1
|
Abstract
The ribosome translates the genetic code into proteins in all domains of life. Its size and complexity demand long-range interactions that regulate ribosome function. These interactions are largely unknown. Here, we apply a global coevolution method, statistical coupling analysis (SCA), to identify coevolving residue networks (sectors) within the 23S ribosomal RNA (rRNA) of the large ribosomal subunit. As in proteins, SCA reveals a hierarchical organization of evolutionary constraints with near-independent groups of nucleotides forming physically contiguous networks within the three-dimensional structure. Using a quantitative, continuous-culture-with-deep-sequencing assay, we confirm that the top two SCA-predicted sectors contribute to ribosome function. These sectors map to distinct ribosome activities, and their origins trace to phylogenetic divergences across all domains of life. These findings provide a foundation to map ribosome allostery, explore ribosome biogenesis, and engineer ribosomes for new functions. Despite differences in chemical structure, protein and RNA enzymes appear to share a common internal logic of interaction and assembly.
Collapse
|
2
|
Kurylo CM, Parks MM, Juette MF, Zinshteyn B, Altman RB, Thibado JK, Vincent CT, Blanchard SC. Endogenous rRNA Sequence Variation Can Regulate Stress Response Gene Expression and Phenotype. Cell Rep 2020; 25:236-248.e6. [PMID: 30282032 PMCID: PMC6312700 DOI: 10.1016/j.celrep.2018.08.093] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 08/16/2018] [Accepted: 08/30/2018] [Indexed: 11/30/2022] Open
Abstract
Prevailing dogma holds that ribosomes are uniform in composition and function. Here, we show that nutrient limitation-induced stress in E. coli changes the relative expression of rDNA operons to alter the rRNA composition within the actively translating ribosome pool. The most upregulated operon encodes the unique 16S rRNA, rrsH, distinguished by conserved sequence variation within the small ribosomal subunit. rrsH-bearing ribosomes affect the expression of functionally coherent gene sets and alter the levels of the RpoS sigma factor, the master regulator of the general stress response. These impacts are associated with phenotypic changes in antibiotic sensitivity, biofilm formation, and cell motility and are regulated by stress response proteins, RelA and RelE, as well as the metabolic enzyme and virulence-associated protein, AdhE. These findings establish that endogenously encoded, naturally occurring rRNA sequence variation can modulate ribosome function, central aspects of gene expression regulation, and cellular physiology. Most organisms encode multiple, distinct copies of rRNA genes, rendering the composition of the ribosome pool intrinsically heterogeneous. Here, Kurylo et al. show that nutrient limitation in E. coli upregulates the expression of ribosomes bearing conserved sequence variation in 16S rRNA that can regulate gene expression and phenotype.
Collapse
Affiliation(s)
- Chad M Kurylo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Matthew M Parks
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Manuel F Juette
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Boris Zinshteyn
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Roger B Altman
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Jordana K Thibado
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - C Theresa Vincent
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Scott C Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; Tri-Institutional Training Program in Chemical Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Kulik M, Markowska-Zagrajek A, Wojciechowska M, Grzela R, Wituła T, Trylska J. Helix 69 of Escherichia coli 23S ribosomal RNA as a peptide nucleic acid target. Biochimie 2017; 138:32-42. [PMID: 28396015 DOI: 10.1016/j.biochi.2017.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 03/03/2017] [Accepted: 04/03/2017] [Indexed: 10/19/2022]
Abstract
A fragment of 23S ribosomal RNA (nucleotides 1906-1924 in E. coli), termed Helix 69, forms a hairpin that is essential for ribosome function. Helix 69 forms a conformationally flexible inter-subunit connection with helix 44 of 16S ribosomal RNA, and the nucleotide A1913 of Helix 69 influences decoding accuracy. Nucleotides U1911 and U1917 are post-transcriptionally modified with pseudouridines (Ψ) and U1915 with 3-methyl-Ψ. We investigated Helix 69 as a target for a complementary synthetic oligonucleotide - peptide nucleic acid (PNA). We determined thermodynamic properties of Helix 69 and its complexes with PNA and tested the performance of PNA targeted at Helix 69 in inhibiting translation in cell-free extracts and growth of E. coli cells. First, we examined the interactions of a PNA oligomer complementary to the G1907-A1919 fragment of Helix 69 with the sequences corresponding to human and bacterial species (with or without pseudouridine modifications). PNA invades the Helix 69 hairpin creating stable complexes and PNA binding to the pseudouridylated bacterial sequence is stronger than to Helix 69 without any modifications. Second, we confirmed the binding of PNA to 23S rRNA and 70S ribosomes. Third, we verified the efficiency of translation inhibition of these PNA oligomers in the cell-free translation/transcription E. coli system, which were in a similar range as tetracycline. Next, we confirmed that PNA conjugated to the (KFF)3K transporter peptide inhibited E. coli growth in micromolar concentrations. Overall, targeting Helix 69 with PNA or other sequence-specific oligomers could be a promising way to inhibit bacterial translation.
