Muhammad Shaban
- Department of Plant Breeding and Genetics, Faculty of Agricultural Science & Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Naeem
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Bareilly, India
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, P.R China
- * E-mail: (KW); (FL)
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, P.R China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- * E-mail: (KW); (FL)
| |
Collapse
|
3
|
Kajiya-Kanegae H, Takanashi H, Fujimoto M, Ishimori M, Ohnishi N, Wacera W F, Omollo EA, Kobayashi M, Yano K, Nakano M, Kozuka T, Kusaba M, Iwata H, Tsutsumi N, Sakamoto W. RAD-seq-Based High-Density Linkage Map Construction and QTL Mapping of Biomass-Related Traits in Sorghum using the Japanese Landrace Takakibi NOG. PLANT & CELL PHYSIOLOGY 2020; 61:1262-1272. [PMID: 32353144 DOI: 10.1093/pcp/pcaa056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Sorghum [Sorghum bicolor (L.) Moench] grown locally by Japanese farmers is generically termed Takakibi, although its genetic diversity compared with geographically distant varieties or even within Takakibi lines remains unclear. To explore the genomic diversity and genetic traits controlling biomass and other physiological traits in Takakibi, we focused on a landrace, NOG, in this study. Admixture analysis of 460 sorghum accessions revealed that NOG belonged to the subgroup that represented Asian sorghums, and it was only distantly related to American/African accessions including BTx623. In an attempt to dissect major traits related to biomass, we generated a recombinant inbred line (RIL) from a cross between BTx623 and NOG, and we constructed a high-density linkage map based on 3,710 single-nucleotide polymorphisms obtained by restriction-site-associated DNA sequencing of 213 RIL individuals. Consequently, 13 fine quantitative trait loci (QTLs) were detected on chromosomes 2, 3, 6, 7, 8 and 9, which included five QTLs for days to heading, three for plant height (PH) and total shoot fresh weight and two for Brix. Furthermore, we identified two dominant loci for PH as being identical to the previously reported dw1 and dw3. Together, these results corroborate the diversified genome of Japanese Takakibi, while the RIL population and high-density linkage map generated in this study will be useful for dissecting other important traits in sorghum.
Collapse
Affiliation(s)
- Hiromi Kajiya-Kanegae
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
- Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8517, Japan
| | - Hideki Takanashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Masaru Fujimoto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Motoyuki Ishimori
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Norikazu Ohnishi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046 Japan
| | - Fiona Wacera W
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046 Japan
| | - Everlyne A Omollo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046 Japan
| | - Masaaki Kobayashi
- Department of Life Sciences Faculty of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571 Japan
| | - Kentaro Yano
- Department of Life Sciences Faculty of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571 Japan
| | - Michiharu Nakano
- Graduate School of Integral Science for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526 Japan
| | - Toshiaki Kozuka
- Graduate School of Integral Science for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526 Japan
| | - Makoto Kusaba
- Graduate School of Integral Science for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526 Japan
| | - Hiroyoshi Iwata
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Nobuhiro Tsutsumi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046 Japan
| |
Collapse
|
4
|
Kuang CH, Zhao XF, Yang K, Zhang ZP, Ding L, Pu ZE, Ma J, Jiang QT, Chen GY, Wang JR, Wei YM, Zheng YL, Li W. Mapping and characterization of major QTL for spike traits in common wheat. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1295-1307. [PMID: 32549690 PMCID: PMC7266891 DOI: 10.1007/s12298-020-00823-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 04/05/2020] [Accepted: 05/04/2020] [Indexed: 05/12/2023]
Abstract
The spike traits of wheat can directly affect yield. F2 and F2:3 lines derived from the cross of the multi-spikelet female 10-A and the uni-spikelet male BE89 were used to detect QTLs for spike length (SL), total spikelet number per spike (TSS), kernel number per spike (KNS) and thousand-kernel weight (TKW) in four different environments. A total of 1098 SNP and 5 SSR were used to construct genetic map of 2398.1 cM with the average distance of 2.2 cM between markers. A total of 11 QTLs were identified for spike traits, including three QTLs for SL, five QTLs for TSS, two QTLs for KNS and one QTL for TKW. The QTLs mapped to chromosomes 2D, 4A, 6A, 7A and 7B explained 8.2-37.8% of the phenotypic variation in single environment. The major QTL confidence interval with distance of 0.5 cM was located on chromosome 4A and detected in multiple environments, which can explain more than 30% of the phenotypic variation for SL, TSS and KNS. Combining IWGSC RefSeq v1.0 and RNA-seq data for 10-A and BE89, we identified 16 genes expressed on spike or grain in four QTL regions. These findings provide insights into improving wheat yield through increasing spikletes in wheat, particularly through the use of the multi-spikelet female 10-A for breeding.
Collapse
Affiliation(s)
- Cheng-Hao Kuang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, People’s Republic of China
- College of Agronomy, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan People’s Republic of China
| | - Xiao-Fang Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, People’s Republic of China
- College of Agronomy, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan People’s Republic of China
| | - Ke Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan People’s Republic of China
| | - Zhi-Peng Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, People’s Republic of China
- College of Agronomy, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan People’s Republic of China
| | - Li Ding
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, People’s Republic of China
- College of Agronomy, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan People’s Republic of China
| | - Zhi-En Pu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, People’s Republic of China
- College of Agronomy, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan People’s Republic of China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan People’s Republic of China
| | - Qian-Tao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan People’s Republic of China
| | - Guo-Yue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan People’s Republic of China
| | - Ji-Rui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan People’s Republic of China
| | - Yu-Ming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan People’s Republic of China
| | - You-Liang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan People’s Republic of China
| | - Wei Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, People’s Republic of China
- College of Agronomy, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan People’s Republic of China
| |
Collapse
|
5
|
Faris JD, Overlander ME, Kariyawasam GK, Carter A, Xu SS, Liu Z. Identification of a major dominant gene for race-nonspecific tan spot resistance in wild emmer wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:829-841. [PMID: 31863156 DOI: 10.1007/s00122-019-03509-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
A single dominant gene found in tetraploid and hexaploid wheat controls broad-spectrum race-nonspecific resistance to the foliar disease tan spot caused by Pyrenophora tritici-repentis. Tan spot is an important foliar disease of durum and common wheat caused by the necrotrophic fungal pathogen Pyrenophora tritici-repentis. Genetic studies in common wheat have shown that pathogen-produced necrotrophic effectors interact with host genes in an inverse gene-for-gene manner to cause disease, but quantitative trait loci (QTLs) with broad race-nonspecific resistance also exist. Less work has been done to understand the genetics of tan spot interactions in durum wheat. Here, we evaluated a set of Langdon durum-wild emmer (Triticum turgidum ssp. dicoccoides) disomic chromosome substitution lines for reaction to four P. tritici-repentis isolates representing races 1, 2, 3, and 5 to identify wild emmer chromosomes potentially containing tan spot resistance genes. Chromosome 3B from the wild emmer accession IsraelA rendered the tan spot-susceptible durum cultivar Langdon resistant to all four fungal isolates. Genetic analysis indicated that a single dominant gene, designated Tsr7, governed resistance. Detailed mapping experiments showed that the Tsr7 locus is likely the same as the race-nonspecific QTL previously identified in the hexaploid wheat cultivars BR34 and Penawawa. Four user-friendly SNP-based semi-thermal asymmetric reverse PCR (STARP) markers cosegregated with Tsr7 and should be useful for marker-assisted selection of resistance. In addition to 3B, other wild emmer chromosomes contributed moderate levels of tan spot resistance, and, as has been shown previously for tetraploid wheat, the Tsn1-Ptr ToxA interaction was not associated with susceptibility. This is the first report of a major dominant gene governing resistance to tan spot in tetraploid wheat.
