1
|
Botero D, Monk J, Rodríguez Cubillos MJ, Rodríguez Cubillos A, Restrepo M, Bernal-Galeano V, Reyes A, González Barrios A, Palsson BØ, Restrepo S, Bernal A. Genome-Scale Metabolic Model of Xanthomonas phaseoli pv. manihotis: An Approach to Elucidate Pathogenicity at the Metabolic Level. Front Genet 2020; 11:837. [PMID: 32849823 PMCID: PMC7432306 DOI: 10.3389/fgene.2020.00837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 07/10/2020] [Indexed: 01/05/2023] Open
Abstract
Xanthomonas phaseoli pv. manihotis (Xpm) is the causal agent of cassava bacterial blight, the most important bacterial disease in this crop. There is a paucity of knowledge about the metabolism of Xanthomonas and its relevance in the pathogenic process, with the exception of the elucidation of the xanthan biosynthesis route. Here we report the reconstruction of the genome-scale model of Xpm metabolism and the insights it provides into plant-pathogen interactions. The model, iXpm1556, displayed 1,556 reactions, 1,527 compounds, and 890 genes. Metabolic maps of central amino acid and carbohydrate metabolism, as well as xanthan biosynthesis of Xpm, were reconstructed using Escher (https://escher.github.io/) to guide the curation process and for further analyses. The model was constrained using the RNA-seq data of a mutant of Xpm for quorum sensing (QS), and these data were used to construct context-specific models (CSMs) of the metabolism of the two strains (wild type and QS mutant). The CSMs and flux balance analysis were used to get insights into pathogenicity, xanthan biosynthesis, and QS mechanisms. Between the CSMs, 653 reactions were shared; unique reactions belong to purine, pyrimidine, and amino acid metabolism. Alternative objective functions were used to demonstrate a trade-off between xanthan biosynthesis and growth and the re-allocation of resources in the process of biosynthesis. Important features altered by QS included carbohydrate metabolism, NAD(P)+ balance, and fatty acid elongation. In this work, we modeled the xanthan biosynthesis and the QS process and their impact on the metabolism of the bacterium. This model will be useful for researchers studying host-pathogen interactions and will provide insights into the mechanisms of infection used by this and other Xanthomonas species.
Collapse
Affiliation(s)
- David Botero
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
- Max Planck Tandem Group in Computational Biology, Universidad de Los Andes, Bogotá, Colombia
- Grupo de Biología Computacional y Ecología Microbiana, Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - Jonathan Monk
- Systems Biology Research Group, Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - María Juliana Rodríguez Cubillos
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | | | - Mariana Restrepo
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Vivian Bernal-Galeano
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Alejandro Reyes
- Max Planck Tandem Group in Computational Biology, Universidad de Los Andes, Bogotá, Colombia
- Grupo de Biología Computacional y Ecología Microbiana, Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - Andrés González Barrios
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Bernhard Ø. Palsson
- Systems Biology Research Group, Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Silvia Restrepo
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Adriana Bernal
- Laboratory of Molecular Interactions of Agricultural Microbes, LIMMA, Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
2
|
Schulte F, Leßmeier L, Voss J, Ortseifen V, Vorhölter FJ, Niehaus K. Regulatory associations between the metabolism of sulfur-containing amino acids and xanthan biosynthesis in Xanthomonas campestris pv. campestris B100. FEMS Microbiol Lett 2019; 366:5289864. [PMID: 30649298 DOI: 10.1093/femsle/fnz005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/14/2019] [Indexed: 02/06/2023] Open
Abstract
The γ-proteobacterium Xanthomonas campestris pv. campestris (Xcc) B100 synthesizes the exopolysaccharide xanthan, a commercially relevant thickening agent produced commonly by industrial scale fermentation. This work was inspired by the observation that methionine is an inhibitor of xanthan formation in growth experiments. Therefore, the global effects of methionine supplementation were characterized through cultivation experiments, genome-wide microarray hybridizations and qRT-PCR. Specific pull down of DNA-binding proteins by using the intergenic regions upstream of xanA, gumB and gumD led to the identification of six transcriptional regulators, among them the LysR-family transcriptional regulator CysB. An insertion mutant of this gene was analyzed by growth experiments, microarray experiments and qRT-PCR. Based on our experimental data, we developed a model that describes the methionine-dependent co-regulation of xanthan and sulfur-containing compounds in Xanthomonas. These data substantially contribute to better understand the impact of methionine as a compound in xanthan production media used in industrial fermentations.
