1
|
Luo S, Li A, Luo J, Liao G, Li X, Yao S, Wang A, Xiao D, He L, Zhan J. Mutator-like transposable element 9A interacts with metacaspase 1 and modulates the incidence of Al-induced programmed cell death in peanut. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2113-2126. [PMID: 38069635 DOI: 10.1093/jxb/erad489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/05/2023] [Indexed: 03/28/2024]
Abstract
The toxicity of aluminum (Al) in acidic soil inhibits plant root development and reduces crop yields. In the plant response to Al toxicity, the initiation of programmed cell death (PCD) appears to be an important mechanism for the elimination of Al-damaged cells to ensure plant survival. In a previous study, the type I metacaspase AhMC1 was found to regulate the Al stress response and to be essential for Al-induced PCD. However, the mechanism by which AhMC1 is altered in the peanut response to Al stress remained unclear. Here, we show that a nuclear protein, mutator-like transposable element 9A (AhMULE9A), directly interacts with AhMC1 in vitro and in vivo. This interaction occurs in the nucleus in peanut and is weakened during Al stress. Furthermore, a conserved C2HC zinc finger domain of AhMULE9A (residues 735-751) was shown to be required for its interaction with AhMC1. Overexpression of AhMULE9A in Arabidopsis and peanut strongly inhibited root growth with a loss of root cell viability under Al treatment. Conversely, knock down of AhMULE9A in peanut significantly reduced Al uptake and Al inhibition of root growth, and alleviated the occurrence of typical hallmarks of Al-induced PCD. These findings provide novel insight into the regulation of Al-induced PCD.
Collapse
Affiliation(s)
- Shuzhen Luo
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Ailing Li
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Jin Luo
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Guoting Liao
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Xia Li
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Shaochang Yao
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530200, China
| | - Aiqin Wang
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
- Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Dong Xiao
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
- Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Longfei He
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
- Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Jie Zhan
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
- Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| |
Collapse
|
2
|
Gao D, Fox-Fogle E. Identification of transcriptionally active transposons in Barley. BMC Genom Data 2023; 24:64. [PMID: 37925398 PMCID: PMC10625261 DOI: 10.1186/s12863-023-01170-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND The genomes of many major crops including barley (Hordeum vulgare) consist of numerous transposons. Despite their important roles in crop genome evolution and morphological variations, most of these elements are silent or truncated and unable to be mobile in host genomes. Thus far, only a very limited number of active transposons were identified in plants. RESULTS We analyzed the barley full-length cDNA (FLcDNA) sequences and detected 71 unique FLcDNAs exhibiting significant sequence similarity to the extant transposase proteins. These FLcDNAs were then used to search against the genome of a malting barley cultivar 'Morex', seven new intact transposons were identified. Sequence alignments indicated that six intact transposons contained the entire FLcDNAs whereas another one served as 3' untranslated region (3' UTR) of a barley gene. Our reverse transcription-PCR (RT-PCR) experiment further confirmed the expression of these six transposons and revealed their differential expression. We conducted genome-wide transposon comparisons and detected polymorphisms of three transposon families between the genomes of 'Morex' and other three genotypes including the wild barley (Hordeum spontaneum, B1K-04-12) and two cultivated barley varieties, 'Golden Promise' and 'Lasa Goumang'. Lastly, we screened the transcripts of all annotated barley genes and found that some transposons may serve as the coding regions (CDSs) or UTRs of barley genes. CONCLUSION We identified six newly expressed transposons in the barley genome and revealed the recent mobility of three transposon families. Our efforts provide a valuable resource for understanding the effects of transposons on barley genome evolution and for developing novel molecular tools for barley genetic improvement and other research.
Collapse
Affiliation(s)
- Dongying Gao
- Small Grains and Potato Germplasm Research Unit, USDA-ARS, Aberdeen, ID, 83210, USA.
| | - Emma Fox-Fogle
- Small Grains and Potato Germplasm Research Unit, USDA-ARS, Aberdeen, ID, 83210, USA
- National Agricultural Statistical Service, USDA, Olympia, WA, 98501, USA
| |
Collapse
|
3
|
Cloning of Maize TED Transposon into Escherichia coli Reveals the Polychromatic Sequence Landscape of Refractorily Propagated Plasmids. Int J Mol Sci 2022; 23:ijms231911993. [PMID: 36233292 PMCID: PMC9569675 DOI: 10.3390/ijms231911993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022] Open
Abstract
MuDR, the founder member of the Mutator superfamily and its MURA transcripts, has been identified as toxic sequences to Escherichia coli (E. coli), which heavily hindered the elucidation of the biochemical features of MURA transposase and confined the broader application of the Mutator system in other organisms. To harness less constrained systems as alternatives, we attempted to clone TED and Jittery, two recently isolated autonomous Mutator-like elements (MULEs) from maize, respectively. Their full-length transcripts and genomic copies are successfully cloned when the incubation time for bacteria to recover from heat shock is extended appropriately prior to plating. However, during their proliferation in E. coli, TED transformed plasmids are unstable, as evidenced by derivatives from which frameshift, deletion mutations, or IS transposon insertions are readily detected. Our results suggest that neither leaky expression of the transposase nor the presence of terminal inverse repeats (TIRs) are responsible for the cloning barriers, which were once ascribed to the presence of the Shine–Dalgarno-like sequence. Instead, the internal sequence of TED (from 1250 to 2845 bp), especially the exons in this region, was the most likely causer. The findings provide novel insights into the property and function of the Mutator superfamily and shed light on the dissection of toxic effects on cloning from MULEs.