Collapse
Affiliation(s)
- Marta Kulik
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland; Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Agnieszka Markowska-Zagrajek
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland; Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Monika Wojciechowska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Renata Grzela
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Tomasz Wituła
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland.
| |
Collapse
|
4
|
Thoduka SG, Zaleski PA, Dąbrowska Z, Równicki M, Stróżecka J, Górska A, Olejniczak M, Trylska J. Analysis of ribosomal inter-subunit sites as targets for complementary oligonucleotides. Biopolymers 2017; 107. [PMID: 27858985 DOI: 10.1002/bip.23004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/06/2016] [Accepted: 11/10/2016] [Indexed: 01/15/2023]
Abstract
The bacterial ribosome has many functional ribosomal RNA (rRNA) sites. We have computationally analyzed the rRNA regions involved in the interactions between the 30S and 50S subunits. Various properties of rRNA such as solvent accessibility, opening energy, hydrogen bonding pattern, van der Waals energy, thermodynamic stability were determined. Based on these properties we selected rRNA targets for hybridization with complementary 2'-O-methyl oligoribonucleotides (2'-OMe RNAs). Further, the inhibition efficiencies of the designed ribosome-interfering 2'-OMe RNAs were tested using a β-galactosidase assay in a translation system based on the E. coli extract. Several of the oligonucleotides displayed IC50 values below 1 μM, which were in a similar range as those determined for known ribosome inhibitors, tetracycline and pactamycin. The calculated opening and van der Waals stacking energies of the rRNA targets correlated best with the inhibitory efficiencies of 2'-OMe RNAs. Moreover, the binding affinities of several oligonucleotides to both 70S ribosomes and isolated 30S and 50S subunits were measured using a double-filter retention assay. Further, we applied heat-shock chemical transformation to introduce 2'-OMe RNAs to E. coli cells and verify inhibition of bacterial growth. We observed high correlation between IC50 in the cell-free extract and bacterial growth inhibition. Overall, the results suggest that the computational analysis of potential rRNA targets within the conformationally dynamic regions of inter-subunit bridges can help design efficient antisense oligomers to probe the ribosome function.
Collapse
Affiliation(s)
- Sapna G Thoduka
- Centre of New Technologies, University of Warsaw, Warsaw, 02-097, Poland
| | - Paul A Zaleski
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznań, Poznań, 61-614, Poland
| | - Zofia Dąbrowska
- Centre of New Technologies, University of Warsaw, Warsaw, 02-097, Poland
| | - Marcin Równicki
- Centre of New Technologies, University of Warsaw, Warsaw, 02-097, Poland.,College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Banacha 2c, Warsaw, 02-097, Poland
| | - Joanna Stróżecka
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznań, Poznań, 61-614, Poland
| | - Anna Górska
- Centre of New Technologies, University of Warsaw, Warsaw, 02-097, Poland
| | - Mikołaj Olejniczak
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznań, Poznań, 61-614, Poland
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Warsaw, 02-097, Poland
| |
Collapse
|
5
|
Liu Q, Fredrick K. Intersubunit Bridges of the Bacterial Ribosome. J Mol Biol 2016; 428:2146-64. [PMID: 26880335 DOI: 10.1016/j.jmb.2016.02.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/29/2016] [Accepted: 02/05/2016] [Indexed: 02/02/2023]
Abstract
The ribosome is a large two-subunit ribonucleoprotein machine that translates the genetic code in all cells, synthesizing proteins according to the sequence of the mRNA template. During translation, the primary substrates, transfer RNAs, pass through binding sites formed between the two subunits. Multiple interactions between the ribosomal subunits, termed intersubunit bridges, keep the ribosome intact and at the same time govern dynamics that facilitate the various steps of translation such as transfer RNA-mRNA movement. Here, we review the molecular nature of these intersubunit bridges, how they change conformation during translation, and their functional roles in the process.