Collapse
Affiliation(s)
- Fabian Schulte
- Department of Proteome and Metabolome Research - Bio27, Faculty of Biology, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Lennart Leßmeier
- Chair of Genetics of Prokaryotes, Faculty of Biology, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Julia Voss
- Department of Proteome and Metabolome Research - Bio27, Faculty of Biology, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Vera Ortseifen
- Department of Proteome and Metabolome Research - Bio27, Faculty of Biology, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Frank-Jörg Vorhölter
- Department of Proteome and Metabolome Research - Bio27, Faculty of Biology, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Karsten Niehaus
- Department of Proteome and Metabolome Research - Bio27, Faculty of Biology, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany
| |
Collapse
|
3
|
Intracellular Fate of Universally Labelled 13C Isotopic Tracers of Glucose and Xylose in Central Metabolic Pathways of Xanthomonas oryzae. Metabolites 2018; 8:metabo8040066. [PMID: 30326608 PMCID: PMC6316632 DOI: 10.3390/metabo8040066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/26/2018] [Accepted: 10/11/2018] [Indexed: 11/16/2022] Open
Abstract
The goal of this study is to map the metabolic pathways of poorly understood bacterial phytopathogen, Xanthomonas oryzae (Xoo) BXO43 fed with plant mimicking media XOM2 containing glutamate, methionine and either 40% [13C₅] xylose or 40% [13C₆] glucose. The metabolic networks mapped using the KEGG mapper and the mass isotopomer fragments of proteinogenic amino acids derived from GC-MS provided insights into the activities of Xoo central metabolic pathways. The average 13C in histidine, aspartate and other amino acids confirmed the activities of PPP, the TCA cycle and amino acid biosynthetic routes, respectively. The similar labelling patterns of amino acids (His, Ala, Ser, Val and Gly) from glucose and xylose feeding experiments suggests that PPP would be the main metabolic route in Xoo. Owing to the lack of annotated gene phosphoglucoisomerase in BXO43, the 13C incorporation in alanine could not be attributed to the competing pathways and hence warrants additional positional labelling experiments. The negligible presence of 13C incorporation in methionine brings into question its potential role in metabolism and pathogenicity. The extent of the average 13C labelling in several amino acids highlighted the contribution of pre-existing pools that need to be accounted for in 13C-flux analysis studies. This study provided the first qualitative insights into central carbon metabolic pathway activities in Xoo.