Collapse
Affiliation(s)
- Justin D Faris
- Northern Crop Science Laboratory, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-Agricultural Research Service, 1616 Albrecht Blvd. North, Fargo, ND, 58102-2765, USA.
| | - Megan E Overlander
- Northern Crop Science Laboratory, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-Agricultural Research Service, 1616 Albrecht Blvd. North, Fargo, ND, 58102-2765, USA
| | - Gayan K Kariyawasam
- Department of Plant Pathology, North Dakota State University, 306 Walster Hall, Fargo, ND, 58105, USA
| | - Arron Carter
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Steven S Xu
- Northern Crop Science Laboratory, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-Agricultural Research Service, 1616 Albrecht Blvd. North, Fargo, ND, 58102-2765, USA
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, 306 Walster Hall, Fargo, ND, 58105, USA.
| |
Collapse
|
6
|
Zhang K, Kuraparthy V, Fang H, Zhu L, Sood S, Jones DC. High-density linkage map construction and QTL analyses for fiber quality, yield and morphological traits using CottonSNP63K array in upland cotton (Gossypium hirsutum L.). BMC Genomics 2019; 20:889. [PMID: 31771502 PMCID: PMC6878679 DOI: 10.1186/s12864-019-6214-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
Background Improving fiber quality and yield are the primary research objectives in cotton breeding for enhancing the economic viability and sustainability of Upland cotton production. Identifying the quantitative trait loci (QTL) for fiber quality and yield traits using the high-density SNP-based genetic maps allows for bridging genomics with cotton breeding through marker assisted and genomic selection. In this study, a recombinant inbred line (RIL) population, derived from cross between two parental accessions, which represent broad allele diversity in Upland cotton, was used to construct high-density SNP-based linkage maps and to map the QTLs controlling important cotton traits. Results Molecular genetic mapping using RIL population produced a genetic map of 3129 SNPs, mapped at a density of 1.41 cM. Genetic maps of the individual chromosomes showed good collinearity with the sequence based physical map. A total of 106 QTLs were identified which included 59 QTLs for six fiber quality traits, 38 QTLs for four yield traits and 9 QTLs for two morphological traits. Sub-genome wide, 57 QTLs were mapped in A sub-genome and 49 were mapped in D sub-genome. More than 75% of the QTLs with favorable alleles were contributed by the parental accession NC05AZ06. Forty-six mapped QTLs each explained more than 10% of the phenotypic variation. Further, we identified 21 QTL clusters where 12 QTL clusters were mapped in the A sub-genome and 9 were mapped in the D sub-genome. Candidate gene analyses of the 11 stable QTL harboring genomic regions identified 19 putative genes which had functional role in cotton fiber development. Conclusion We constructed a high-density genetic map of SNPs in Upland cotton. Collinearity between genetic and physical maps indicated no major structural changes in the genetic mapping populations. Most traits showed high broad-sense heritability. One hundred and six QTLs were identified for the fiber quality, yield and morphological traits. Majority of the QTLs with favorable alleles were contributed by improved parental accession. More than 70% of the mapped QTLs shared the similar map position with previously reported QTLs which suggest the genetic relatedness of Upland cotton germplasm. Identification of QTL clusters could explain the correlation among some fiber quality traits in cotton. Stable and major QTLs and QTL clusters of traits identified in the current study could be the targets for map-based cloning and marker assisted selection (MAS) in cotton breeding. The genomic region on D12 containing the major stable QTLs for micronaire, fiber strength and lint percentage could be potential targets for MAS and gene cloning of fiber quality traits in cotton.
Collapse
Affiliation(s)
- Kuang Zhang
- Crop & Soil Sciences Department, North Carolina State University, Raleigh, NC, 27695, USA
| | - Vasu Kuraparthy
- Crop & Soil Sciences Department, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Hui Fang
- Crop & Soil Sciences Department, North Carolina State University, Raleigh, NC, 27695, USA
| | - Linglong Zhu
- Crop & Soil Sciences Department, North Carolina State University, Raleigh, NC, 27695, USA
| | - Shilpa Sood
- Crop & Soil Sciences Department, North Carolina State University, Raleigh, NC, 27695, USA.,4 Cityplace drive, The Climate Corporation (Bayer U.S. Crop Science), St. Louis, MO, 63141, USA
| | - Don C Jones
- Cotton Incorporated, 6399 Weston Parkway, Cary, NC, 27513, USA
| |
Collapse
|
7
|
Miao Y, Yang S, Jiang Y, Rong J, Yu J. A genetic system on chromosome arm 1BL of wild emmer causes distorted segregation in common wheat. J Genet 2018. [DOI: 10.1007/s12041-018-1041-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Kumari S, Jaiswal V, Mishra VK, Paliwal R, Balyan HS, Gupta PK. QTL mapping for some grain traits in bread wheat ( Triticum aestivum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:909-920. [PMID: 30150865 PMCID: PMC6103944 DOI: 10.1007/s12298-018-0552-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/07/2018] [Accepted: 05/08/2018] [Indexed: 05/19/2023]
Abstract
Grain traits are important agronomic attributes with the market value as well as milling yield of bread wheat. In the present study, quantitative trait loci (QTL) regulating grain traits in wheat were identified. Data for grain area size (GAS), grain width (GWid), factor form density (FFD), grain length-width ratio (GLWR), thousand grain weight (TGW), grain perimeter length (GPL) and grain length (GL) were recorded on a recombinant inbred line derived from the cross of NW1014 × HUW468 at Meerut and Varanasi locations. A linkage map of 55 simple sequence repeat markers for 8 wheat chromosomes was used for QTL analysis by Composite interval mapping. Eighteen QTLs distributed on 8 chromosomes were identified for seven grain traits. Of these, five QTLs for GLWR were found on chromosomes 1A, 6A, 2B, and 7B, three QTLs for GPL were located on chromosomes 4A, 5A and 7B and three QTLs for GAS were mapped on 5D and 7D. Two QTLs were identified on chromosomes 4A and 5A for GL and two QTLs for GWid were identified on chromosomes 7D and 6A. Similarly, two QTLs for FFD were found on chromosomes 1A and 5D. A solitary QTL for TGW was identified on chromosome 2B. For several traits, QTLs were also co-localized on chromosomes 2B, 4A, 5A, 6A, 5D, 7B and 7D. The QTLs detected in the present study may be validated for specific crosses and then used for marker-assisted selection to improve grain quality in bread wheat.