Collapse
|
4
|
Gao D, Caspersen AM, Hu G, Bockelman HE, Chen X. A Novel Mutator-Like Transposable Elements With Unusual Structure and Recent Transpositions in Barley ( Hordeum vulgare). FRONTIERS IN PLANT SCIENCE 2022; 13:904619. [PMID: 35677233 PMCID: PMC9168764 DOI: 10.3389/fpls.2022.904619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Mutator-like transposable elements (MULEs) represent a unique superfamily of DNA transposons as they can capture host genes and cause higher frequency of mutations in some eukaryotes. Despite their essential roles in plant evolution and functional genomics, MULEs are not fully understood yet in many important crops including barley (Hordeum vulgare). In this study, we analyzed the barley genome and identified a new mutator transposon Hvu_Abermu. This transposon is present at extremely high copy number in barley and shows unusual structure as it contains three open reading frames (ORFs) including one ORF (ORF1) encoding mutator transposase protein and one ORF (ORFR) showing opposite transcriptional orientation. We identified homologous sequences of Hvu_Abermu in both monocots and dicots and grouped them into a large mutator family named Abermu. Abermu transposons from different species share significant sequence identity, but they exhibit distinct sequence structures. Unlike the transposase proteins which are highly conserved between Abermu transposons from different organisms, the ORFR-encoded proteins are quite different from distant species. Phylogenetic analysis indicated that Abermu transposons shared closer evolutionary relationships with the maize MuDR transposon than other reported MULEs. We also found phylogenetic incongruence for the Abermu transposons identified in rice and its wild species implying the possibility of horizontal transfer of transposon. Further comparison indicated that over 200 barley genes contain Abermu-related sequences. We analyzed the barley pan genomes and detected polymorphic Hvu_Abermu transposons between the sequenced 23 wild and cultivated barley genomes. Our efforts identified a novel mutator transposon and revealed its recent transposition activity, which may help to develop genetic tools for barley and other crops.
Collapse
Affiliation(s)
- Dongying Gao
- Small Grains and Potato Germplasm Research Unit, USDA-ARS, Aberdeen, ID, United States
| | - Ann M. Caspersen
- Small Grains and Potato Germplasm Research Unit, USDA-ARS, Aberdeen, ID, United States
| | - Gongshe Hu
- Small Grains and Potato Germplasm Research Unit, USDA-ARS, Aberdeen, ID, United States
| | - Harold E. Bockelman
- Small Grains and Potato Germplasm Research Unit, USDA-ARS, Aberdeen, ID, United States
| | - Xianming Chen
- Wheat Health, Genetics, and Quality Research Unit, USDA-ARS, Pullman, WA, United States
| |
Collapse
|
5
|
Dynamics of a Novel Highly Repetitive CACTA Family in Common Bean (Phaseolus vulgaris). G3-GENES GENOMES GENETICS 2016; 6:2091-101. [PMID: 27185400 PMCID: PMC4938662 DOI: 10.1534/g3.116.028761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transposons are ubiquitous genomic components that play pivotal roles in plant gene and genome evolution. We analyzed two genome sequences of common bean (Phaseolus vulgaris) and identified a new CACTA transposon family named pvCACTA1. The family is extremely abundant, as more than 12,000 pvCACTA1 elements were found. To our knowledge, this is the most abundant CACTA family reported thus far. The computational and fluorescence in situ hybridization (FISH) analyses indicated that the pvCACTA1 elements were concentrated in terminal regions of chromosomes and frequently generated AT-rich 3 bp target site duplications (TSD, WWW, W is A or T). Comparative analysis of the common bean genomes from two domesticated genetic pools revealed that new insertions or excisions of pvCACTA1 elements occurred after the divergence of the two common beans, and some of the polymorphic elements likely resulted in variation in gene sequences. pvCACTA1 elements were detected in related species but not outside the Phaseolus genus. We calculated the molecular evolutionary rate of pvCACTA1 transposons using orthologous elements that indicated that most transposition events likely occurred before the divergence of the two gene pools. These results reveal unique features and evolution of this new transposon family in the common bean genome.