Collapse
|
4
|
Schatschneider S, Schneider J, Blom J, Létisse F, Niehaus K, Goesmann A, Vorhölter FJ. Systems and synthetic biology perspective of the versatile plant-pathogenic and polysaccharide-producing bacterium Xanthomonas campestris. Microbiology (Reading) 2017; 163:1117-1144. [DOI: 10.1099/mic.0.000473] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Sarah Schatschneider
- Abteilung für Proteom und Metabolomforschung, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Bielefeld, Germany
- Present address: Evonik Nutrition and Care GmbH, Kantstr. 2, 33790 Halle-Künsebeck, Germany
| | - Jessica Schneider
- Bioinformatics Resource Facility, Centrum für Biotechnologie, Universität Bielefeld, Germany
- Present address: Evonik Nutrition and Care GmbH, Kantstr. 2, 33790 Halle-Künsebeck, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Gießen, Germany
| | - Fabien Létisse
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Karsten Niehaus
- Abteilung für Proteom und Metabolomforschung, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-University Gießen, Germany
| | - Frank-Jörg Vorhölter
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
- Present address: MVZ Dr. Eberhard & Partner Dortmund, Dortmund, Germany
| |
Collapse
|
5
|
Refined annotation of the complete genome of the phytopathogenic and xanthan producing Xanthomonas campestris pv. campestris strain B100 based on RNA sequence data. J Biotechnol 2017; 253:55-61. [DOI: 10.1016/j.jbiotec.2017.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 11/18/2022]
|
6
|
Haribal M, Jander G. Stable isotope studies reveal pathways for the incorporation of non-essential amino acids in Acyrthosiphon pisum (pea aphids). ACTA ACUST UNITED AC 2017; 218:3797-806. [PMID: 26632455 DOI: 10.1242/jeb.129189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Plant roots incorporate inorganic nitrogen into the amino acids glutamine, glutamic acid, asparagine and aspartic acid, which together serve as the primary metabolites of nitrogen transport to other tissues. Given the preponderance of these four amino acids, phloem sap is a nutritionally unbalanced diet for phloem-feeding insects. Therefore, aphids and other phloem feeders typically rely on microbial symbionts for the synthesis of essential amino acids. To investigate the metabolism of the four main transport amino acids by the pea aphid (Acyrthosiphon pisum), and its Buchnera aphidicola endosymbionts, aphids were fed defined diets with stable isotope-labeled glutamine, glutamic acid, asparagine or aspartic acid (U-(13)C, U-(15)N; U-(15)N; α-(15)N; or γ-(15)N). The metabolic fate of the dietary (15)N and (13)C was traced using gas chromatography-mass spectrometry (GC-MS). Nitrogen was the major contributor to the observed amino acid isotopomers with one additional unit mass (M+1). However, there was differential incorporation, with the amine nitrogen of asparagine being incorporated into other amino acids more efficiently than the amide nitrogen. Higher isotopomers (M+2, M+3 and M+4) indicated the incorporation of varying numbers of (13)C atoms into essential amino acids. GC-MS assays also showed that, even with an excess of dietary labeled glutamine, glutamic acid, asparagine or aspartic acid, the overall content of these amino acids in aphid bodies was mostly the product of catabolism of dietary amino acids and subsequent re-synthesis within the aphids. Thus, these predominant dietary amino acids are not passed directly to Buchnera endosymbionts for synthesis of essential amino acids, but are rather are produced de novo, most likely by endogenous aphid enzymes.
Collapse
Affiliation(s)
- Meena Haribal
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA
| | - Georg Jander
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA
| |
Collapse
|
7
|
Alkhateeb RS, Vorhölter FJ, Rückert C, Mentz A, Wibberg D, Hublik G, Niehaus K, Pühler A. Genome wide transcription start sites analysis of Xanthomonas campestris pv. campestris B100 with insights into the gum gene cluster directing the biosynthesis of the exopolysaccharide xanthan. J Biotechnol 2016; 225:18-28. [PMID: 26975844 DOI: 10.1016/j.jbiotec.2016.03.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 01/18/2023]
Abstract
Xanthomonas campestris pv. campestris (Xcc) is the major producer of the exopolysaccharide xanthan, the commercially most important natural polysaccharide of microbial origin. The current work provides deeper insights into the yet uncharacterized transcriptomic features of the xanthan producing strain Xcc-B100. Towards this goal, RNA sequencing of a library based on the selective enrichment of the 5' ends of native transcripts was performed. This approach resulted in the genome wide identification of 3067 transcription start sites (TSSs) that were further classified based on their genomic positions. Among them, 1545 mapped upstream of an actively transcribed CDS and 1363 were classified as novel TSSs representing antisense, internal, and TSSs belonging to previously unidentified genomic features. Analyzing the transcriptional strength of primary and antisense TSSs revealed that in some instances antisense transcription seemed to be initiated at a higher level than its sense counterpart. Mapping the exact positions of TSSs aided in the identification of promoter consensus motifs, ribosomal binding sites, and enhanced the genome annotation of 159 in silico predicted translational start (TLS) sites. The global view on length distribution of the 5' untranslated regions (5'-UTRs) deduced from the data pointed to the occurrence of leaderless transcripts and transcripts with unusually long 5'-UTRs, in addition to identifying seven putative riboswitch elements for Xcc-B100. Concerning the biosynthesis of xanthan, we focused on the transcriptional organization of the gum gene cluster. Under the conditions tested, we present evidence for a complex transcription pattern of the gum genes with multiple TSSs and an obvious considerable role of antisense transcription. The gene gumB, encoding an outer membrane xanthan exporter, is presented here as an example for genes that possessed a strong antisense TSS.