Collapse
Affiliation(s)
- Qi Liu
- Ohio State Biochemistry Program, Department of Microbiology, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Kurt Fredrick
- Ohio State Biochemistry Program, Department of Microbiology, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
6
|
Jiang J, Kharel DN, Chow CS. Modulation of conformational changes in helix 69 mutants by pseudouridine modifications. Biophys Chem 2015; 200-201:48-55. [PMID: 25800680 DOI: 10.1016/j.bpc.2015.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 03/02/2015] [Accepted: 03/02/2015] [Indexed: 11/25/2022]
Abstract
Centrally located at the ribosomal subunit interface and mRNA tunnel, helix 69 (H69) from 23S rRNA participates in key steps of translation. Ribosome activity is influenced by three pseudouridine modifications, which modulate the structure and conformational behavior of H69. To understand how H69 is affected by the presence of pseudouridine in combination with sequence changes, the biophysical properties of wild-type H69 and representative mutants (A1912G, U1917C, and A1919G) were examined. Results from NMR and circular dichroism spectroscopy indicate that pH-dependent structural changes of wild-type H69 and the chosen mutants are modulated by pseudouridine and loop sequence. The effects of the mutations on global stability of H69 are negligible; however, pseudouridine stabilizes H69 at low pH conditions. Alterations to induced conformational changes of H69 likely result in compromised function, as indicated by previous biological studies.
Collapse
Affiliation(s)
- Jun Jiang
- Department of Chemistry, Wayne State University, Detroit, MI 48202, United States
| | - Daya Nidhi Kharel
- Department of Chemistry, Wayne State University, Detroit, MI 48202, United States
| | - Christine S Chow
- Department of Chemistry, Wayne State University, Detroit, MI 48202, United States.
| |
Collapse
|
7
|
Panecka J, Mura C, Trylska J. Interplay of the bacterial ribosomal A-site, S12 protein mutations and paromomycin binding: a molecular dynamics study. PLoS One 2014; 9:e111811. [PMID: 25379961 PMCID: PMC4224418 DOI: 10.1371/journal.pone.0111811] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 10/07/2014] [Indexed: 12/28/2022] Open
Abstract
The conformational properties of the aminoacyl-tRNA binding site (A-site), and its surroundings in the Escherichia coli 30S ribosomal subunit, are of great relevance in designing antibacterial agents. The 30S subunit A-site is near ribosomal protein S12, which neighbors helices h27 and H69; this latter helix, of the 50S subunit, is a functionally important component of an intersubunit bridge. Experimental work has shown that specific point mutations in S12 (K42A, R53A) yield hyper-accurate ribosomes, which in turn confers resistance to the antibiotic 'paromomycin' (even when this aminoglycoside is bound to the A-site). Suspecting that these effects can be elucidated in terms of the local atomic interactions and detailed dynamics of this region of the bacterial ribosome, we have used molecular dynamics simulations to explore the motion of a fragment of the E. coli ribosome, including the A-site. We found that the ribosomal regions surrounding the A-site modify the conformational space of the flexible A-site adenines 1492/93. Specifically, we found that A-site mobility is affected by stacking interactions between adenines A1493 and A1913, and by contacts between A1492 and a flexible side-chain (K43) from the S12 protein. In addition, our simulations reveal possible indirect pathways by which the R53A and K42A mutations in S12 are coupled to the dynamical properties of the A-site. Our work extends what is known about the atomistic dynamics of the A-site, and suggests possible links between the biological effects of hyper-accurate mutations in the S12 protein and conformational properties of the ribosome; the implications for S12 dynamics help elucidate how the miscoding effects of paromomycin may be evaded in antibiotic-resistant mutants of the bacterial ribosome.