Collapse
Affiliation(s)
- Supriya Kumari
- Molecular Biology Laboratory, Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, U.P. India
| | - Vandana Jaiswal
- Molecular Biology Laboratory, Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, U.P. India
- School of Life Science, Jawaharlal Nehru University, New Delhi, India
| | - Vinod Kumar Mishra
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, U.P. India
| | - Rajneesh Paliwal
- International Institute of Tropical Agriculture (IITA), Ibadan, PMB 5320 Nigeria
| | - Harindra Singh Balyan
- Molecular Biology Laboratory, Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, U.P. India
| | - Pushpendra Kumar Gupta
- Molecular Biology Laboratory, Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, U.P. India
| |
Collapse
|
9
|
Genotyping-by-Sequencing Facilitates a High-Density Consensus Linkage Map for Aegilops umbellulata, a Wild Relative of Cultivated Wheat. G3-GENES GENOMES GENETICS 2017; 7:1551-1561. [PMID: 28364036 PMCID: PMC5427507 DOI: 10.1534/g3.117.039966] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
High-density genetic maps are useful to precisely localize QTL or genes that might be used to improve traits of nutritional and/or economical importance in crops. However, high-density genetic maps are lacking for most wild relatives of crop species, including wheat. Aegilops umbellulata is a wild relative of wheat known for its potential as a source of biotic and abiotic stress resistance genes. In this work, we have developed a framework consensus genetic map using two biparental populations derived from accessions PI 298905, PI 542369, PI 5422375, and PI 554395. The framework map comprised 3009 genotype-by-sequence SNPs with a total map size of 948.72 cM. On average, there were three SNPs per centimorgan for each chromosome. Chromosome 1U was the shortest (66.5 cM), with only 81 SNPs, whereas the remaining chromosomes had between 391 and 591 SNP markers. A total of 2395 unmapped SNPs were added to the linkage maps through a recombination frequency approach, and increased the number of SNPs placed on the consensus map to a total of 5404 markers. Segregation distortion was disproportionally high for chromosome 1U for both populations used to construct component linkage maps, and thus segregation distortion could be one of the probable reasons for the exceptionally reduced linkage size for chromosome 1U. From comparative analysis, Ae. umbellulata chromosomes except 4U showed moderate to strong collinearity with corresponding homeologous chromosomes of hexaploid wheat and barley. The present consensus map may serve as a reference map in QTL mapping and validation projects, and also in genome assembly to develop a reference genome sequence for Ae. umbellulata.
Collapse
|
10
|
Abstract
Understanding the genomic complexity of bread wheat is important for unraveling domestication processes, environmental adaptation, and for future of... Understanding the genomic complexity of bread wheat (Triticum aestivum L.) is a cornerstone in the quest to unravel the processes of domestication and the following adaptation of domesticated wheat to a wide variety of environments across the globe. Additionally, it is of importance for future improvement of the crop, particularly in the light of climate change. Focusing on the adaptation after domestication, a nested association mapping (NAM) panel of 60 segregating biparental populations was developed, mainly involving landrace accessions from the core set of the Watkins hexaploid wheat collection optimized for genetic diversity. A modern spring elite variety, “Paragon,” was used as common reference parent. Genetic maps were constructed following identical rules to make them comparable. In total, 1611 linkage groups were identified, based on recombination from an estimated 126,300 crossover events over the whole NAM panel. A consensus map, named landrace consensus map (LRC), was constructed and contained 2498 genetic loci. These newly developed genetics tools were used to investigate the rules underlying genome fluidity or rigidity, e.g., by comparing marker distances and marker orders. In general, marker order was highly correlated, which provides support for strong synteny between bread wheat accessions. However, many exceptional cases of incongruent linkage groups and increased marker distances were also found. Segregation distortion was detected for many markers, sometimes as hot spots present in different populations. Furthermore, evidence for translocations in at least 36 of the maps was found. These translocations fell, in general, into many different translocation classes, but a few translocation classes were found in several accessions, the most frequent one being the well-known T5B:7B translocation. Loci involved in recombination rate, which is an interesting trait for plant breeding, were identified by QTL analyses using the crossover counts as a trait. In total, 114 significant QTL were detected, nearly half of them with increasing effect from the nonreference parents.
Collapse
|
11
|
Comparative Analysis of Regions with Distorted Segregation in Three Diploid Populations of Potato. G3-GENES GENOMES GENETICS 2016; 6:2617-28. [PMID: 27342736 PMCID: PMC4978915 DOI: 10.1534/g3.116.030031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Genes associated with gametic and zygotic selection could underlie segregation distortion, observed as alterations of expected Mendelian genotypic frequencies in mapping populations. We studied highly dense genetic maps based on single nucleotide polymorphisms to elucidate the genetic nature of distorted segregation in potato. Three intra- and interspecific diploid segregating populations were used. DRH and D84 are crosses between the sequenced doubled monoploid DM 1-3 516 R44 Solanum tuberosum Group Phureja and either RH89-039-16 S. tuberosum or 84SD22, a S. tuberosum × S. chacoense hybrid. MSX902 is an interspecific cross between 84SD22 and Ber83 S. berthaultii × 2 × species mosaic. At the 0.05 significance level, 21%, 57%, and 51% of the total markers mapped in DRH, D84, and MSX902 exhibited distorted segregation, respectively. Segregation distortion regions for DRH were located on chromosomes 9 and 12; for D84 on chromosomes 2, 3, 4, 6, 7, and 8; and on chromosomes 1, 2, 7, 9, and 12 for MSX902. In general, each population had unique segregation distortion regions and directions of distortion. Interspecific crosses showed greater levels of distorted segregation and lower recombination rates as determined from the male parents. The different genomic regions where the segregation distortion regions occurred in the three populations likely reflect unique genetic combinations producing distorted segregation.
Collapse
|
12
|
Ultrahigh-density linkage map for cultivated cucumber (Cucumis sativus L.) using a single-nucleotide polymorphism genotyping array. PLoS One 2015; 10:e0124101. [PMID: 25874931 PMCID: PMC4395401 DOI: 10.1371/journal.pone.0124101] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/26/2015] [Indexed: 01/30/2023] Open
Abstract
Genotyping arrays are tools for high-throughput genotyping, which is beneficial in constructing saturated genetic maps and therefore high-resolution mapping of complex traits. Since the report of the first cucumber genome draft, genetic maps have been constructed mainly based on simple-sequence repeats (SSRs) or on combinations of SSRs and sequence-related amplified polymorphism (SRAP). In this study, we developed the first cucumber genotyping array consisting of 32,864 single-nucleotide polymorphisms (SNPs). These markers cover the cucumber genome with a median interval of ~2 Kb and have expected genotype calls in parents/F1 hybridizations as a training set. The training set was validated with Fluidigm technology and showed 96% concordance with the genotype calls in the parents/F1 hybridizations. Application of the genotyping array was illustrated by constructing a 598.7 cM genetic map based on a ‘9930’ × ‘Gy14’ recombinant inbred line (RIL) population comprised of 11,156 SNPs. Marker collinearity between the genetic map and reference genomes of the two parents was estimated at R2 = 0.97. We also used the array-derived genetic map to investigate chromosomal rearrangements, regional recombination rate, and specific regions with segregation distortions. Finally, 82% of the linkage-map bins were polymorphic in other cucumber variants, suggesting that the array can be applied for genotyping in other lines. The genotyping array presented here, together with the genotype calls of the parents/F1 hybridizations as a training set, should be a powerful tool in future studies with high-throughput cucumber genotyping. An ultrahigh-density linkage map constructed by this genotyping array on RIL population may be invaluable for assembly improvement, and for mapping important cucumber QTLs.