Collapse
Affiliation(s)
- Rabeaa S Alkhateeb
- Abteilung für Proteom und Metabolomforschung, Fakultät für Biologie, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Frank-Jörg Vorhölter
- Abteilung für Proteom und Metabolomforschung, Fakultät für Biologie, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Universitätsstraße 27, 33615 Bielefeld, Germany; Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Christian Rückert
- Technologie Platform Genomics, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Almut Mentz
- Technologie Platform Genomics, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Daniel Wibberg
- Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Gerd Hublik
- Jungbunzlauer Austria AG, Pernhofen 1, 2064 Wulzeshofen, Austria
| | - Karsten Niehaus
- Abteilung für Proteom und Metabolomforschung, Fakultät für Biologie, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Universitätsstraße 27, 33615 Bielefeld, Germany.
| | - Alfred Pühler
- Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Universitätsstraße 27, 33615 Bielefeld, Germany
| |
Collapse
|
8
|
Aktas M, Narberhaus F. Unconventional membrane lipid biosynthesis inXanthomonas campestris. Environ Microbiol 2015; 17:3116-24. [DOI: 10.1111/1462-2920.12956] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/03/2015] [Accepted: 06/14/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Meriyem Aktas
- Microbial Biology; Ruhr University Bochum; Universitätsstrasse 150, NDEF 06/783 Bochum D-44780 Germany
| | - Franz Narberhaus
- Microbial Biology; Ruhr University Bochum; Universitätsstrasse 150, NDEF 06/783 Bochum D-44780 Germany
| |
Collapse
|
9
|
Schatschneider S, Huber C, Neuweger H, Watt TF, Pühler A, Eisenreich W, Wittmann C, Niehaus K, Vorhölter FJ. Metabolic flux pattern of glucose utilization by Xanthomonas campestris pv. campestris: prevalent role of the Entner–Doudoroff pathway and minor fluxes through the pentose phosphate pathway and glycolysis. ACTA ACUST UNITED AC 2014; 10:2663-76. [DOI: 10.1039/c4mb00198b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Complex metabolic flux pattern ofX. campestris.