Collapse
Affiliation(s)
- Joanna Panecka
- Division of Biophysics, Institute of Experimental Physics, University of Warsaw, Warsaw, Poland
- Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Warsaw, Poland
| | - Cameron Mura
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States of America
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
8
|
Jiang J, Aduri R, Chow CS, SantaLucia J. Structure modulation of helix 69 from Escherichia coli 23S ribosomal RNA by pseudouridylations. Nucleic Acids Res 2013; 42:3971-81. [PMID: 24371282 PMCID: PMC3973299 DOI: 10.1093/nar/gkt1329] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Helix 69 (H69) is a 19-nt stem-loop region from the large subunit ribosomal RNA. Three pseudouridine (Ψ) modifications clustered in H69 are conserved across phylogeny and known to affect ribosome function. To explore the effects of Ψ on the conformations of Escherichia coli H69 in solution, nuclear magnetic resonance spectroscopy was used to reveal the structural differences between H69 with (ΨΨΨ) and without (UUU) Ψ modifications. Comparison of the two structures shows that H69 ΨΨΨ has the following unique features: (i) the loop region is closed by a Watson-Crick base pair between Ψ1911 and A1919, which is potentially reinforced by interactions involving Ψ1911N1H and (ii) Ψ modifications at loop residues 1915 and 1917 promote base stacking from Ψ1915 to A1918. In contrast, the H69 UUU loop region, which lacks Ψ modifications, is less organized. Structure modulation by Ψ leads to alteration in conformational behavior of the 5' half of the H69 loop region, observed as broadening of C1914 non-exchangeable base proton resonances in the H69 ΨΨΨ nuclear magnetic resonance spectra, and plays an important biological role in establishing the ribosomal intersubunit bridge B2a and mediating translational fidelity.
Collapse
Affiliation(s)
- Jun Jiang
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|
9
|
Gao F, Gulay SP, Kasprzak W, Dinman JD, Shapiro BA, Simon AE. The kissing-loop T-shaped structure translational enhancer of Pea enation mosaic virus can bind simultaneously to ribosomes and a 5' proximal hairpin. J Virol 2013; 87:11987-2002. [PMID: 23986599 PMCID: PMC3807929 DOI: 10.1128/jvi.02005-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 08/23/2013] [Indexed: 01/01/2023] Open
Abstract
The Pea enation mosaic virus (PEMV) 3' translational enhancer, known as the kissing-loop T-shaped structure (kl-TSS), binds to 40S subunits, 60S subunits, and 80S ribosomes, whereas the Turnip crinkle virus (TCV) TSS binds only to 60S subunits and 80S ribosomes. Using electrophoretic mobility gel shift assay (EMSA)-based competition assays, the kl-TSS was found to occupy a different site in the ribosome than the P-site-binding TCV TSS, suggesting that these two TSS employ different mechanisms for enhancing translation. The kl-TSS also engages in a stable, long-distance RNA-RNA kissing-loop interaction with a 12-bp 5'-coding-region hairpin that does not alter the structure of the kl-TSS as revealed by molecular dynamics simulations. Addition of the kl-TSS in trans to a luciferase reporter construct containing either wild-type or mutant 5' and 3' PEMV sequences suppressed translation, suggesting that the kl-TSS is required in cis to function, and both ribosome-binding and RNA interaction activities of the kl-TSS contributed to translational inhibition. Addition of the kl-TSS was more detrimental for translation than an adjacent eIF4E-binding 3' translational enhancer known as the PTE, suggesting that the PTE may support the ribosome-binding function of the kl-TSS. Results of in-line RNA structure probing, ribosome filter binding, and high-throughput selective 2'-hydroxyl acylation analyzed by primer extension (hSHAPE) of rRNAs within bound ribosomes suggest that kl-TSS binding to ribosomes and binding to the 5' hairpin are compatible activities. These results suggest a model whereby posttermination ribosomes/ribosomal subunits bind to the kl-TSS and are delivered to the 5' end of the genome via the associated RNA-RNA interaction, which enhances the rate of translation reinitiation.