Collapse
|
13
|
Faris JD, Zhang Q, Chao S, Zhang Z, Xu SS. Analysis of agronomic and domestication traits in a durum × cultivated emmer wheat population using a high-density single nucleotide polymorphism-based linkage map. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:2333-48. [PMID: 25186168 DOI: 10.1007/s00122-014-2380-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/15/2014] [Indexed: 05/21/2023]
Abstract
Development of a high-density SNP map and evaluation of QTL shed light on domestication events in tetraploid wheat and the potential utility of cultivated emmer wheat for durum wheat improvement. Cultivated emmer wheat (Triticum turgidum ssp. dicoccum) is tetraploid and considered as one of the eight founder crops that spawned the Agricultural Revolution about 10,000 years ago. Cultivated emmer has non-free-threshing seed and a somewhat fragile rachis, but mutations in genes governing these and other agronomic traits occurred that led to the formation of today's fully domesticated durum wheat (T. turgidum ssp. durum). Here, we evaluated a population of recombinant inbred lines (RILs) derived from a cross between a cultivated emmer accession and a durum wheat variety. A high-density single nucleotide polymorphism (SNP)-based genetic linkage map consisting of 2,593 markers was developed for the identification of quantitative trait loci. The major domestication gene Q had profound effects on spike length and compactness, rachis fragility, and threshability as expected. The cultivated emmer parent contributed increased spikelets per spike, and the durum parent contributed higher kernel weight, which led to the identification of some RILs that had significantly higher grain weight per spike than either parent. Threshability was governed not only by the Q locus, but other loci as well including Tg-B1 on chromosome 2B and a putative Tg-A1 locus on chromosome 2A indicating that mutations in the Tg loci occurred during the transition of cultivated emmer to the fully domesticated tetraploid. These results not only shed light on the events that shaped wheat domestication, but also demonstrate that cultivated emmer is a useful source of genetic variation for the enhancement of durum varieties.
Collapse
Affiliation(s)
- Justin D Faris
- USDA-Agricultural Research Service, Cereal Crops Research Unit, Red River Valley Agricultural Research Unit, Fargo, ND, 58102, USA,
| | | | | | | | | |
Collapse
|
14
|
High density SNP and SSR-based genetic maps of two independent oil palm hybrids. BMC Genomics 2014; 15:309. [PMID: 24767304 PMCID: PMC4234488 DOI: 10.1186/1471-2164-15-309] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 03/25/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oil palm is an important perennial oil crop with an extremely long selection cycle of 10 to 12 years. As such, any tool that speeds up its genetic improvement process, such as marker-assisted breeding is invaluable. Previously, genetic linkage maps based on AFLP, RFLP and SSR markers were developed and QTLs for fatty acid composition and yield components identified. High density genetic maps of crosses of different genetic backgrounds are indispensable tools for investigating oil palm genetics. They are also useful for comparative mapping analyses to identify markers closely linked to traits of interest. RESULTS A 4.5 K customized oil palm SNP array was developed using the Illumina Infinium platform. The SNPs and 252 SSRs were genotyped on two mapping populations, an intraspecific cross with 87 palms and an interspecific cross with 108 palms. Parental maps with 16 linkage groups (LGs), were constructed for the three fruit forms of E. guineensis (dura, pisifera and tenera). Map resolution was further increased by integrating the dura and pisifera maps into an intraspecific integrated map with 1,331 markers spanning 1,867 cM. We also report the first map of a Colombian E. oleifera, comprising 10 LGs with 65 markers spanning 471 cM. Although not very dense due to the high level of homozygosity in E. oleifera, the LGs were successfully integrated with the LGs of the tenera map. Direct comparison between the parental maps identified 603 transferable markers polymorphic in at least two of the parents. Further analysis revealed a high degree of marker transferability covering 1,075 cM, between the intra- and interspecific integrated maps. The interspecific cross displayed higher segregation distortion than the intraspecific cross. However, inclusion of distorted markers in the genetic maps did not disrupt the marker order and no map expansion was observed. CONCLUSIONS The high density SNP and SSR-based genetic maps reported in this paper have greatly improved marker density and genome coverage in comparison with the first reference map based on AFLP and SSR markers. Therefore, it is foreseen that they will be more useful for fine mapping of QTLs and whole genome association mapping studies in oil palm.
Collapse
|
15
|
Faris JD, Zhang Z, Garvin DF, Xu SS. Molecular and comparative mapping of genes governing spike compactness from wild emmer wheat. Mol Genet Genomics 2014; 289:641-51. [PMID: 24652470 DOI: 10.1007/s00438-014-0836-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 02/26/2014] [Indexed: 12/23/2022]
Abstract
The development and morphology of the wheat spike is important because the spike is where reproduction occurs and it holds the grains until harvest. Therefore, genes that influence spike morphology are of interest from both theoretical and practical stand points. When substituted for the native chromosome 2A in the tetraploid Langdon (LDN) durum wheat background, the Triticum turgidum ssp. dicoccoides chromosome 2A from accession IsraelA confers a short, compact spike with fewer spikelets per spike compared to LDN. Molecular mapping and quantitative trait loci (QTL) analysis of these traits in a homozygous recombinant population derived from LDN × the chromosome 2A substitution line (LDNIsA-2A) indicated that the number of spikelets per spike and spike length were controlled by linked, but different, loci on the long arm of 2A. A QTL explaining most of the variation for spike compactness coincided with the QTL for spike length. Comparative mapping indicated that the QTL for number of spikelets per spike overlapped with a previously mapped QTL for Fusarium head blight susceptibility. The genes governing spike length and compactness were not orthologous to either sog or C, genes known to confer compact spikes in diploid and hexaploid wheat, respectively. Mapping and sequence analysis indicated that the gene governing spike length and compactness derived from wild emmer could be an ortholog of the barley Cly1/Zeo gene, which research indicates is an AP2-like gene pleiotropically affecting cleistogamy, flowering time, and rachis internode length. This work provides researchers with knowledge of new genetic loci and associated markers that may be useful for manipulating spike morphology in durum wheat.
Collapse
Affiliation(s)
- Justin D Faris
- USDA-Agricultural Research Service NPA NCSL, Cereal Crops Research Unit, Red River Valley Agricultural Research Center, 1605 Albrecht BLVD, Fargo, ND, 58102-2765, USA,
| | | | | | | |
Collapse
|
16
|
Zhi Y, Li H, Zhang H, Gang G. Identification and utility of sequence related amplified polymorphism (SRAP) markers linked to bacterial wilt resistance genes in potato. ACTA ACUST UNITED AC 2014. [DOI: 10.5897/ajb2013.13021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
17
|
Segregation distortion in homozygous lines obtained via anther culture and maize doubled haploid methods in comparison to single seed descent in wheat (Triticum aestivum L.). ELECTRON J BIOTECHN 2014. [DOI: 10.1016/j.ejbt.2013.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
18
|
Construction of microsatellite-based linkage map and mapping of nectarilessness and hairiness genes in Gossypium tomentosum. J Genet 2013; 92:445-59. [DOI: 10.1007/s12041-013-0286-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Li W, Zhu H, Challa GS, Zhang Z. A non-additive interaction in a single locus causes a very short root phenotype in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1189-1200. [PMID: 23381806 DOI: 10.1007/s00122-013-2046-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/09/2013] [Indexed: 06/01/2023]
Abstract
Non-additive allelic interactions underlie over dominant and under dominant inheritance, which explain positive and negative heterosis. These heteroses are often observed in the aboveground traits, but rarely reported in root. We identified a very short root (VSR) phenotype in the F1 hybrid between the common wheat (Triticum aestivum L.) landrace Chinese Spring and synthetic wheat accession TA4152-71. When germinated in tap water, primary roots of the parental lines reached ~15 cm 10 days after germination, but those of the F1 hybrid were ~3 cm long. Selfing populations segregated at a 1 (long-root) to 1 (short-root) ratio, indicating that VSR is controlled by a non-additive interaction between two alleles in a single gene locus, designated as Vsr1. Genome mapping localized the Vsr1 locus in a 3.8-cM interval delimited by markers XWL954 and XWL2506 on chromosome arm 5DL. When planted in vermiculite with supplemental fertilizer, the F1 hybrid had normal root growth, virtually identical to the parental lines, but the advanced backcrossing populations segregated for VSR, indicating that the F1 VSR expression was suppressed by interactions between other genes in the parental background and the vermiculite conditions. Preliminary physiological analyses showed that the VSR suppression is independent of light status but related to potassium homeostasis. Phenotyping additional hybrids between common wheat and synthetics revealed a high VSR frequency and their segregation data suggested more Vsr loci involved. Because the VSR plants can be regularly maintained and readily phenotyped at the early developmental stage, it provides a model for studies of non-additive interactions in wheat.