Collapse
Affiliation(s)
- Sarah Schatschneider
- Abteilung für Proteom- und Metabolomforschung
- Fakultät für Biologie
- Universität Bielefeld
- Bielefeld, Germany
| | - Claudia Huber
- Lehrstuhl für Biochemie
- Center of Isotopologue Profiling
- Technische Universität München
- Garching, Germany
| | - Heiko Neuweger
- Computational Genomics
- Centrum für Biotechnology (CeBiTec)
- Universität Bielefeld
- Germany
| | - Tony Francis Watt
- Abteilung für Proteom- und Metabolomforschung
- Fakultät für Biologie
- Universität Bielefeld
- Bielefeld, Germany
| | - Alfred Pühler
- Institut für Genomforschung und Systembiologie
- Centrum für Biotechnology (CeBiTec)
- Universität Bielefeld
- Bielefeld, Germany
| | - Wolfgang Eisenreich
- Lehrstuhl für Biochemie
- Center of Isotopologue Profiling
- Technische Universität München
- Garching, Germany
| | - Christoph Wittmann
- Institut für Systembiotechnologie
- Universität des Saarlandes
- Saarbrücken, Germany
| | - Karsten Niehaus
- Abteilung für Proteom- und Metabolomforschung
- Fakultät für Biologie
- Universität Bielefeld
- Bielefeld, Germany
| | - Frank-Jörg Vorhölter
- Abteilung für Proteom- und Metabolomforschung
- Fakultät für Biologie
- Universität Bielefeld
- Bielefeld, Germany
- Institut für Genomforschung und Systembiologie
| |
Collapse
|
10
|
Wiechert W, Nöh K. Isotopically non-stationary metabolic flux analysis: complex yet highly informative. Curr Opin Biotechnol 2013; 24:979-86. [DOI: 10.1016/j.copbio.2013.03.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/28/2013] [Accepted: 03/30/2013] [Indexed: 12/16/2022]
|
11
|
Vandroemme J, Cottyn B, Baeyen S, De Vos P, Maes M. Draft genome sequence of Xanthomonas fragariae reveals reductive evolution and distinct virulence-related gene content. BMC Genomics 2013; 14:829. [PMID: 24274055 PMCID: PMC4046712 DOI: 10.1186/1471-2164-14-829] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 11/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Xanthomonas fragariae (Xf) is a bacterial strawberry pathogen and an A2 quarantine organism on strawberry planting stock in the EU. It is taxonomically and metabolically distinct within the genus Xanthomonas, and known for its host specificity. As part of a broader pathogenicity study, the genome of a Belgian, virulent Xf strain (LMG 25863) was assembled to draft status and examined for its pathogenicity related gene content. RESULTS The Xf draft genome (4.2 Mb) was considerably smaller than most known Xanthomonas genomes (~5 Mb). Only half of the genes coding for TonB-dependent transporters and cell-wall degrading enzymes that are typically present in other Xanthomonas genomes, were found in Xf. Other missing genes/regions with a possible impact on its plant-host interaction were: i) the three loci for xylan degradation and metabolism, ii) a locus coding for a ß-ketoadipate phenolics catabolism pathway, iii) xcs, one of two Type II Secretion System coding regions in Xanthomonas, and iv) the genes coding for the glyoxylate shunt pathway. Conversely, the Xf genome revealed a high content of externally derived DNA and several uncommon, possibly virulence-related features: a Type VI Secretion System, a second Type IV Secretion System and a distinct Type III Secretion System effector repertoire comprised of multiple rare effectors and several putative new ones. CONCLUSIONS The draft genome sequence of LMG 25863 confirms the distinct phylogenetic position of Xf within the genus Xanthomonas and reveals a patchwork of both lost and newly acquired genomic features. These features may help explain the specific, mostly endophytic association of Xf with the strawberry plant.