Collapse
Affiliation(s)
- Feng Gao
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland, USA
| | - Suna P. Gulay
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland, USA
| | - Wojciech Kasprzak
- Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jonathan D. Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland, USA
| | - Bruce A. Shapiro
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, Maryland, USA
| | - Anne E. Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland, USA
| |
Collapse
|
10
|
Jiang J, Sakakibara Y, Chow CS. Helix 69: A Multitasking RNA Motif as a Novel Drug Target. Isr J Chem 2013. [DOI: 10.1002/ijch.201300012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Leppik M, Ero R, Liiv A, Kipper K, Remme J. Different sensitivity of H69 modification enzymes RluD and RlmH to mutations in Escherichia coli 23S rRNA. Biochimie 2012; 94:1080-9. [PMID: 22586702 DOI: 10.1016/j.biochi.2012.02.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nucleoside modifications are introduced into the ribosomal RNA during the assembly of the ribosome. The number and the localization of the modified nucleosides in rRNAs are known for several organisms. In bacteria, rRNA modified nucleosides are synthesized by a set of specific enzymes, the majority of which have been identified in Escherichia coli. Each rRNA modification enzyme recognizes its substrate nucleoside(s) at a specific stage of ribosome assembly. Not much is known about the specificity determinants involved in the substrate recognition of the modification enzymes. In order to shed light on the substrate specificity of RluD and RlmH, the enzymes responsible for the introduction of modifications into the stem-loop 69 (H69), we monitored the formation of H69 pseudouridines (Ψ) and methylated pseudouridine (m3Ψ) in vitro on ribosomes with alterations in 23S rRNA. While the synthesis of Ψs in H69 by RluD is relatively insensitive to the point mutations at neighboring positions, methylation of one of the Ψs by RlmH exhibited a much stronger sensitivity. Apparently, in spite of synthesizing modifications in the same region or even at the same position of rRNA, the two enzymes employ different substrate recognition mechanisms.
Collapse
Affiliation(s)
- Margus Leppik
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | | | | | | | | |
Collapse
|
12
|
Sakakibara Y, Chow CS. Role of pseudouridine in structural rearrangements of helix 69 during bacterial ribosome assembly. ACS Chem Biol 2012; 7:871-8. [PMID: 22324880 DOI: 10.1021/cb200497q] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As part of the central core domain of the ribosome, helix 69 of 23S rRNA participates in an important intersubunit bridge and contacts several protein translation factors. Helix 69 is believed to play key roles in protein synthesis. Even though high-resolution crystal structures of the ribosome exist, the solution dynamics and roles of individual nucleotides in H69 are still not well-defined. To better understand the influence of modified nucleotides, specifically pseudouridine, on the multiple conformational states of helix 69 in the context of 50S subunits and 70S ribosomes, chemical probing analyses were performed on wild-type and pseudouridine-deficient bacterial ribosomes. Local structural rearrangements of helix 69 upon ribosomal subunit association and interactions with its partner, helix 44 of 16S rRNA, are observed. The helix 69 conformational states are also magnesium-dependent. The probing data presented in this study provide insight into the functional role of helix 69 dynamics and regulation of these conformational states by post-transcriptional pseudouridine modification.
Collapse
Affiliation(s)
- Yogo Sakakibara
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United
States
| | - Christine S. Chow
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United
States
| |
Collapse
|
13
|
Sumita M, Jiang J, SantaLucia J, Chow CS. Comparison of solution conformations and stabilities of modified helix 69 rRNA analogs from bacteria and human. Biopolymers 2011; 97:94-106. [PMID: 21858779 DOI: 10.1002/bip.21706] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/31/2011] [Indexed: 12/20/2022]
Abstract
The helix 69 (H69) region of the large subunit (28S) ribosomal RNA (rRNA) of Homo sapiens contains five pseudouridine (Ψ) residues out of 19 total nucleotides, three of which are highly conserved. In this study, the effects of this abundant modified nucleotide on the structure and stability of H69 were compared with those of uridine in double-stranded (stem) regions. These results were compared with previous hairpin (stem plus single-stranded loop) studies to understand the contributions of the loop sequences to H69 structure and stability. The role of a loop nucleotide substitution from an A in bacteria (position 1918 in Escherichia coli 23S rRNA) to a G in eukaryotes (position 3734 in H. sapiens 28S rRNA) was examined. Thermodynamic parameters for the duplex RNAs were obtained through UV melting studies, and differences in the modified and unmodified RNA structures were examined by circular dichroism spectroscopy. The overall folded structure of human H69 appears to be similar to the bacterial RNA, consistent with the idea that ribosome structure and function are highly conserved; however, our results reveal subtle differences in structure and stability between the bacterial and human H69 RNAs in both the stem and loop regions. These findings may be significant with respect to H69 as a potential drug target site.