Collapse
|
6
|
Abstract
The Mutator system of transposable elements (TEs) is a highly mutagenic family of transposons in maize. Because they transpose at high rates and target genic regions, these transposons can rapidly generate large numbers of new mutants, which has made the Mutator system a favored tool for both forward and reverse mutagenesis in maize. Low copy number versions of this system have also proved to be excellent models for understanding the regulation and behavior of Class II transposons in plants. Notably, the availability of a naturally occurring locus that can heritably silence autonomous Mutator elements has provided insights into the means by which otherwise active transposons are recognized and silenced. This chapter will provide a review of the biology, regulation, evolution and uses of this remarkable transposon system, with an emphasis on recent developments in our understanding of the ways in which this TE system is recognized and epigenetically silenced as well as recent evidence that Mu-like elements (MULEs) have had a significant impact on the evolution of plant genomes.
Collapse
|
7
|
Terol J, Ibañez V, Carbonell J, Alonso R, Estornell LH, Licciardello C, Gut IG, Dopazo J, Talon M. Involvement of a citrus meiotic recombination TTC-repeat motif in the formation of gross deletions generated by ionizing radiation and MULE activation. BMC Genomics 2015; 16:69. [PMID: 25758634 PMCID: PMC4334395 DOI: 10.1186/s12864-015-1280-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 01/26/2015] [Indexed: 02/07/2023] Open
Abstract
Background Transposable-element mediated chromosomal rearrangements require the involvement of two transposons and two double-strand breaks (DSB) located in close proximity. In radiobiology, DSB proximity is also a major factor contributing to rearrangements. However, the whole issue of DSB proximity remains virtually unexplored. Results Based on DNA sequencing analysis we show that the genomes of 2 derived mutations, Arrufatina (sport) and Nero (irradiation), share a similar 2 Mb deletion of chromosome 3. A 7 kb Mutator-like element found in Clemenules was present in Arrufatina in inverted orientation flanking the 5′ end of the deletion. The Arrufatina Mule displayed “dissimilar” 9-bp target site duplications separated by 2 Mb. Fine-scale single nucleotide variant analyses of the deleted fragments identified a TTC-repeat sequence motif located in the center of the deletion responsible of a meiotic crossover detected in the citrus reference genome. Conclusions Taken together, this information is compatible with the proposal that in both mutants, the TTC-repeat motif formed a triplex DNA structure generating a loop that brought in close proximity the originally distinct reactive ends. In Arrufatina, the loop brought the Mule ends nearby the 2 distinct insertion target sites and the inverted insertion of the transposable element between these target sites provoked the release of the in-between fragment. This proposal requires the involvement of a unique transposon and sheds light on the unresolved question of how two distinct sites become located in close proximity. These observations confer a crucial role to the TTC-repeats in fundamental plant processes as meiotic recombination and chromosomal rearrangements. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1280-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Javier Terol
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, 46113, Valencia, Spain.
| | - Victoria Ibañez
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, 46113, Valencia, Spain.
| | - José Carbonell
- Centro de Investigación Principe Felipe (CIPF), Avda, Autopista del Saler, 16-3, 46012, Valencia, Spain.
| | - Roberto Alonso
- Centro de Investigación Principe Felipe (CIPF), Avda, Autopista del Saler, 16-3, 46012, Valencia, Spain.
| | - Leandro H Estornell
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, 46113, Valencia, Spain.
| | - Concetta Licciardello
- CRA-ACM, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Corso Savoia 190, 95024, Acireale, Catania, Italy.
| | - Ivo G Gut
- Centro Nacional de Análisis Genómico, Parc Científic de Barcelona, 08028, Barcelona, Spain.
| | - Joaquín Dopazo
- Centro de Investigación Principe Felipe (CIPF), Avda, Autopista del Saler, 16-3, 46012, Valencia, Spain.
| | - Manuel Talon
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, 46113, Valencia, Spain.