Collapse
Affiliation(s)
- Wanlong Li
- Department of Biology and Microbiology, South Dakota State University, 252 North Plain Biostress Laboratory, Brookings, SD 57007, USA.
| | | | | | | |
Collapse
|
20
|
Diversifying sunflower germplasm by integration and mapping of a novel male fertility restoration gene. Genetics 2013; 193:727-37. [PMID: 23307903 DOI: 10.1534/genetics.112.146092] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The combination of a single cytoplasmic male-sterile (CMS) PET-1 and the corresponding fertility restoration (Rf) gene Rf1 is used for commercial hybrid sunflower (Helianthus annuus L., 2n = 34) seed production worldwide. A new CMS line 514A was recently developed with H. tuberosus cytoplasm. However, 33 maintainers and restorers for CMS PET-1 and 20 additional tester lines failed to restore the fertility of CMS 514A. Here, we report the discovery, characterization, and molecular mapping of a novel Rf gene for CMS 514A derived from an amphiploid (Amp H. angustifolius/P 21, 2n = 68). Progeny analysis of the male-fertile (MF) plants (2n = 35) suggested that this gene, designated Rf6, was located on a single alien chromosome. Genomic in situ hybridization (GISH) indicated that Rf6 was on a chromosome with a small segment translocation on the long arm in the MF progenies (2n = 34). Rf6 was mapped to linkage group (LG) 3 of the sunflower SSR map. Eight markers were identified to be linked to this gene, covering a distance of 10.8 cM. Two markers, ORS13 and ORS1114, were only 1.6 cM away from the gene. Severe segregation distortions were observed for both the fertility trait and the linked marker loci, suggesting the possibility of a low frequency of recombination or gamete selection in this region. This study discovered a new CMS/Rf gene system derived from wild species and provided significant insight into the genetic basis of this system. This will diversify the germplasm for sunflower breeding and facilitate understanding of the interaction between the cytoplasm and nuclear genes.
Collapse
|
21
|
Zhang L, Luo JT, Hao M, Zhang LQ, Yuan ZW, Yan ZH, Liu YX, Zhang B, Liu BL, Liu CJ, Zhang HG, Zheng YL, Liu DC. Genetic map of Triticum turgidum based on a hexaploid wheat population without genetic recombination for D genome. BMC Genet 2012; 13:69. [PMID: 22888829 PMCID: PMC3470960 DOI: 10.1186/1471-2156-13-69] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 08/08/2012] [Indexed: 12/13/2022] Open
Abstract
Background A synthetic doubled-haploid hexaploid wheat population, SynDH1, derived from the spontaneous chromosome doubling of triploid F1 hybrid plants obtained from the cross of hybrids Triticum turgidum ssp. durum line Langdon (LDN) and ssp. turgidum line AS313, with Aegilops tauschii ssp. tauschii accession AS60, was previously constructed. SynDH1 is a tetraploidization-hexaploid doubled haploid (DH) population because it contains recombinant A and B chromosomes from two different T. turgidum genotypes, while all the D chromosomes from Ae. tauschii are homogenous across the whole population. This paper reports the construction of a genetic map using this population. Results Of the 606 markers used to assemble the genetic map, 588 (97%) were assigned to linkage groups. These included 513 Diversity Arrays Technology (DArT) markers, 72 simple sequence repeat (SSR), one insertion site-based polymorphism (ISBP), and two high-molecular-weight glutenin subunit (HMW-GS) markers. These markers were assigned to the 14 chromosomes, covering 2048.79 cM, with a mean distance of 3.48 cM between adjacent markers. This map showed good coverage of the A and B genome chromosomes, apart from 3A, 5A, 6A, and 4B. Compared with previously reported maps, most shared markers showed highly consistent orders. This map was successfully used to identify five quantitative trait loci (QTL), including two for spikelet number on chromosomes 7A and 5B, two for spike length on 7A and 3B, and one for 1000-grain weight on 4B. However, differences in crossability QTL between the two T. turgidum parents may explain the segregation distortion regions on chromosomes 1A, 3B, and 6B. Conclusions A genetic map of T. turgidum including 588 markers was constructed using a synthetic doubled haploid (SynDH) hexaploid wheat population. Five QTLs for three agronomic traits were identified from this population. However, more markers are needed to increase the density and resolution of this map in the future study.
Collapse
Affiliation(s)
- Li Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Rodríguez-Suárez C, Giménez MJ, Gutiérrez N, Avila CM, Machado A, Huttner E, Ramírez MC, Martín AC, Castillo A, Kilian A, Martín A, Atienza SG. Development of wild barley (Hordeum chilense)-derived DArT markers and their use into genetic and physical mapping. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:713-22. [PMID: 22048641 DOI: 10.1007/s00122-011-1741-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 10/18/2011] [Indexed: 05/24/2023]
Abstract
Diversity arrays technology (DArT) genomic libraries were developed from H. chilense accessions to support robust genotyping of this species and a novel crop comprising H. chilense genome (e.g., tritordeums). Over 11,000 DArT clones were obtained using two complexity reduction methods. A subset of 2,209 DArT markers was identified on the arrays containing these clones as polymorphic between parents and segregating in a population of 92 recombinant inbred lines (RIL) developed from the cross between H. chilense accessions H1 and H7. Using the segregation data a high-density map of 1,503 cM was constructed with average inter-bin density of 2.33 cM. A subset of DArT markers was also mapped physically using a set of wheat-H. chilense chromosome addition lines. It allowed the unambiguous assignment of linkage groups to chromosomes. Four segregation distortion regions (SDRs) were found on the chromosomes 2H(ch), 3H(ch) and 5H(ch) in agreement with previous findings in barley. The new map improves the genome coverage of previous H. chilense maps. H. chilense-derived DArT markers will enable further genetic studies in ongoing projects on hybrid wheat, seed carotenoid content improvement or tritordeum breeding program. Besides, the genetic map reported here will be very useful as the basis to develop comparative genomics studies with barley and model species.