Collapse
Affiliation(s)
- Minako Sumita
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|
14
|
Ortiz-Meoz RF, Green R. Helix 69 is key for uniformity during substrate selection on the ribosome. J Biol Chem 2011; 286:25604-10. [PMID: 21622559 DOI: 10.1074/jbc.m111.256255] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Structural studies of ribosome complexes with bound tRNAs and release factors show considerable contacts between these factors and helix 69 (H69) of 23 S rRNA. Although biochemical and genetic studies have provided some general insights into the role of H69 in tRNA and RF selection, a detailed understanding of these contributions remains elusive. Here, we present a pre- steady-state kinetic analysis establishing that two distinct regions of H69 make critical contributions to substrate selection. The loop of H69 (A1913) forms contacts necessary for the efficient accommodation of a subset of natural tRNA species, whereas the base of the stem (G1922) is specifically critical for UGA codon recognition by the class 1 release factor RF2. These data define a broad and critical role for this centrally located intersubunit helix (H69) in accurate and efficient substrate recognition by the ribosome.
Collapse
Affiliation(s)
- Rodrigo F Ortiz-Meoz
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
15
|
Sun Q, Vila-Sanjurjo A, O'Connor M. Mutations in the intersubunit bridge regions of 16S rRNA affect decoding and subunit-subunit interactions on the 70S ribosome. Nucleic Acids Res 2010; 39:3321-30. [PMID: 21138965 PMCID: PMC3082907 DOI: 10.1093/nar/gkq1253] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The small and large subunits of the ribosome are held together by a series of bridges, involving RNA-RNA, RNA-protein and protein-protein interactions. Some 12 bridges have been described for the Escherichia coli 70S ribosome. In this work, we have targeted for mutagenesis, some of the 16S rRNA residues involved in the formation of intersubunit bridges B3, B5, B6, B7b and B8. In addition to effects on subunit association, the mutant ribosomes also affect the fidelity of translation; bridges B5, B6 and B8 increase decoding errors during elongation, while disruption of bridges B3 and B7b alters the stringency of start codon selection. Moreover, mutations in the bridge B5, B6 and B8 regions of 16S rRNA also correct the growth and decoding defects associated with alterations in ribosomal protein S12. These results link bridges B5, B6 and B8 with the decoding process and are consistent with the recently described location of translation factor EF-Tu on the ribosome and the proposed involvement of h14 in activating Guanosine-5'-triphosphate (GTP) hydrolysis by aminoacyl-tRNA • EF-Tu • GTP. These observations are consistent with a model in which bridges B5, B6 and B8 contribute to the fidelity of translation by modulating GTP hydrolysis by aminoacyl-tRNA • EF-Tu • GTP ternary complexes during the elongation phase of protein synthesis.
Collapse
Affiliation(s)
- Qing Sun
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | | | | |
Collapse
|
16
|
Ortiz-Meoz RF, Green R. Functional elucidation of a key contact between tRNA and the large ribosomal subunit rRNA during decoding. RNA (NEW YORK, N.Y.) 2010; 16:2002-2013. [PMID: 20739608 PMCID: PMC2941108 DOI: 10.1261/rna.2232710] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 07/14/2010] [Indexed: 05/29/2023]
Abstract
The selection of cognate tRNAs during translation is specified by a kinetic discrimination mechanism driven by distinct structural states of the ribosome. While the biochemical steps that drive the tRNA selection process have been carefully documented, it remains unclear how recognition of matched codon:anticodon helices in the small subunit facilitate global rearrangements in the ribosome complex that efficiently promote tRNA decoding. Here we use an in vitro selection approach to isolate tRNA(Trp) miscoding variants that exhibit a globally perturbed tRNA tertiary structure. Interestingly, the most substantial distortions are positioned in the elbow region of the tRNA that closely approaches helix 69 (H69) of the large ribosomal subunit. The importance of these specific interactions to tRNA selection is underscored by our kinetic analysis of both tRNA and rRNA variants that perturb the integrity of this interaction.