| |
Collapse
|
8
|
Zhao D, Jiang N. Nested insertions and accumulation of indels are negatively correlated with abundance of mutator-like transposable elements in maize and rice. PLoS One 2014; 9:e87069. [PMID: 24475224 PMCID: PMC3903597 DOI: 10.1371/journal.pone.0087069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 12/23/2013] [Indexed: 11/29/2022] Open
Abstract
Mutator-like transposable elements (MULEs) are widespread in plants and were first discovered in maize where there are a total of 12,900 MULEs. In comparison, rice, with a much smaller genome, harbors over 30,000 MULEs. Since maize and rice are close relatives, the differential amplification of MULEs raised an inquiry into the underlying mechanism. We hypothesize this is partly attributed to the differential copy number of autonomous MULEs with the potential to generate the transposase that is required for transposition. To this end, we mined the two genomes and detected 530 and 476 MULEs containing transposase sequences (candidate coding-MULEs) in maize and rice, respectively. Over 1/3 of the candidate coding-MULEs harbor nested insertions and the ratios are similar in the two genomes. Among the maize elements with nested insertions, 24% have insertions in coding regions and over half of them harbor two or more insertions. In contrast, only 12% of the rice elements have insertions in coding regions and 19% have multiple insertions, suggesting that nested insertions in maize are more disruptive. This is because most nested insertions in maize are from LTR retrotransposons, which are large in size and are prevalent in the maize genome. Our results suggest that the amplification of retrotransposons may limit the amplification of DNA transposons but not vice versa. In addition, more indels are detected among maize elements than rice elements whereas defects caused by point mutations are comparable between the two species. Taken together, more disruptive nested insertions combined with higher frequency of indels resulted in few (6%) coding-MULEs that may encode functional transposases in maize. In contrast, 35% of the coding-MULEs in rice retain putative intact transposase. This is in addition to the higher expression frequency of rice coding-MULEs, which may explain the higher occurrence of MULEs in rice than that in maize.
Collapse
Affiliation(s)
- Dongyan Zhao
- Department of Horticulture, Michigan State University, East Lansing, Michigan, United States of America
| | - Ning Jiang
- Department of Horticulture, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
9
|
Li Y, Harris L, Dooner HK. TED, an autonomous and rare maize transposon of the mutator superfamily with a high gametophytic excision frequency. THE PLANT CELL 2013; 25:3251-65. [PMID: 24038653 PMCID: PMC3809530 DOI: 10.1105/tpc.113.116517] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Mutator (Mu) elements, one of the most diverse superfamilies of DNA transposons, are found in all eukaryotic kingdoms, but are particularly numerous in plants. Most of the present knowledge on the transposition behavior of this superfamily comes from studies of the maize (Zea mays) Mu elements, whose transposition is mediated by the autonomous Mutator-Don Robertson (MuDR) element. Here, we describe the maize element TED (for Transposon Ellen Dempsey), an autonomous cousin that differs significantly from MuDR. Element excision and reinsertion appear to require both proteins encoded by MuDR, but only the single protein encoded by TED. Germinal excisions, rare with MuDR, are common with TED, but arise in one of the mitotic divisions of the gametophyte, rather than at meiosis. Instead, transposition-deficient elements arise at meiosis, suggesting that the double-strand breaks produced by element excision are repaired differently in mitosis and meiosis. Unlike MuDR, TED is a very low-copy transposon whose number and activity do not undergo dramatic changes upon inbreeding or outcrossing. Like MuDR, TED transposes mostly to unlinked sites and can form circular transposition products. Sequences closer to TED than to MuDR were detected only in the grasses, suggesting a rather recent evolutionary split from a common ancestor.
Collapse
Affiliation(s)
- Yubin Li
- Waksman Institute, Rutgers University, Piscataway, New Jersey 08854
| | - Linda Harris
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada K1A 0C6
| | - Hugo K. Dooner
- Waksman Institute, Rutgers University, Piscataway, New Jersey 08854
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey 08901
- Address correspondence to
| |
Collapse
|
10
|
A matrix protein silences transposons and repeats through interaction with retinoblastoma-associated proteins. Curr Biol 2013; 23:345-50. [PMID: 23394836 DOI: 10.1016/j.cub.2013.01.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 12/12/2012] [Accepted: 01/11/2013] [Indexed: 11/24/2022]
Abstract
Epigenetic regulation helps to maintain genomic integrity by suppressing transposable elements (TEs) and also controls key developmental processes, such as flowering time. To prevent TEs from causing rearrangements and mutations, TE and TE-like repetitive DNA sequences are usually methylated, whereas histones are hypoacetylated and methylated on specific residues (e.g., H3 lysine 9 dimethylation [H3K9me2]). TEs and repeats can also attenuate gene expression. However, how various histone modifiers are recruited to target loci is not well understood. Here we show that knockdown of the nuclear matrix protein with AT-hook DNA binding motifs TRANSPOSABLE ELEMENT SILENCING VIA AT-HOOK (TEK) in Arabidopsis Landsberg erecta results in robust activation of various TEs, the TE-like repeat-containing floral repressor genes FLOWERING LOCUS C (FLC) and FWA. This derepression is associated with chromatin conformational changes, increased histone acetylation, reduced H3K9me2, and even TE transposition. TEK directly binds to an FLC-repressive regulatory region and the silencing repeats of FWA and associates with Arabidopsis homologs of the Retinoblastoma-associated protein 46/48, FVE and MSI5, which mediate histone deacetylation. We propose that the nuclear matrix protein TEK acts in the maintenance of genome integrity by silencing TE and repeat-containing genes.
Collapse
|