Collapse
Affiliation(s)
- C Rodríguez-Suárez
- Instituto de Agricultura Sostenible, IAS-CSIC, Apdo. 4084, 14080, Córdoba, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Growth, seed development and genetic analysis in wild type and Def mutant of Pisum sativum L. BMC Res Notes 2011; 4:489. [PMID: 22078070 PMCID: PMC3231984 DOI: 10.1186/1756-0500-4-489] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 11/11/2011] [Indexed: 11/10/2022] Open
Abstract
Background The def mutant pea (Pisum sativum L) showed non-abscission of seeds from the funicule. Here we present data on seed development and growth pattern and their relationship in predicting this particular trait in wild type and mutant lines as well as the inheritance pattern of the def allele in F2 and F3 populations. Findings Pod length and seed fresh weight increase with fruit maturity and this may affect the abscission event in pea seeds. However, the seed position in either the distal and proximal ends of the pod did not show any difference. The growth factors of seed fresh weight (FW), width of funicles (WFN), seed width (SW) and seed height (SH) were highly correlated and their relationships were determined in both wild type and def mutant peas. The coefficient of determination R2 values for the relationship between WFN and FW, SW and SH and their various interactions were higher for the def dwarf type. Stepwise multiple regression analysis showed that variation of WFN was associated with SH and SW. Pearson's chi square analysis revealed that the inheritance and segregation of the Def locus in 3:1 ratio was significant in two F2 populations. Structural analysis of the F3 population was used to confirm the inheritance status of the Def locus in F2 heterozygote plants. Conclusions This study investigated the inheritance of the presence or absence of the Def allele, controlling the presence of an abscission zone (AZ) or an abscission-less zone (ALZ) forming in wild type and mutant lines respectively. The single major gene (Def) controlling this phenotype was monogenic and def mutants were characterized and controlled by the homozygous recessive def allele that showed no palisade layers in the hilum region of the seed coat.
Collapse
|
24
|
Complex genetic nature of sex-independent transmission ratio distortion in Asian rice species: the involvement of unlinked modifiers and sex-specific mechanisms. Heredity (Edinb) 2011; 108:242-7. [PMID: 21792227 DOI: 10.1038/hdy.2011.64] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Transmission ratio distortion (TRD), in which one allele is transmitted more frequently than the opposite allele, is presumed to act as a driving force in the emergence of a reproductive barrier. TRD acting in a sex-specific manner has been frequently observed in interspecific and intraspecific hybrids across a broad range of organisms. In contrast, sex-independent TRD (siTRD), which results from preferential transmission of one of the two alleles in the heterozygote through both sexes, has been detected in only a few plant species. We previously reported an S(6) locus-mediated siTRD, in which the S(6) allele from an Asian wild rice strain (Oryza rufipogon) was transmitted more frequently than the S(6)(a) allele from an Asian cultivated rice strain (O. sativa) through both male and female gametes in heterozygous plants. Here, we report on the effect of a difference in genetic background on S(6) locus-mediated siTRD, based on the analysis using near-isogenic lines and the original wild strain as a parental strain for crossing. We found that the degree of TRD through the male gametes varied depending on the genetic background of the female (pistil) plants. Despite the occurrence of TRD through both male and female gametes, abnormality was detected in ovules, but not in pollen grains, in the heterozygote. These results suggest the involvement of unlinked modifiers and developmentally distinct, sex-specific genetic mechanisms in S(6) locus-mediated siTRD, raising the possibility that siTRD driven by a single locus may be affected by multiple genetic factors harbored in natural populations.
Collapse
|
25
|
Abstract
The transfer of genes between Triticum aestivum (hexaploid bread wheat) and T. turgidum (tetraploid durum wheat) holds considerable potential for genetic improvement of both these closely related species. Five different T. aestivum/T. turgidum ssp. durum crosses were investigated using Diversity Arrays Technology (DArT) markers to determine the inheritance of parental A, B and D genome material in subsequent generations derived from these crosses. The proportions of A, B and D chromosomal segments inherited from the hexaploid parent were found to vary significantly among individual crosses. F(2) populations retained widely varying quantities of D genome material, ranging from 99% to none. The relative inheritance of bread wheat and durum alleles in the A and B genomes of derived lines also varied among the crosses. Within any one cross, progeny without D chromosomes in general had significantly more A and B genome durum alleles than lines retaining D chromosomes. The ability to select for and manipulate this non-random segregation in bread wheat/durum crosses will assist in efficient backcrossing of selected characters into the recurrent durum or hexaploid genotype of choice. This study illustrates the utility of DArT markers in the study of inter-specific crosses to commercial crop species.
Collapse
|
26
|
Barchi L, Lanteri S, Portis E, Stàgel A, Valè G, Toppino L, Rotino GL. Segregation distortion and linkage analysis in eggplant (Solanum melongena L.). Genome 2011; 53:805-15. [PMID: 20962887 DOI: 10.1139/g10-073] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An anther-derived doubled haploid (DH) population and an F2 mapping population were developed from an intraspecific hybrid between the eggplant breeding lines 305E40 and 67/3. The former incorporates an introgressed segment from Solanum aethiopicum Gilo Group carrying the gene Rfo-sa1, which confers resistance to Fusarium oxysporum; the latter is a selection from an intraspecific cross involving two conventional eggplant varieties and lacks Rfo-sa1. Initially, 28 AFLP primer combinations (PCs) were applied to a sample of 93 F2 individuals and 93 DH individuals, from which 170 polymorphic AFLP fragments were identified. In the DH population, the segregation of 117 of these AFLPs as well as markers closely linked to Rfo-sa1 was substantially distorted, while in the F2 population, segregation distortion was restricted to just 10 markers, and thus the latter was chosen for map development. A set of 141 F2 individuals was genotyped with 73 AFLP PCs (generating 406 informative markers), 32 SSRs, 4 tomato RFLPs, and 3 CAPS markers linked to Rfo-sa1. This resulted in the assignment of 348 markers to 12 major linkage groups. The framework map covered 718.7 cM, comprising 238 markers (212 AFLPs, 22 SSRs, 1 RFLP, and the Rfo-sa1 CAPS). Marker order and inter-marker distances in this eggplant map were largely consistent with those reported in a recently published SSR-based map. From an eggplant breeding perspective, DH populations produced by anther culture appear to be subject to massive segregation distortion and thus may not be very efficient in capturing the full range of genetic variation present in the parental lines.
Collapse
Affiliation(s)
- Lorenzo Barchi
- University of Turin, Department of Exploitation and Protection of the Agricultural and Forestry Resources (DiVaPRA), Plant Genetics and Breeding, Via Grugliasco (TO), Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
Genome structure of cotton revealed by a genome-wide SSR genetic map constructed from a BC1 population between gossypium hirsutum and G. barbadense. BMC Genomics 2011; 12:15. [PMID: 21214949 PMCID: PMC3031231 DOI: 10.1186/1471-2164-12-15] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Accepted: 01/09/2011] [Indexed: 11/28/2022] Open
Abstract
Background Cotton, with a large genome, is an important crop throughout the world. A high-density genetic linkage map is the prerequisite for cotton genetics and breeding. A genetic map based on simple polymerase chain reaction markers will be efficient for marker-assisted breeding in cotton, and markers from transcribed sequences have more chance to target genes related to traits. To construct a genome-wide, functional marker-based genetic linkage map in cotton, we isolated and mapped expressed sequence tag-simple sequence repeats (EST-SSRs) from cotton ESTs derived from the A1, D5, (AD)1, and (AD)2 genome. Results A total of 3177 new EST-SSRs developed in our laboratory and other newly released SSRs were used to enrich our interspecific BC1 genetic linkage map. A total of 547 loci and 911 loci were obtained from our EST-SSRs and the newly released SSRs, respectively. The 1458 loci together with our previously published data were used to construct an updated genetic linkage map. The final map included 2316 loci on the 26 cotton chromosomes, 4418.9 cM in total length and 1.91 cM in average distance between adjacent markers. To our knowledge, this map is one of the three most dense linkage maps in cotton. Twenty-one segregation distortion regions (SDRs) were found in this map; three segregation distorted chromosomes, Chr02, Chr16, and Chr18, were identified with 99.9% of distorted markers segregating toward the heterozygous allele. Functional analysis of SSR sequences showed that 1633 loci of this map (70.6%) were transcribed loci and 1332 loci (57.5%) were translated loci. Conclusions This map lays groundwork for further genetic analyses of important quantitative traits, marker-assisted selection, and genome organization architecture in cotton as well as for comparative genomics between cotton and other species. The segregation distorted chromosomes can be a guide to identify segregation distortion loci in cotton. The annotation of SSR sequences identified frequent and rare gene ontology items on each chromosome, which is helpful to discover functions of cotton chromosomes.