Collapse
Affiliation(s)
- Joachim Vandroemme
- />Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit - Crop Protection, Merelbeke, Belgium
- />Laboratory of Microbiology, Ghent University, K. L. Ledeganckstraat 35, Ghent, 9000 Belgium
| | - Bart Cottyn
- />Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit - Crop Protection, Merelbeke, Belgium
| | - Steve Baeyen
- />Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit - Crop Protection, Merelbeke, Belgium
| | - Paul De Vos
- />Laboratory of Microbiology, Ghent University, K. L. Ledeganckstraat 35, Ghent, 9000 Belgium
| | - Martine Maes
- />Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit - Crop Protection, Merelbeke, Belgium
| |
Collapse
|
12
|
Establishment, in silico analysis, and experimental verification of a large-scale metabolic network of the xanthan producing Xanthomonas campestris pv. campestris strain B100. J Biotechnol 2013; 167:123-34. [DOI: 10.1016/j.jbiotec.2013.01.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/28/2013] [Accepted: 01/28/2013] [Indexed: 11/20/2022]
|
13
|
Wichmann F, Vorhölter FJ, Hersemann L, Widmer F, Blom J, Niehaus K, Reinhard S, Conradin C, Kölliker R. The noncanonical type III secretion system of Xanthomonas translucens pv. graminis is essential for forage grass infection. MOLECULAR PLANT PATHOLOGY 2013; 14:576-88. [PMID: 23578314 PMCID: PMC6638798 DOI: 10.1111/mpp.12030] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Xanthomonas translucens pv. graminis (Xtg) is a gammaproteobacterium that causes bacterial wilt on a wide range of forage grasses. To gain insight into the host-pathogen interaction and to identify the virulence factors of Xtg, we compared a draft genome sequence of one isolate (Xtg29) with other Xanthomonas spp. with sequenced genomes. The type III secretion system (T3SS) encoding a protein transport system for type III effector (T3E) proteins represents one of the most important virulence factors of Xanthomonas spp. In contrast with other Xanthomonas spp. assigned to clade 1 on the basis of phylogenetic analyses, we identified an hrp (hypersensitive response and pathogenicity) gene cluster encoding T3SS components and a representative set of 35 genes encoding putative T3Es in the genome of Xtg29. The T3SS was shown to be divergent from the hrp gene clusters of other sequenced Xanthomonas spp. Xtg mutants deficient in T3SS regulating and structural genes were constructed to clarify the role of the T3SS in forage grass colonization. Italian ryegrass infection with these mutants led to significantly reduced symptoms (P < 0.05) relative to plants infected with the wild-type strain. This showed that the T3SS is required for symptom evocation. In planta multiplication of the T3SS mutants was not impaired significantly relative to the wild-type, indicating that the T3SS is not required for survival until 14 days post-infection. This study represents the first major step to understanding the bacterial colonization strategies deployed by Xtg and may assist in the identification of resistance (R) genes in forage grasses.
Collapse
Affiliation(s)
- Fabienne Wichmann
- Agroscope Reckenholz-Tänikon Research Station ART, Reckenholzstrasse 191, 8046 Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Dynamic protein phosphorylation during the growth of Xanthomonas campestris pv. campestris B100 revealed by a gel-based proteomics approach. J Biotechnol 2013; 167:111-22. [PMID: 23792782 DOI: 10.1016/j.jbiotec.2013.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/07/2013] [Accepted: 06/12/2013] [Indexed: 12/29/2022]
Abstract
Xanthomonas campestris pv. campestris (Xcc) synthesizes huge amounts of the exopolysaccharide xanthan and is a plant pathogen affecting Brassicaceae, among them the model plant Arabidopsis thaliana. Xanthan is produced as a thickening agent at industrial scale by fermentation of Xcc. In an approach based on 2D gel electrophoresis, protein samples from different growth phases were characterized to initialize analysis of the Xanthomonas phosphoproteome. The 2D gels were stained with Pro-Q Diamond phosphoprotein stain to identify putatively phosphorylated proteins. Spots of putatively phosphorylated proteins were excised from the gel and analyzed by mass spectrometry. Three proteins were confirmed to be phosphorylated, the phosphoglucomutase/phosphomannomutase XanA that is important for xanthan and lipopolysaccharide biosynthesis, the phosphoenolpyruvate synthase PspA that is involved in gluconeogenesis, and an anti-sigma factor antagonist RsbR that was so far uncharacterized in xanthomonads. The growth phase in which the samples were collected had an influence on protein phosphorylation in Xcc, particular distinct in case of RsbR, which was phosphorylated during the transition from the late exponential growth phase to the stationary phase.
Collapse
|
15
|
Lopes AA, Pina ES, Silva DB, Pereira AMS, da Silva MFDGF, Da Costa FB, Lopes NP, Pupo MT. A biosynthetic pathway of sesquiterpene lactones in Smallanthus sonchifolius and their localization in leaf tissues by MALDI imaging. Chem Commun (Camb) 2013; 49:9989-91. [DOI: 10.1039/c3cc46213g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|