Collapse
MESH Headings
- Base Sequence
- Binding Sites/genetics
- Codon/chemistry
- Codon/genetics
- Codon/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Kinetics
- Models, Molecular
- Mutation
- Nucleic Acid Conformation
- Peptide Chain Elongation, Translational
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Trp/chemistry
- RNA, Transfer, Trp/genetics
- RNA, Transfer, Trp/metabolism
- Ribosome Subunits, Large, Bacterial/chemistry
- Ribosome Subunits, Large, Bacterial/genetics
- Ribosome Subunits, Large, Bacterial/metabolism
- Thermodynamics
Collapse
Affiliation(s)
- Rodrigo F Ortiz-Meoz
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
17
|
The structures of the anti-tuberculosis antibiotics viomycin and capreomycin bound to the 70S ribosome. Nat Struct Mol Biol 2010; 17:289-93. [PMID: 20154709 PMCID: PMC2917106 DOI: 10.1038/nsmb.1755] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 12/02/2009] [Indexed: 11/18/2022]
Abstract
Viomycin and capreomycin belong to the tuberactinomycin family of antibiotics, which are among the most effective antibiotics against multidrug-resistant tuberculosis. Here we present two crystal structures of the 70S ribosome complexed with three tRNAs and bound to either viomycin or capreomycin at 3.3 and 3.5 Å resolution, respectively. Both antibiotics bind to the same site on the ribosome, which lies at the interface between helix 44 (h44) of the small ribosomal subunit and Helix 69 (H69) of the large ribosomal subunit. The structures of these complexes suggest that the tuberactinomycins inhibit translocation by stabilizing the tRNA in the A site in the pre-translocation state. In addition these structures show that the tuberactinomycins bind adjacent to the paromomycin and hygromycin B antibiotics, which may enable the development of new derivatives of tuberactinomycins that are effective against drug resistant strains.
Collapse
|
18
|
Scheunemann AE, Graham WD, Vendeix FAP, Agris PF. Binding of aminoglycoside antibiotics to helix 69 of 23S rRNA. Nucleic Acids Res 2010; 38:3094-105. [PMID: 20110260 PMCID: PMC2875026 DOI: 10.1093/nar/gkp1253] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aminoglycosides antibiotics negate dissociation and recycling of the bacterial ribosome’s subunits by binding to Helix 69 (H69) of 23S rRNA. The differential binding of various aminoglycosides to the chemically synthesized terminal domains of the Escherichia coli and human H69 has been characterized using spectroscopy, calorimetry and NMR. The unmodified E. coli H69 hairpin exhibited a significantly higher affinity for neomycin B and tobramycin than for paromomycin (Kds = 0.3 ± 0.1, 0.2 ± 0.2 and 5.4 ± 1.1 µM, respectively). The binding of streptomycin was too weak to assess. In contrast to the E. coli H69, the human 28S rRNA H69 had a considerable decrease in affinity for the antibiotics, an important validation of the bacterial target. The three conserved pseudouridine modifications (Ψ1911, Ψ1915, Ψ1917) occurring in the loop of the E. coli H69 affected the dissociation constant, but not the stoichiometry for the binding of paromomycin (Kd = 2.6 ± 0.1 µM). G1906 and G1921, observed by NMR spectrometry, figured predominantly in the aminoglycoside binding to H69. The higher affinity of the E. coli H69 for neomycin B and tobramycin, as compared to paromomycin and streptomycin, indicates differences in the efficacy of the aminoglycosides.
Collapse
Affiliation(s)
- Ann E Scheunemann
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, USA
| | | | | | | |
Collapse
|
19
|
Persaud C, Lu Y, Vila-Sanjurjo A, Campbell JL, Finley J, O'Connor M. Mutagenesis of the modified bases, m(5)U1939 and psi2504, in Escherichia coli 23S rRNA. Biochem Biophys Res Commun 2010; 392:223-7. [PMID: 20067766 DOI: 10.1016/j.bbrc.2010.01.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 01/07/2010] [Indexed: 01/06/2023]
Abstract
Ribosomal RNAs (rRNAs) from all kingdoms contain a variety of post-transcriptional modifications and these are typically clustered in the functional centers of the ribosome. The functions of two bases in the 23S rRNA of Escherichia coli that are post-transcriptionally modified, m(5)U1939 and psi2504, were examined by mutagenesis of the rRNA bases and by inactivation of the RumA methylase that methylates U1939. Base substitutions at U1939 had little effect on growth or the fidelity of translation, but altered the sensitivity of the ribosomes to the antibiotics fusidic acid and capreomycin. Strains lacking the RumA methylase were gradually out-competed by wild type strains in growth competition experiments, suggesting that the m(5)U methylation improves ribosome performance. Base changes at psi2504 had dramatic effects on growth and resistance to several peptidyltransferase inhibitor antibiotics and increased the levels of translational errors. The results link these sites of post-transcriptional modification with the ribosome's response to antibiotics and the control of translational fidelity.
Collapse
Affiliation(s)
- Clive Persaud
- School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, USA
| | | | | | | | | | | |
Collapse
|