Collapse
|
28
|
Construction of a high-density composite map and comparative mapping of segregation distortion regions in barley. Mol Genet Genomics 2010; 284:319-31. [DOI: 10.1007/s00438-010-0570-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Accepted: 08/13/2010] [Indexed: 11/26/2022]
|
29
|
Hernández-Ibarra NK, Morelos RM, Cruz P, Galindo-Sanchez CE, Avila S, Ramirez JL, Ibarra AM. Allotriploid Genotypic Assignment in Abalone Larvae by Detection of Microsatellite-Recombinant Genotypes. J Hered 2010; 101:476-90. [DOI: 10.1093/jhered/esq027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- N Karina Hernández-Ibarra
- Centro de Investigaciones Biológicas del Noroeste SC, Aquaculture Program, Aquaculture Genetics and Breeding Laboratory, Mar Bermejo 195, La Paz BCS 23090, Mexico
| | | | | | | | | | | | | |
Collapse
|
30
|
Faris JD, Friesen TL. Reevaluation of a tetraploid wheat population indicates that the Tsn1-ToxA interaction is the only factor governing Stagonospora nodorum blotch susceptibility. PHYTOPATHOLOGY 2009; 99:906-912. [PMID: 19594309 DOI: 10.1094/phyto-99-8-0906] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The wheat Tsn1 gene on chromosome 5B confers sensitivity to a host-selective toxin produced by the pathogens that cause tan spot and Stagonospora nodorum blotch (SNB) known as Ptr ToxA and SnToxA, respectively (hereafter referred to as ToxA). A compatible Tsn1-ToxA interaction is known to play a major role in conferring susceptibility of hexaploid (common) wheat to SNB. However, a recent study by another group suggested that the Tsn1-ToxA interaction was not relevant in conferring susceptibility of the tetraploid (durum) wheat cv. Langdon (LDN). Here, we reevaluated the role of the Tsn1-ToxA interaction in governing SNB susceptibility using the same mapping population and Stagonospora nodorum isolate (Sn2000) as were used in the previous study. Results of our quantitative trait locus analysis showed that the Tsn1 locus accounted for 95% of the variation in SNB. In addition, inoculation of the mapping population with two ToxA-knockout strains of Sn2000 revealed that the entire population was resistant. Furthermore, several LDN Tsn1-disrupted mutants were evaluated and found to be resistant to SNB. Together, these results prove unequivocally that Tsn1 is the only factor present along chromosome 5B that governs response to SNB in this population and that a compatible Tsn1-ToxA interaction is necessary for the manifestation of disease. Therefore, the results from the previous study are refuted.
Collapse
Affiliation(s)
- Justin D Faris
- United States Department of Agriculture, Agricultural Research Service Cereal Crops Research Unit, Northern Crop Science Laboratory, Fargo, ND 58105, USA.
| | | |
Collapse
|
31
|
Li G, Fang T, Zhang H, Xie C, Li H, Yang T, Nevo E, Fahima T, Sun Q, Liu Z. Molecular identification of a new powdery mildew resistance gene Pm41 on chromosome 3BL derived from wild emmer (Triticum turgidum var. dicoccoides). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 119:531-539. [PMID: 19471905 DOI: 10.1007/s00122-009-1061-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 04/30/2009] [Indexed: 05/26/2023]
Abstract
Powdery mildew caused by Blumeria graminis f. sp. tritici is an important wheat disease in China and other parts of the world. Wild emmer (Triticum turgidum var. dicoccoides) is the immediate progenitor of cultivated tetraploid and hexaploid wheats and thus an important resource for wheat improvement. Wild emmer accession IW2 collected from Mount Hermon, Israel, is highly resistant to powdery mildew at the seedling and adult plant stages. Genetic analysis using an F(2) segregating population and F(2:3) families, derived from a cross between susceptible durum cultivar Langdon and wild emmer accession IW2, indicated that a single dominant gene was responsible for the resistance of IW2. Bulked segregant and molecular marker analyses detected that six polymorphic SSR, one ISBP, and three EST-STS markers on chromosome 3BL bin 0.63-1.00 were linked to the resistance gene. Allelic variations of resistance-linked EST-STS marker BE489472 revealed that the allele was present only in wild emmer but absent in common wheat. Segregation distortion was observed for the powdery mildew resistance allele and its linked SSR markers with preferential transmission of Langdon alleles over IW2 alleles. The resistance gene was introgressed into common wheat by backcrossing and marker-assisted selection. Since no designated powdery mildew resistance gene has been found on chromosome 3BL, the resistance gene derived from wild emmer accession IW2 appears to be new one and was consequently designated Pm41.
Collapse
Affiliation(s)
- Genqiao Li
- State Key Laboratory for Agrobiotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement, Ministry of Education, China Agricultural University, Beijing 100193, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Francki MG, Walker E, Crawford AC, Broughton S, Ohm HW, Barclay I, Wilson RE, McLean R. Comparison of genetic and cytogenetic maps of hexaploid wheat (Triticum aestivum L.) using SSR and DArT markers. Mol Genet Genomics 2008. [PMID: 19020902 DOI: 10.1007/s00438‐008‐0403‐9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A number of technologies are available to increase the abundance of DNA markers and contribute to developing high resolution genetic maps suitable for genetic analysis. The aim of this study was to expand the number of Diversity Array Technology (DArT) markers on the wheat array that can be mapped in the wheat genome, and to determine their chromosomal location with respect to simple sequence repeat (SSR) markers and their position on the cytogenetic map. A total of 749 and 512 individual DArT and SSR markers, respectively, were identified on at least one of four genetic maps derived from recombinant inbred line (RIL) or doubled haploid (DH) populations. A number of clustered DArT markers were observed in each genetic map, in which 20-34% of markers were redundant. Segregation distortion of DArT and SSR markers was also observed in each mapping population. Only 14% of markers on the Version 2.0 wheat array were assigned to chromosomal bins by deletion mapping using aneuploid lines. In this regard, methylation effects need to be considered when applying DArT marker in genetic mapping. However, deletion mapping of DArT markers provides a reference to align genetic and cytogenetic maps and estimate the coverage of DNA markers across the wheat genome.
Collapse
Affiliation(s)
- Michael G Francki
- Department of Agriculture and Food Western Australia, South Perth, WA 6151, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Francki MG, Walker E, Crawford AC, Broughton S, Ohm HW, Barclay I, Wilson RE, McLean R. Comparison of genetic and cytogenetic maps of hexaploid wheat (Triticum aestivum L.) using SSR and DArT markers. Mol Genet Genomics 2008; 281:181-91. [PMID: 19020902 DOI: 10.1007/s00438-008-0403-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 11/03/2008] [Indexed: 11/28/2022]
Abstract
A number of technologies are available to increase the abundance of DNA markers and contribute to developing high resolution genetic maps suitable for genetic analysis. The aim of this study was to expand the number of Diversity Array Technology (DArT) markers on the wheat array that can be mapped in the wheat genome, and to determine their chromosomal location with respect to simple sequence repeat (SSR) markers and their position on the cytogenetic map. A total of 749 and 512 individual DArT and SSR markers, respectively, were identified on at least one of four genetic maps derived from recombinant inbred line (RIL) or doubled haploid (DH) populations. A number of clustered DArT markers were observed in each genetic map, in which 20-34% of markers were redundant. Segregation distortion of DArT and SSR markers was also observed in each mapping population. Only 14% of markers on the Version 2.0 wheat array were assigned to chromosomal bins by deletion mapping using aneuploid lines. In this regard, methylation effects need to be considered when applying DArT marker in genetic mapping. However, deletion mapping of DArT markers provides a reference to align genetic and cytogenetic maps and estimate the coverage of DNA markers across the wheat genome.
Collapse
Affiliation(s)
- Michael G Francki
- Department of Agriculture and Food Western Australia, South Perth, WA 6151, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Qi LL, Pumphrey MO, Friebe B, Chen PD, Gill BS. Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 117:1155-66. [PMID: 18712343 DOI: 10.1007/s00122-008-0853-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 07/16/2008] [Indexed: 05/24/2023]
Abstract
Fusarium head blight (FHB) resistance was identified in the alien species Leymus racemosus, and wheat-Leymus introgression lines with FHB resistance were reported previously. Detailed molecular cytogenetic analysis of alien introgressions T01, T09, and T14 and the mapping of Fhb3, a new gene for FHB resistance, are reported here. The introgression line T09 had an unknown wheat-Leymus translocation chromosome. A total of 36 RFLP markers selected from the seven homoeologous groups of wheat were used to characterize T09 and determine the homoeologous relationship of the introgressed Leymus chromosome with wheat. Only short arm markers for group 7 detected Leymus-specific fragments in T09, whereas 7AS-specific RFLP fragments were missing. C-banding and genomic in situ hybridization results indicated that T09 has a compensating Robertsonian translocation T7AL.7Lr#1S involving the long arm of wheat chromosome 7A and the short arm of Leymus chromosome 7Lr#1 substituting for chromosome arm 7AS of wheat. Introgression lines T01 (2n = 44) and T14 (2n = 44) each had two pairs of independent translocation chromosomes. T01 had T4BS.4BL-7Lr#1S + T4BL-7Lr#1S.5Lr#1S. T14 had T6BS.6BL-7Lr#1S + T6BL.5Lr#1S. These translocations were recovered in the progeny of the irradiated line Lr#1 (T5Lr#1S.7Lr#1S). The three translocation lines, T01, T09, and T14, and the disomic addition 7Lr#1 were consistently resistant to FHB in greenhouse point-inoculation experiments, whereas the disomic addition 5Lr#1 was susceptible. The data indicated that at least one novel FHB resistance gene from Leymus, designated Fhb3, resides in the distal region of the short arm of chromosome 7Lr#1, because the resistant translocation lines share a common distal segment of 7Lr#1S. Three PCR-based markers, BE586744-STS, BE404728-STS, and BE586111-STS, specific for 7Lr#1S were developed to expedite marker-assisted selection in breeding programs.
Collapse
Affiliation(s)
- L L Qi
- Wheat Genetic and Genomic Resources Center, Department of Plant Pathology, Kansas State University, Manhattan, KS 66506-5502, USA
| | | | | | | | | |
Collapse
|
35
|
Yang K, Moon JK, Jeong N, Back K, Kim HM, Jeong SC. Genome structure in soybean revealed by a genomewide genetic map constructed from a single population. Genomics 2008; 92:52-9. [PMID: 18486440 DOI: 10.1016/j.ygeno.2008.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 03/18/2008] [Accepted: 03/18/2008] [Indexed: 11/28/2022]
Abstract
A complete genetic linkage map of the soybean, in which sequence-based (SB) genetic markers are evenly distributed genomewide, was constructed from an F(12) population composed of 113 recombinant inbred lines derived from an interspecific cross involving Korean genotypes Hwangkeum and IT182932. Several approaches were employed for the development of 112 novel SB markers targeting both the gaps and the ends of the linkage groups (LGs). The resultant map harbored 20 well-resolved LGs presumed to correspond to the 20 pairs of soybean chromosomes. The map allowed us to identify the important chromosomal structures that were not observed in the integrated genetic maps, to identify the new potentially gene-rich regions, to detect segregation distortion regions within the whole genome, and to extend the ends of the LGs. The results will facilitate the further discovery of agronomically relevant genetic loci in the heretofore neglected chromosomal regions and should also provide some important links between the soybean genetic, physical, and genome sequence maps in the regions.
Collapse
Affiliation(s)
- Kiwoung Yang
- BioEvaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongwon, Chungbuk 363-883, Republic of Korea
| | | | | | | | | | | |
Collapse
|
36
|
Peleg Z, Saranga Y, Suprunova T, Ronin Y, Röder MS, Kilian A, Korol AB, Fahima T. High-density genetic map of durum wheat x wild emmer wheat based on SSR and DArT markers. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 117:103-15. [PMID: 18437346 DOI: 10.1007/s00122-008-0756-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 03/26/2008] [Indexed: 05/18/2023]
Abstract
A genetic linkage map of tetraploid wheat was constructed based on a cross between durum wheat [Triticum turgidum ssp. durum (Desf.) MacKey] cultivar Langdon and wild emmer wheat [T. turgidum ssp. dicoccoides (Körn.) Thell.] accession G18-16. One hundred and fifty-two single-seed descent derived F(6) recombinant inbred lines (RILs) were analyzed with a total of 690 loci, including 197 microsatellite and 493 DArT markers. Linkage analysis defined 14 linkage groups. Most markers were mapped to the B-genome (60%), with an average of 57 markers per chromosome and the remaining 40% mapped to the A-genome, with an average of 39 markers per chromosome. To construct a stabilized (skeleton) map, markers interfering with map stability were removed. The skeleton map consisted of 307 markers with a total length of 2,317 cM and average distance of 7.5 cM between adjacent markers. The length of individual chromosomes ranged between 112 cM for chromosome 4B to 217 cM for chromosome 3B. A fraction (30.1%) of the markers deviated significantly from the expected Mendelian ratios; clusters of loci showing distorted segregation were found on chromosomes 1A, 1BL, 2BS, 3B, and 4B. DArT markers showed high proportion of clustering, which may be indicative of gene-rich regions. Three hundred and fifty-two new DArT markers were mapped for the first time on the current map. This map provides a useful groundwork for further genetic analyses of important quantitative traits, positional cloning, and marker-assisted selection, as well as for genome comparative genomics and genome organization studies in wheat and other cereals.
Collapse
Affiliation(s)
- Zvi Peleg
- Department of Evolutionary and Environmental Biology, The Institute of Evolution, Faculty of Science and Science Education, University of Haifa, Mt. Carmel, 31905 Haifa, Israel
| | | | | | | | | | | | | | | |
Collapse
|